JPH0379218B2 - - Google Patents

Info

Publication number
JPH0379218B2
JPH0379218B2 JP27450287A JP27450287A JPH0379218B2 JP H0379218 B2 JPH0379218 B2 JP H0379218B2 JP 27450287 A JP27450287 A JP 27450287A JP 27450287 A JP27450287 A JP 27450287A JP H0379218 B2 JPH0379218 B2 JP H0379218B2
Authority
JP
Japan
Prior art keywords
air supply
chamber
valve
air
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP27450287A
Other languages
Japanese (ja)
Other versions
JPH01115762A (en
Inventor
Hideo Tamamori
Mitsuhiro Ikeda
Yasuo Nakao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabco Ltd
Original Assignee
Nabco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabco Ltd filed Critical Nabco Ltd
Priority to JP27450287A priority Critical patent/JPH01115762A/en
Publication of JPH01115762A publication Critical patent/JPH01115762A/en
Publication of JPH0379218B2 publication Critical patent/JPH0379218B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Valves And Accessory Devices For Braking Systems (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、デジタル電気指令式の鉄道車両用空
気ブレーキ装置において使用され、デジタル電気
信号から成るブレーキ指令に応じた圧力の空気を
出力する多段中継弁に関する。 〔従来の技術〕 この種の多段中継弁の従来例として、本出願人
が昭和62年(1987年)1月1日に発行した「ナブ
コ技報」の第46頁〜第49頁(特に図3および図
4)に開示したものがあり、これを第7図に示し
以下に説明する。 第7図において、MV1,MV2,MV3はいずれ
も常時消磁式の第1電磁弁、EBVは常時励磁式
の第2電磁弁、DRVは前記電磁弁MV1〜MV3、
EBVの励消磁すなわちデジタル電気信号から成
るブレーキ指令に応じた圧力の空気を出力する多
段中継弁である。 第1電磁弁MV1,MV2,MV3は、いずれも同
じ構成であつて、第1絞りNV1を経て応荷重弁
VLVの出力側に接続する給気口aと、多段中継
弁DRVの第1制御室C1,C2,C3にそれぞれ対応
して接続する給排口bと、大気に開放された排気
口Exとを有し、図示の消磁状態においては、給
排口bを給気口aから遮断し且つ給排口bを排気
口Exに連通し、励磁されると、給排口bを排気
口Exから遮断し且つ給気口aを給排口bに連通
する。 第2電磁弁EBVは、上記第1絞りNV1より径
の大きな第2絞りNV2を径て応荷重弁VLVの出
力側に接続する給気口aと、多段中継弁DRVの
第2制御室C4に接続する給排口bと、大気に開
放された排気口Exとを有し、図示の励磁状態に
おいては、給排口bを給気口aから遮断し且つ給
排口bを排気口Exに連通し、消磁すると、給排
口bを排気口Exから遮断し且つ給気口aを給排
口bに連通する。 多段中継弁DRVは、圧力空気源MRに接続さ
れた給気室Dと、ブレーキシリンダBCに接続さ
れる出力室Fと、大気に開放された排気室Eと、
前記出力室Fに連通する釣合室C5と、上記第2
制御室C4および第1制御室C1〜C3とに区画され
ている。 上記給気室Dと出力室Fと区画する第1隔壁G
の中央部にこれら両室D,Fを連通する給気孔H
が形成され、この給気孔Hの給気室D側周囲に弁
座Iが突設され、この弁座Iに着座する方向に弱
い戻しばねJに付勢された給気弁Kが給気室D内
に設けられている。 出力室Fと排気室Eとを区画する第2隔壁Lに
は中空の排気弁棒Mが気密摺動自在に挿入され、
その先端が上記給気孔Hを遊嵌して給気弁Kに対
向し、その先端に一方が開口し他方が排気室Eに
開口する。 上記釣合室C5と第2制御室C4とを区画する釣
合兼第2制御ピストンS4の中央部には第2連結
棒Nが固着され、この第2連通棒Nは、排気室E
と釣合室C5とを区画する第3隔壁Qを気密摺動
自在に貫通し、その先端が上記排気弁棒Mに連結
されている。なお、前記ピストンS4と第3隔壁
Qとの間には、排気弁棒Mを給気弁Kから離す方
向(図中で下方向)の付勢力を有する弱い復帰ば
ねRが設けられている。 上記第2制御室C4、第1制御室C1〜C3をそれ
ぞれ区画し互いに対向すると共に積層状に配設さ
れた第1制御ピストンS1,S2,S3は、第1
連結棒Tによつて互いに連結され、この第1連結
棒Tの先端は第2制御室C4内において上記第2
連結棒Nと当接離隔自在である。 以上の構成の多段中継弁DRVの作動の概略を
第1表に示す。なお、第1表において、ノツチは
ブレーキ指令の段階を示し、各電磁弁MV1〜
MV3、EBVの「1」は励磁、「0」は消磁を意
味しており、これがブレーキ指令に相当する。ま
た、上記ピストンS1〜S4の有効面積比を、S
4:S1:S2:S3=9:7:6:4に設定し
た場合の出力空気圧の段階を示す。
[Industrial Field of Application] The present invention relates to a multistage relay valve that is used in a digital electric command type air brake system for railway vehicles and outputs air at a pressure according to a brake command consisting of a digital electric signal. [Prior Art] As a conventional example of this type of multi-stage relay valve, pages 46 to 49 (especially the figure 3 and FIG. 4), which is shown in FIG. 7 and will be described below. In FIG. 7, MV1, MV2, and MV3 are all the first solenoid valves that are always deenergized, EBV is the second solenoid valve that is always energized, and DRV is the solenoid valves MV1 to MV3,
This is a multi-stage relay valve that outputs air at a pressure that corresponds to the EBV excitation/demagnetization, or brake command consisting of a digital electric signal. The first solenoid valves MV1, MV2, and MV3 all have the same configuration, and are connected to the variable load valve via the first throttle NV1.
An air supply port a connected to the output side of the VLV, an air supply and exhaust port b connected to the first control chambers C1, C2, and C3 of the multistage relay valve DRV, respectively, and an exhaust port Ex opened to the atmosphere. In the demagnetized state shown in the figure, the supply/discharge port b is cut off from the air supply port a, and the supply/discharge port b is communicated with the exhaust port Ex. When energized, the supply/discharge port b is cut off from the exhaust port Ex. and communicates the air supply port a with the air supply and discharge port b. The second solenoid valve EBV is connected to an air supply port a connected to the output side of the variable load valve VLV through a second throttle NV2 having a larger diameter than the first throttle NV1, and to a second control room C4 of the multistage relay valve DRV. It has a connecting supply and exhaust port b and an exhaust port Ex that is open to the atmosphere, and in the illustrated excited state, the supply and discharge port b is cut off from the air supply port a, and the supply and discharge port b is connected to the exhaust port Ex. When communicated and demagnetized, the air supply/exhaust port b is cut off from the exhaust port Ex, and the air supply/exhaust port a is communicated with the air supply/exhaust port b. The multi-stage relay valve DRV includes an air supply chamber D connected to the pressure air source MR, an output chamber F connected to the brake cylinder BC, and an exhaust chamber E open to the atmosphere.
A balancing chamber C5 communicating with the output chamber F, and the second
It is divided into a control room C4 and first control rooms C1 to C3. A first partition wall G that partitions the air supply chamber D and the output chamber F.
There is an air supply hole H in the center that communicates these two chambers D and F.
is formed, and a valve seat I is provided protrudingly around the air supply chamber D side of this air supply hole H, and the air supply valve K, which is biased by a weak return spring J in the direction of seating on this valve seat I, opens into the air supply chamber. It is located inside D. A hollow exhaust valve rod M is inserted into the second partition L that partitions the output chamber F and the exhaust chamber E so as to be slidable in an airtight manner.
Its tip loosely fits into the air supply hole H and faces the air supply valve K, and one side opens at the tip and the other opens into the exhaust chamber E. A second connecting rod N is fixed to the center of the balancing and second control piston S4 that partitions the balancing chamber C5 and the second control chamber C4.
It passes through the third partition Q that partitions the balance chamber C5 and the balance chamber C5 in an airtight slidable manner, and its tip is connected to the exhaust valve stem M. Note that a weak return spring R is provided between the piston S4 and the third partition Q, and has a biasing force in a direction (downward in the figure) that moves the exhaust valve rod M away from the intake valve K. The first control pistons S1, S2, and S3 partition the second control chamber C4 and the first control chambers C1 to C3, respectively, and are opposed to each other and arranged in a stacked manner.
They are connected to each other by a connecting rod T, and the tip of this first connecting rod T is located inside the second control chamber C4.
It can freely come into contact with and separate from the connecting rod N. Table 1 outlines the operation of the multistage relay valve DRV with the above configuration. In Table 1, the notch indicates the stage of the brake command, and each solenoid valve MV1~
"1" in MV3 and EBV means excitation and "0" means demagnetization, which corresponds to the brake command. In addition, the effective area ratio of the pistons S1 to S4 is S
4:S1:S2:S3=9:7:6:4 The output air pressure level is shown.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

最近、在来線における列車のスピードアツプ計
画に伴ない、上記多段中継弁を備えた空気ブレー
キ装置における出力空気圧を増圧することが要望
されている。また、制輪子の摩擦特性によつては
出力空気圧を減圧されることも考えられられる。
そこで、これら要望に対する解決手段として、考
えられるのが第8図に示すものである。ただし第
8図は公知ではない。 第8図において、S20は底壁U側に付設した
制御ピストンであり、この制御ピストンS20は
2つの制御室C21,C22を区画する。 そして、一方の制御室C21を大気に開放し且つ
他方の制御室C22に上記応荷重弁VLVの出力空気
を導入することにより増圧を図り、また、他方の
制御室C22を大気に開放し且つ一方の制御室C21
に上記応荷重弁VLVの出力空気を導入すること
により減圧を図るものである。 しかしながら、上記手段による場合は次の問題
がある。 まず、増圧を図る場合、制御ピストンS20の
有効面積比を1とすると、上記第1表の出力圧
は、ユルメ(0),1ノツチ(2/9),2ノツチ
(3/9),3ノツチ(4/9),4ノツチ(5/
9),5ノツチ(6/9),6ノツチ(7/9),
7ノツチ(8/9),8ノツチ(9/9),非常
(9/9)となる。 すなわち、この場合、1〜7ノツチの常用ブレ
ーキ指令時においては増圧できるものの、その増
圧がどのノツチでも一定量(1/9)であつて比
例増圧が得られない問題がある。 また、減圧を図る場合、上述と同様に制御ピス
トンS20の有効面積比を1とすると、上記第1
表の出力圧は、ユルメ(0),1ノツチ(0),2
ノツチ(1/9),3ノツチ(2/9),4ノツチ
(3/9),5ノツチ(4/9),6ノツチ(5/
9),7ノツチ(6/9),8ノツチ(9/9),
非常(9/9)となる。 すなわち、この場合、1〜7ノツチの常用ブレ
ーキ指令時においては減圧できるものの、その減
圧がどのノツチでも一定量(1/9)であつて比
例増圧が得られない問題がある。 〔問題点を解決するための手段〕 そこで、上記問題を解決する本発明の手段は、
上記第7図の如き従来の多段中継弁において、 上記釣合ピストンに出力空気が釣合力として作
用する有効面積を、通常の第1面積とそれよりも
大または小の第2面積とに切換えるように構成し
たことである。 〔作用、効果〕 上記本発明の手段によれば、釣合ピストンの第
1面積をA1、同じく第2面積をA2、制御ピスト
ンに指令力として空気圧が作用する有効面積を
B、制御ピストンに作用する指令空気圧をP1、
前記第1面積A1のときの出力空気圧をP21、前記
第2面積A2のときの出力空気圧をP22とすると、
通常の第1面積A1に切換えた場合、P21×A1=
P1×Bが成立するから、出力空気圧P21=(B/
A1)×P1となり、また、第2面積A2に切換えた
場合、 P22×A2=P1×Bが成立するから、出力空気
圧P22=(B/A2)×P1となる。 ここにおいて、A1>A2と設定すれば、P21<
P22となり、小の第2面積A2に切換えることによ
つて、どのブレーキ指令に対しても出力空気圧
P22を通常時のP21よりも増圧させることができ、
しかも、有効面積Bがブレーキ指令に応じて変化
するため、その増圧は比例増圧となる。 またA1<A2と設定すれば、P21>P22となり、
大の第2面積A2に切換えることによつて、どの
ブレーキ指令に対しても出力空気圧P22を通常時
のP21よりも減圧させることができ、しかも、有
効面積Bがブレーキ指令に応じて変化するため、
その減圧は比例減圧となる。 〔実施例〕 以下、本発明の実施例を第1図〜第6図にもと
づいて説明する。なお、従来例と同一構成部分に
ついては、第7図と同一符合を付してその説明を
省略する。 第1図は第1実施例(増圧タイプ)を示し、第
7図の従来例と異なる点は、第3隔壁Qと釣合兼
第2制御ピストンS4との間に釣合ピストンS5
を追設し、その一側の釣合室C6を出力室Fに常
時連通させると共に、その他側の釣合室C5を第
3電磁弁MV5を介して出力室Fに接続したこと
である。なお、前記ピストンS4,S5の面積比
は、S4:S5=9:6と設定しており、また、
第1制御ピストンS1〜S3の面積比は従来例と
同じで、S1:S2:S3=7:6:4である。 上記第3電磁弁MV5は、通常、増圧を切換え
るものであり、第3絞りNV3を介して出力室F
に接続する給気口aと、上記釣合室C5に連通す
る給排口bと、大気に開放された排気口Exとを
有し、常時消磁式であつて、第1図の消磁時にお
いては、給排口bを排気口Exから遮断し且つ給
気口aを給排口bに連通し、また、励磁される
と、第1図の状態から切換わり、給排口bを給気
口aから遮断し且つ給排口bを排気口Exに連通
する。 すなわち、第3電磁弁MV5が消磁している場
合は、2つの釣合室C5,C6が出力室Fに連通し
ているため、出力空気圧が釣合力として作用する
有効面積(第1面積)は9であり、また、第3電
磁弁MV5が励磁されると、一方の釣合室C5が大
気に開放されるため、出力空気圧が釣合力として
作用する有効面積(第2面積)は6に切換わる。 この第3電磁弁MV5は、列車の走行スピード
が高速の第1設定値(例えば、110Km/h)を超
えると励磁され、ブレーキ作動等により走行スピ
ードが低速の第2設定値(例えば、40Km/h)以
下に低下すると消磁するように設定される。 上記第1図の第1実施例において、第3電磁弁
MV5が消磁している場合の作動は、第7図と同
じであり、上記第1表の通りである。また第3電
磁弁MV5が励磁された場合の作動は基本的に第
7図と同じであるが、その増圧された出力空気圧
は、1ノツチ(1/6),2ノツチ(2/6),3
ノツチ(3/6),4ノツチ(4/6),5ノツチ
(5/6),6ノツチ(6/6),7ノツチ(7/
6),8ノツチ(9/6),非常(9/6)とな
る。 なお、上記第1実施例における各電磁弁MV1
〜MV3,MV5,EBVを常時消磁式あるいは常時
励磁式のいずれに設定するかは任意である。 また、第3絞りNV3の設定位置を第3電磁弁
MV5の排気口Exあるいは給排口bとしも良く、
これを削除しても良い。 さらに、各ピストンS1〜S5の面積比も必要
に応じて変更すれば良い。 第2図は第2実施例(減圧タイプ)を示し、第
1図の第1実施例と異なる点は、釣合ピストンS
4,S5の面積比を、S4:S5=9:11とした
点であり、その他は第1図と同じである。 したがつて、この第2実施例において、第3電
磁弁MV5が励磁された場合、その減圧された出
力空気圧は、1ノツチ(1/11),2ノツチ
(2/11),3ノツチ(3/11),4ノツチ(4/
11),5ノツチ(5/11),6ノツチ(6/11),
7ノツチ(7/11),8ノツチ(8/11),非常
(9/11)となる。 第3図は第3実施例(増圧タイプ)を示し、第
1図の第1実施例と異なる点は、釣合ピストンS
4,S5間に第4隔壁Vを設け、この第4隔壁V
と前記ピストンS4との間を1つの釣合室C5と
し、第4隔壁Vと釣合ピストンS5との間を大気
に開放し、釣合ピストンS5と第隔壁Qとの間を
他の釣合室C6とし、さらに、これら釣合室C5,
C6を4ポート2位置の常時励磁式の第4電磁弁
MV6を介して出力室Fに接続したことである。 この第4電磁弁MV6は、通常時に励磁されて
いるため、第1位置(イ)に切換わつており、出
力室Fを一方の釣合室C5に連通し且つ他方の釣
合室C6を大気に開放しており、増圧時には消磁
して第2位置(ロ)に復帰し、釣合室C6に出力
室Fを連通し且つ釣合室C5を大気に開放する。 なお、第3図の第3実施例のその他の構成およ
びその作動は第1図と同様であるので説明を省略
する。 第4図は第4実施例(増圧タイプ)を示し、第
1図の第1実施例と異なる点は、第4隔壁Vおよ
び釣合ピストンS6を追設してS4を制御ピスト
ン専用とし、釣合ピストンS6,S5の面積比を
S6:S5=3:6とした点であり、その他の説
明を省略する。 第5図は第5実施例(減圧タイプ)を示し、第
2図の第2実施例と異なる点は、釣合ピストンS
6および第4隔壁Vを追設してS4を制御ピスト
ン専用とし、釣合ピストンS6,S5の面積比を
S6:S5=2:11とした点であり、その他の説
明を省略する。 第6図の第6実施例(減圧タイプ)を示し、第
5図の第5実施例と異なる点は、釣合ピストンS
6と第4隔壁Vの追設位置が逆であり、釣合ピス
トンS6,S5の面積比をS6:S5=2:9と
し、通常時は釣合室C5を大気に開放しておき、
減圧する場合に釣合室C5に出力空気圧を導入す
る点であり、その他の説明を省略する。
Recently, with the plan to increase the speed of trains on conventional lines, there has been a demand for increasing the output air pressure of the air brake device equipped with the above-mentioned multi-stage relay valve. Furthermore, depending on the friction characteristics of the brake shoes, it is possible that the output air pressure may be reduced.
Therefore, a possible solution to these demands is shown in FIG. 8. However, FIG. 8 is not publicly known. In FIG. 8, S20 is a control piston attached to the bottom wall U side, and this control piston S20 partitions two control chambers C21 and C22. Then, one control room C21 is opened to the atmosphere and the output air of the variable load valve VLV is introduced into the other control room C22 to increase the pressure, and the other control room C22 is opened to the atmosphere and One control room C21
The pressure is reduced by introducing the output air of the variable load valve VLV into the air. However, when using the above means, there are the following problems. First, when increasing the pressure, assuming that the effective area ratio of the control piston S20 is 1, the output pressures in Table 1 above are: 1 notch (0), 1 notch (2/9), 2 notches (3/9), 3 notch (4/9), 4 notch (5/
9), 5 notches (6/9), 6 notches (7/9),
7 notches (8/9), 8 notches (9/9), emergency (9/9). That is, in this case, although the pressure can be increased when a service brake command is issued for 1 to 7 notches, the pressure increase is a constant amount (1/9) for any notch, and there is a problem that a proportional pressure increase cannot be obtained. Furthermore, when attempting to reduce the pressure, if the effective area ratio of the control piston S20 is 1 as described above, then the first
The output pressures in the table are 1-notch (0), 1-notch (0), and 2-notch (0).
Notchi (1/9), 3 Notchi (2/9), 4 Notchi (3/9), 5 Notchi (4/9), 6 Notchi (5/9)
9), 7 notches (6/9), 8 notches (9/9),
Emergency (9/9). That is, in this case, although the pressure can be reduced when the service brake command is issued for 1 to 7 notches, the pressure reduction is a constant amount (1/9) for all notches, and there is a problem that a proportional pressure increase cannot be obtained. [Means for solving the problems] Therefore, the means of the present invention for solving the above problems are as follows.
In the conventional multi-stage relay valve as shown in FIG. 7, the effective area on which the output air acts as a balancing force on the balancing piston is switched between a normal first area and a second area that is larger or smaller than the normal first area. It was configured as follows. [Operations and Effects] According to the above means of the present invention, the first area of the balancing piston is A1, the second area is A2, and the effective area where air pressure acts on the control piston as a command force is B, and B acts on the control piston. Set the command air pressure to P1,
If the output air pressure when the first area A1 is P21, and the output air pressure when the second area A2 is P22,
When switching to the normal first area A1, P21×A1=
Since P1×B holds true, output air pressure P21=(B/
A1)×P1, and when switching to the second area A2, P22×A2=P1×B holds, so the output air pressure P22=(B/A2)×P1. Here, if A1>A2 is set, P21<
P22, and by switching to the small second area A2, the output air pressure can be adjusted for any brake command.
It is possible to increase the pressure of P22 more than the normal P21,
Moreover, since the effective area B changes according to the brake command, the pressure increase is a proportional pressure increase. Also, if you set A1<A2, P21>P22,
By switching to the larger second area A2, the output air pressure P22 can be reduced from the normal P21 for any brake command, and since the effective area B changes according to the brake command. ,
The pressure reduction becomes a proportional pressure reduction. [Example] Hereinafter, an example of the present invention will be described based on FIGS. 1 to 6. Components that are the same as those in the conventional example are given the same reference numerals as in FIG. 7, and their explanation will be omitted. FIG. 1 shows a first embodiment (pressure increase type), which differs from the conventional example shown in FIG.
, and the balancing chamber C6 on one side is always communicated with the output chamber F, and the balancing chamber C5 on the other side is connected to the output chamber F via the third solenoid valve MV5. The area ratio of the pistons S4 and S5 is set to S4:S5=9:6, and
The area ratio of the first control pistons S1 to S3 is the same as in the conventional example, and is S1:S2:S3=7:6:4. The above-mentioned third solenoid valve MV5 normally switches pressure increase, and is connected to the output chamber F via the third throttle NV3.
It has an air supply port a connected to the above balance chamber C5, an air supply/exhaust port b communicating with the above-mentioned balancing chamber C5, and an exhaust port Ex opened to the atmosphere. isolates supply/discharge port b from exhaust port Ex and communicates air supply/discharge port a with supply/discharge port b, and when excited, switches from the state shown in Figure 1 and connects supply/discharge port b to supply/discharge port B. It is shut off from the port a, and the supply/discharge port b is communicated with the exhaust port Ex. In other words, when the third solenoid valve MV5 is demagnetized, the two balancing chambers C5 and C6 communicate with the output chamber F, so the effective area (first area) where the output air pressure acts as a balancing force is 9, and when the third solenoid valve MV5 is excited, one of the balancing chambers C5 is opened to the atmosphere, so the effective area (second area) where the output air pressure acts as a balancing force is cut to 6. Change. This third solenoid valve MV5 is energized when the running speed of the train exceeds a high-speed first set value (for example, 110 km/h), and when the running speed of the train exceeds a low-speed second set value (for example, 40 km/h) due to brake operation, etc. h) It is set to demagnetize when the voltage drops below. In the first embodiment shown in FIG. 1 above, the third solenoid valve
The operation when MV5 is demagnetized is the same as that shown in FIG. 7 and as shown in Table 1 above. Furthermore, the operation when the third solenoid valve MV5 is excited is basically the same as shown in Fig. 7, but the increased output air pressure is 1 notch (1/6), 2 notches (2/6). ,3
Notchi (3/6), 4 Notchi (4/6), 5 Notchi (5/6), 6 Notchi (6/6), 7 Notchi (7/
6), 8 notches (9/6), and emergency (9/6). In addition, each solenoid valve MV1 in the above first embodiment
~It is optional whether MV3, MV5, and EBV are set to a constantly demagnetized type or a constantly energized type. Also, change the setting position of the third throttle NV3 to the third solenoid valve.
It can also be used as the MV5 exhaust port Ex or supply/exhaust port B.
You can delete this. Furthermore, the area ratio of each piston S1 to S5 may be changed as necessary. FIG. 2 shows a second embodiment (decompression type), and the difference from the first embodiment shown in FIG. 1 is that the balance piston S
4. The area ratio of S5 is set to S4:S5=9:11, and other aspects are the same as in FIG. Therefore, in this second embodiment, when the third solenoid valve MV5 is excited, the reduced output air pressure is 1 notch (1/11), 2 notches (2/11), and 3 notches (3 notches). /11), 4 notch (4/
11), 5 notches (5/11), 6 notches (6/11),
7 notches (7/11), 8 notches (8/11), and emergency (9/11). FIG. 3 shows a third embodiment (pressure increase type), and the difference from the first embodiment shown in FIG. 1 is that the balance piston S
A fourth partition wall V is provided between S4 and S5, and this fourth partition wall V
and the piston S4 are set as one balancing chamber C5, the space between the fourth partition wall V and the balancing piston S5 is opened to the atmosphere, and the space between the balancing piston S5 and the fourth partition wall Q is set as one balancing chamber C5. chamber C6, and these balancing chambers C5,
C6 is a 4-port, 2-position, constantly energized fourth solenoid valve.
It is connected to output room F via MV6. Since this fourth solenoid valve MV6 is normally excited, it is switched to the first position (a), communicating the output chamber F with one balancing chamber C5 and the other balancing chamber C6 with the atmosphere. When the pressure is increased, it is demagnetized and returns to the second position (b), communicating the output chamber F with the balance chamber C6 and opening the balance chamber C5 to the atmosphere. The other configurations and operations of the third embodiment shown in FIG. 3 are the same as those shown in FIG. 1, so their explanations will be omitted. FIG. 4 shows a fourth embodiment (pressure increase type), which is different from the first embodiment shown in FIG. This is because the area ratio of the balancing pistons S6 and S5 is S6:S5=3:6, and other explanations will be omitted. FIG. 5 shows a fifth embodiment (decompression type), and the difference from the second embodiment shown in FIG. 2 is that the balance piston S
6 and a fourth partition wall V are additionally provided, S4 is dedicated to the control piston, and the area ratio of the balancing pistons S6 and S5 is set to S6:S5=2:11, and other explanations will be omitted. FIG. 6 shows a sixth embodiment (decompression type), and the difference from the fifth embodiment in FIG. 5 is that the balance piston S
6 and the fourth partition wall V are opposite to each other, the area ratio of the balancing pistons S6 and S5 is S6:S5=2:9, and the balancing chamber C5 is normally open to the atmosphere.
This is because the output air pressure is introduced into the balance chamber C5 when the pressure is reduced, and other explanations will be omitted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例(増圧タイプ)の
説明図、第2図は同第2実施例(減圧タイプ)の
説明図、第3図は同第3実施例(増圧タイプ)の
説明図、第4図は同第4実施例(増圧タイプ)の
説明図、第5図は同第5実施例(減圧タイプ)の
説明図、第6図は同第6実施例(減圧タイプ)の
説明図、第7図は従来公知例の説明図、第8図は
別の従来例(公知ではない)の説明図である。 DRV…多段中継弁、MR…圧力空気源、BC…
ブレーキシリンダ、D…給気室、E…排気室、F
…出力室、H…給気孔、I…弁座、J…戻しば
ね、K…給気弁、M…排気弁棒、R…復帰ばね、
S1,S2,S3…第1制御ピストン、S4…制
御(釣合兼第2制御)ピストン、S5,S6…釣
合ピストン。
Fig. 1 is an explanatory diagram of the first embodiment (pressure increasing type) of the present invention, Fig. 2 is an explanatory diagram of the second embodiment (pressure reducing type), and Fig. 3 is an explanatory diagram of the third embodiment (pressure increasing type) of the present invention. ), FIG. 4 is an explanatory diagram of the fourth embodiment (pressure increase type), FIG. 5 is an explanatory diagram of the fifth embodiment (decreasing pressure type), and FIG. 6 is an explanatory diagram of the sixth embodiment (pressure reduction type). FIG. 7 is an explanatory diagram of a conventionally known example, and FIG. 8 is an explanatory diagram of another conventional example (not publicly known). DRV...Multi-stage relay valve, MR...Pressure air source, BC...
Brake cylinder, D...air supply chamber, E...exhaust chamber, F
...output chamber, H...air supply hole, I...valve seat, J...return spring, K...air supply valve, M...exhaust valve rod, R...return spring,
S1, S2, S3...first control piston, S4...control (balance and second control) piston, S5, S6...balance piston.

Claims (1)

【特許請求の範囲】 1 圧力空気源に接続された給気室と、ブレーキ
シリンダに接続される出力室と、大気に開放され
た排気室と、前記給気室を出力室に連通する給気
孔の給気室側の周囲に突設された弁座と、該弁座
に着座するようにばね付勢された給気弁と、該給
気弁にその先端が対向して前記給気孔を遊嵌する
と共にその先端に一方が開口し他方が前記排気室
に開口する中空の排気弁棒と、デジタル電気信号
から成るブレーキ指令に応じて圧力空気を受圧し
前記排気弁棒を給気弁方向へ移動させる指令力を
受ける複数の制御ピストンと、前記出力室の圧力
空気を受圧し前記指令力に対抗する釣合力を受け
る釣合ピストンとを備え、前記ブレーキ指令に応
じた圧力の空気を出力する鉄道車両用多段中継弁
において、 上記釣合ピストンに出力空気が釣合力として作
用する有効面積を、通常の第1面積とそれよりも
大または小の第2面積とに切換えるように構成し
たことを特徴とする鉄道車両用多段中継弁。
[Scope of Claims] 1. An air supply chamber connected to a pressure air source, an output chamber connected to a brake cylinder, an exhaust chamber open to the atmosphere, and an air supply hole communicating the air supply chamber with the output chamber. a valve seat protruding around the air supply chamber side, an air supply valve biased by a spring so as to be seated on the valve seat, and a valve with its tip facing the air supply valve and floating through the air supply hole. A hollow exhaust valve rod that is fitted and has one opening at its tip and the other opening into the exhaust chamber, and receives pressurized air in response to a brake command consisting of a digital electric signal to move the exhaust valve rod toward the air supply valve. It includes a plurality of control pistons that receive a command force for movement, and a balance piston that receives pressurized air in the output chamber and receives a balancing force that opposes the command force, and outputs air at a pressure according to the brake command. In a multi-stage relay valve for a railway vehicle, the effective area on which the output air acts as a balancing force on the balancing piston is configured to be switched between a normal first area and a second area that is larger or smaller than the normal first area. Features: Multi-stage relay valve for railway vehicles.
JP27450287A 1987-10-29 1987-10-29 Multistage relay valve for railway vehicle Granted JPH01115762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27450287A JPH01115762A (en) 1987-10-29 1987-10-29 Multistage relay valve for railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27450287A JPH01115762A (en) 1987-10-29 1987-10-29 Multistage relay valve for railway vehicle

Publications (2)

Publication Number Publication Date
JPH01115762A JPH01115762A (en) 1989-05-09
JPH0379218B2 true JPH0379218B2 (en) 1991-12-18

Family

ID=17542584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27450287A Granted JPH01115762A (en) 1987-10-29 1987-10-29 Multistage relay valve for railway vehicle

Country Status (1)

Country Link
JP (1) JPH01115762A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2542500Y2 (en) * 1991-02-19 1997-07-30 川崎重工業株式会社 Pilot pressure generator
US5429426A (en) * 1994-03-31 1995-07-04 Westinghouse Air Brake Company Brake cylinder pressure relay valve for railroad freight car
CN114872751A (en) * 2022-03-24 2022-08-09 南京中车浦镇海泰制动设备有限公司 Electric air relay valve with multi-stage output function

Also Published As

Publication number Publication date
JPH01115762A (en) 1989-05-09

Similar Documents

Publication Publication Date Title
JPH0249426Y2 (en)
US3944287A (en) Electro-pneumatic brake apparatus for railway vehicles
US4861115A (en) Electrically-controlled motor vehicle brake system
US6126244A (en) Pressure control device for electropneumatic brake systems of vehicles, particularly utility vehicles
US6626505B2 (en) Braking pressure modulator for an electronic braking system
US6467854B2 (en) Braking pressure modulator for a trailer with electronic braking system
JPS61229654A (en) Pressure regulator for strengthening braking force and controlling antiblock
US3823984A (en) Braking systems
JPH0379218B2 (en)
US4515412A (en) Dual type antilock braking device for four-wheeled vehicles
JPS611565A (en) Brake toggle joint
JPH0127487Y2 (en)
JP2684065B2 (en) Relay valve device
JPH0355481Y2 (en)
CA2210690C (en) Variable capacity electropneumatic control valve
JPH04244685A (en) Pressure control valve for electropneumatic brake device
CN114771596B (en) Relay valve capable of performing multistage pressure output and railway vehicle braking system
GB1480808A (en) Valve arrangement for controlling a pressure medium operated brake system
JPS6324482Y2 (en)
JPH11248025A (en) Fluid control device
JPH03157257A (en) Brake circuit having hydraulic type input amplifier
JPH04122272U (en) Relay valve for railway vehicles
JPH02503411A (en) Brake system proportioning valve failure compensation switch
JPH04334656A (en) Double acting type differential pressure regulating valve for rolling stock
GB2082705A (en) Control valve assembly

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term