JPH0379182A - Image encoding control system - Google Patents

Image encoding control system

Info

Publication number
JPH0379182A
JPH0379182A JP1214822A JP21482289A JPH0379182A JP H0379182 A JPH0379182 A JP H0379182A JP 1214822 A JP1214822 A JP 1214822A JP 21482289 A JP21482289 A JP 21482289A JP H0379182 A JPH0379182 A JP H0379182A
Authority
JP
Japan
Prior art keywords
variable length
processing block
encoding
orthogonal transform
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1214822A
Other languages
Japanese (ja)
Inventor
Takashi Hamano
崇 浜野
Kiyoshi Sakai
潔 酒井
Kiichi Matsuda
松田 喜一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1214822A priority Critical patent/JPH0379182A/en
Priority to CA 2039734 priority patent/CA2039734C/en
Priority to JP51150090A priority patent/JP2547479B2/en
Priority to DE69029317T priority patent/DE69029317T2/en
Priority to PCT/JP1990/001057 priority patent/WO1991003128A1/en
Priority to EP19900912371 priority patent/EP0439624B1/en
Publication of JPH0379182A publication Critical patent/JPH0379182A/en
Priority to US08/452,834 priority patent/US5844611A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/40Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code
    • H03M7/42Conversion to or from variable length codes, e.g. Shannon-Fano code, Huffman code, Morse code using table look-up for the coding or decoding process, e.g. using read-only memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/152Data rate or code amount at the encoder output by measuring the fullness of the transmission buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To contract a circuit scale by setting the number of signals at every processing block less than a constant number when variable length encoding is performed by performing orthogonal transform coding at every processing block in which one picture of an input image signal is divided into plural numbers. CONSTITUTION:The discrete cosine transformation of the input image signal is performed at every processing block at a discrete cosine transformation part 11, and a difference between the transform coefficient of a preceding frame is found with a subtractor 12, and is added on a quantizer 13. And a quantized difference is added on a variable encoder part 15 at every processing block via a code control part 14, and its output signal is accumulated once in a buffer memory 16, and is sent to a transmission line, etc. At this time, at the control part 14, the number of signals to be added on the encoder part 15 at every processing block is controlled less than the constant number, and the constant number is set as the maximum number of processing signals at the encoder part 15.

Description

【発明の詳細な説明】 〔概要〕 入力画像信号を高能率符号化して出力する画像符号化制
御方式に関し、 符号化特性を低下させることなく、高能率符号化を行う
と共に、回路規模を縮小可能とすることを目的とし、 入力画像信号の1画面分を複数に分割した処理ブロック
毎に直交変換符号化を行う直交変換符号化部と、該直交
変換符号化部の出力信号を可変長符号化する可変長符号
化部と、該可変長符号化部の可変長符号化出力信号を加
えるバッファメモリとを備えて、前記入力画像信号の高
能率符号化を行う画像符号化制御方式に於いて、前記直
交変換符号化部の出力信号を加える符号制御部を設け、
該符号制御部により、前記直交変換符号化部から前記可
変長符号化部に加える処理ブロック毎の信号数を一定数
以下となるように制御する構成とした。
[Detailed Description of the Invention] [Summary] Regarding an image encoding control method that encodes an input image signal with high efficiency and outputs it, it is possible to perform high efficiency encoding and reduce the circuit scale without deteriorating the encoding characteristics. For the purpose of An image encoding control method for highly efficient encoding of the input image signal, comprising: a variable length encoding unit that encodes a variable length encoder; and a buffer memory that adds a variable length encoded output signal of the variable length encoder; a code control unit that adds an output signal of the orthogonal transform coding unit;
The code control unit controls the number of signals for each processing block that is applied from the orthogonal transform encoding unit to the variable length encoding unit to be equal to or less than a certain number.

〔産業上の利用分野〕[Industrial application field]

本発明は、入力画像信号を高能率符号化する画像符号化
制御方式に関するものである。
The present invention relates to an image encoding control method for highly efficient encoding of input image signals.

動画等についての画像信号のビットレートを低減する為
に、1画面を複数に分割した処理ブロック毎に直交変換
符号化を行って高能率符号化する方式が知られている。
In order to reduce the bit rate of an image signal for a moving image or the like, a method is known in which one screen is divided into a plurality of blocks and each processing block is subjected to orthogonal transform coding for high-efficiency coding.

このような高能率符号化方式に於ける回路規模を小さ(
することが要望されている。
In such a high-efficiency encoding method, the circuit size can be reduced (
It is requested to do so.

〔従来の技術〕[Conventional technology]

第6図は従来例の要部ブロック図であり、動画等につい
ての画像信号は直交変換符号化部31に加えられる。こ
の直交変換符号化部31は、フーリエ変換(Fouri
er  Transform) 、アダマール(Had
amard )変換、離散コサイン(D 1scret
eCosine )変換(DCT)等による構成とする
ことができるものであり、又フレーム間符号化等の予測
符号化と組合せた構成とすることもできる。
FIG. 6 is a block diagram of main parts of a conventional example, in which an image signal for a moving image or the like is applied to an orthogonal transform encoding section 31. This orthogonal transform encoding unit 31 performs Fourier transform (Fourier transform).
er Transform), Hadamard (Had
amard ) transform, discrete cosine (D 1scret
This can be configured using eCosine ) transform (DCT) or the like, or can be configured in combination with predictive encoding such as interframe encoding.

最近は、離散コサイン変換(DCT)による構成が実用
化されている。又直交変換符号化を行う処理ブロックの
大きさは、例えば、−次元の場合は8〜16画素程度、
二次元の場合は8×8画素〜16X16画素程度として
いる。
Recently, a configuration using discrete cosine transform (DCT) has been put into practical use. In addition, the size of the processing block that performs orthogonal transform encoding is, for example, about 8 to 16 pixels in the case of − dimension,
In the case of two dimensions, the pixels are approximately 8×8 pixels to 16×16 pixels.

画像信号は直交変換符号化部31に於いて処理ブロック
毎に直交変換符号化されて、可変長符号化部32に加え
られ、生起確率の高い信号に短い符号を割当てる可変長
符号に変換されて、バッファメモリ33に加えられる。
The image signal is orthogonally transformed encoded for each processing block in the orthogonal transform encoder 31, and is applied to the variable length encoder 32, where it is converted into a variable length code that assigns a short code to a signal with a high probability of occurrence. , are added to the buffer memory 33.

このバッファメモリ33から一定速度で読出された可変
長符号信号は伝送路等へ送出される。
The variable length code signal read out from the buffer memory 33 at a constant speed is sent to a transmission path or the like.

可変長符号信号の受信側では、可変長復号化部に於いて
固定長符号信号に変換し、直交変換復号化部に於いて直
交変換符号化部31と逆の処理により画像信号を再生し
、表示装置等に加えて画像を3表示することになる。
On the receiving side of the variable-length code signal, a variable-length decoding section converts it into a fixed-length code signal, and an orthogonal transform decoding section reproduces the image signal by performing a process opposite to that of the orthogonal transform encoding section 31. In addition to the display device, etc., three images will be displayed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述の従来例の画像符号化方式に於いては、例えば、n
Xm画素を処理ブロックとして直交変換符号化を行い、
変換係数がOでない有効係数の総てを可変長符号化部3
2に於いて可変長符号に変換するものであり、従って、
可変長符号化部32は、最大nxm個の信号を可変長符
号化する能力が必要となる。従って、回路規模が大きく
なる。
In the conventional image encoding method described above, for example, n
Perform orthogonal transform encoding using Xm pixels as a processing block,
The variable length encoder 3 converts all effective coefficients whose transform coefficients are not O.
2, it is converted into a variable length code, and therefore,
The variable length encoding unit 32 needs to have the ability to variable length encode a maximum of nxm signals. Therefore, the circuit scale becomes large.

又直交変換により高周波成分側の変換係数が0になる傾
向があり、従って、低周波成分側の変換係数についてだ
け処理することにより、回路規模を縮小することが考え
られるが、高周波成分の処理の可能性がな(なるので、
再生画質が劣化する場合がある。
In addition, orthogonal transformation tends to cause the transform coefficients on the high frequency component side to become 0. Therefore, it is possible to reduce the circuit scale by processing only the transform coefficients on the low frequency component side, but it is difficult to process the high frequency components. There is no possibility (because
Playback quality may deteriorate.

本発明は、符号化特性を低下させることなく、高能率符
号化を行うと共に、回路規模を縮小可能とすることを目
的とするものである。
An object of the present invention is to perform highly efficient encoding without deteriorating encoding characteristics, and to enable reduction in circuit scale.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の画像符号化制御方式は、可変長符号化信号の数
を成る一定数以下となるように制限するものであり、第
1図を参照して説明する。
The image encoding control method of the present invention limits the number of variable length encoded signals to a certain number or less, and will be explained with reference to FIG.

入力画像信号の1画面分を複数に分割した処理ブロック
毎に直交変換符号化を行う直交変換符号化部1と、この
直交変換符号化部lの出力信号を可変長符号化する可変
長符号化部2と、この可変長符号化部2の可変長符号出
力信号を加えるバッファメモリ3とを備えて、画像信号
の高能率符号化を行う方式に於いて、直交変換符号化部
1の出力信号を加える符号制御部4を設け、この符号制
御部4により、直交変換符号化部1から可変長符号化部
2に加える処理ブロック毎の信号数を一定数以下となる
ように制御するものである。
An orthogonal transform coding unit 1 performs orthogonal transform coding for each processing block obtained by dividing one screen of an input image signal into a plurality of blocks, and a variable length coding unit performs variable length coding of the output signal of this orthogonal transform coding unit l. 2 and a buffer memory 3 to which the variable-length code output signal of the variable-length coder 2 is added. A code control unit 4 is provided, and the code control unit 4 controls the number of signals added to each processing block from the orthogonal transform coding unit 1 to the variable length coding unit 2 to be equal to or less than a certain number. .

〔作用〕[Effect]

直交変換符号化部1による処理ブロック毎の有効係数は
、−収約に数個となるものであり、この有効係数を予め
定めた一定数以下となるように符号制御部4により制御
して、可変長符号化部2に加えるものであり、可変長符
号化部2は、符号制御部4により制御する一定数以下の
処理能力を有する回路規模で済むから、従来例に比較し
て縮小することができる。又直交変換符号化により低周
波成分側の有効係数が少なく、高周波成分側の有効係数
が多い場合でも、その高周波成分側の処理が可能となり
、再生画質の劣化を抑制することができる。
The effective coefficients for each block processed by the orthogonal transform encoding unit 1 are several in convergence, and the code control unit 4 controls the effective coefficients so that they are equal to or less than a predetermined constant number. This is added to the variable length encoder 2, and the variable length encoder 2 can be reduced in size compared to the conventional example, since the variable length encoder 2 can be controlled by the code controller 4 and has a circuit size of a certain number or less. I can do it. Furthermore, even if the orthogonal transform encoding has a small number of effective coefficients on the low frequency component side and a large number of effective coefficients on the high frequency component side, it is possible to process the high frequency component side, thereby suppressing deterioration of reproduced image quality.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例について詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は、本発明の一実施例のブロック図であり、11
は離散コサイン変換部(DCT)、12は減算器、13
は量子化器、14は符号制御部、15は可変長符号化部
、16はバッファメモリ、17は逆量子化器、18は加
算器、19はフレームメモリ、20は量子化制御部であ
る。この実施例は、第1図に於ける直交変換符号化部l
を、離散コサイン変換部11と、フレーム間符号化を行
う減算器12.量子化器13.逆量子化器17゜加算器
18.フレームメモリ19等とにより構成した場合を示
す。
FIG. 2 is a block diagram of one embodiment of the present invention, 11
is a discrete cosine transform unit (DCT), 12 is a subtracter, 13
1 is a quantizer, 14 is a code control unit, 15 is a variable length encoder, 16 is a buffer memory, 17 is an inverse quantizer, 18 is an adder, 19 is a frame memory, and 20 is a quantization control unit. This embodiment is based on the orthogonal transform encoding unit l in FIG.
, a discrete cosine transform unit 11, and a subtracter 12 that performs interframe coding. Quantizer 13. Inverse quantizer 17° adder 18. A case is shown in which the frame memory 19 and the like are used.

入力画像信号は、離散コサイン変換部11に於いて処理
ブロック毎に離散コサイン変換され、減算器12に於い
て前フレームの変換係数との差が求められて量子化器1
3に加えられ、その差が量子化されて符号制御部14に
加えられる。この符号制御部14は、処理ブロック毎に
可変長符号化部15に加えられる信号数を一定数以下に
制御するものであり、従って、可変長符号化部15は、
最大で処理ブロックの画素数に対応した信号数を処理す
るものではな(、符号制御部14に於いて制御する一定
数を最大処理信号数とすれば良いことになる。
The input image signal is subjected to discrete cosine transform for each processing block in the discrete cosine transform unit 11, and the difference from the transform coefficient of the previous frame is determined in the subtracter 12.
3, and the difference is quantized and added to the code control section 14. This code control section 14 controls the number of signals added to the variable length encoding section 15 for each processing block to a fixed number or less. Therefore, the variable length encoding section 15
The maximum number of signals to be processed does not correspond to the number of pixels of the processing block (in other words, the maximum number of signals to be processed may be a constant number controlled by the code control unit 14).

又可変長符号化部15の可変長符号出力信号はバッファ
メモリ16に一旦蓄積され、図示を省略した構成により
一定速度で読出されて、伝送路等へ送出される。又量子
化制御部20では、バッファメモリ16の占有量を監視
して、オーバフロー又はアンダーフローが生じないよう
に、量子化器13及び逆量子化器17の量子化ステップ
を制御するものであり、その量子化ステップの制御情報
は、可変長符号出力信号と共に受信側へ送信される。
Further, the variable length code output signal of the variable length encoder 15 is temporarily stored in the buffer memory 16, read out at a constant speed by a configuration not shown, and sent to a transmission path or the like. The quantization control unit 20 also monitors the occupancy of the buffer memory 16 and controls the quantization steps of the quantizer 13 and inverse quantizer 17 so that overflow or underflow does not occur. Control information for the quantization step is transmitted to the receiving side together with the variable length code output signal.

又逆量子化器17により逆量子化された変換係数の差分
は、前フレームの内容と加算器18に於いて加算されて
、フレームメモリ19に加えられて、次のフレームに於
いて読出される。
Further, the difference between the transform coefficients dequantized by the dequantizer 17 is added to the contents of the previous frame in the adder 18, added to the frame memory 19, and read out in the next frame. .

離散コサイン変換部11に於ける処理ブロックを、例え
ば、8×8画素とした時に、成る処理ブロックについて
の量子化出力信号が、第3図に示す場合、矢印で示すジ
グザグスキャンによって、ゼロランと有効係数とが右側
に示すように得られる。即ち、左上の直流成分の有効係
数の5は、ゼロランが0であるから、(0,5)で表さ
れ、次のジグザグスキャンによる有効係数の7は、ゼロ
ランが10であるから、(10,7)で表され、以下同
様にして、(3,2)、  (0,5)、  (3,2
)、(7,15)、  (10,7)となり、これ以降
の高周波成分は総てOであるから、有効係数として処理
しないことになる。
When the processing block in the discrete cosine transform unit 11 is, for example, 8×8 pixels, the quantized output signal for the processing block shown in FIG. The coefficients and are obtained as shown on the right. That is, the effective coefficient 5 of the upper left DC component is 0 for zero run, so it is expressed as (0, 5), and the effective coefficient 7 for the next zigzag scan is 10 for zero run, so it is expressed as (10, 7), and similarly, (3,2), (0,5), (3,2
), (7, 15), (10, 7), and since all the high frequency components after this are O, they are not processed as effective coefficients.

これらのゼロラン及び有効係数に対する可変長符号を右
側に示す。又この処理ブロックについての可変長符号出
力信号は、出力符号として示すものとなる。
The variable length codes for these zero runs and significant coefficients are shown on the right. Further, the variable length code output signal for this processing block is shown as an output code.

このような8×8画素について離散コサイン変換を施し
た場合に、直流成分を含めて6個の有効係数を用いても
、再生画質の劣化が少ないことが統計的に求められたと
すると、符号制御部14に於いては、可変長符号化部1
5に加える信号数を6以下に制御する。その場合、第3
図に示す処理ブロックについての有効係数及び出力符号
は、第4図に示すものとなる。この場合、可変長符号化
部15は、処理ブロック毎に最大6個の信号について可
変長符号化処理を行う構成で済むことになる。
When performing discrete cosine transformation on such 8x8 pixels, it is statistically determined that there is little deterioration in the reproduced image quality even if six effective coefficients including the DC component are used. In the section 14, the variable length encoding section 1
The number of signals added to 5 is controlled to 6 or less. In that case, the third
The effective coefficients and output codes for the processing block shown in the figure are as shown in FIG. In this case, the variable length encoding unit 15 only needs to be configured to perform variable length encoding processing on a maximum of six signals for each processing block.

又符号制御部14は、処理ブロック毎に可変長符号化部
15へ加える有効係数をカウントし、−定数となった時
にゲートを閉じる簡単な構成で実現することができる。
Furthermore, the code control section 14 can be implemented with a simple configuration that counts the effective coefficients added to the variable length encoding section 15 for each processing block and closes the gate when the count reaches a - constant.

又ディジタル・シグナル・プロセッサ等により直交変換
符号化及びフレーム間符号化の処理を行うことも可能で
あり、その場合には、処理ブロック毎の有効係数をカウ
ントして、一定数となった時に、次の処理ブロックの処
理に移行して、可変長符号化部15にその処理ブロック
の有効係数を加えるように制御する構成とすることもで
きる。
It is also possible to perform orthogonal transform coding and interframe coding using a digital signal processor, etc. In that case, count the effective coefficients for each processing block, and when a certain number is reached, It is also possible to adopt a configuration in which the variable length encoding unit 15 is controlled to move to the processing of the next processing block and add the effective coefficient of that processing block.

第5図は本発明の他の実施例の要部ブロック図であり、
第2図と同一符号は同一部分を示す、この実施例は、直
交変換を含む予測符号化の構成となるもので、入力画像
信号と、それに対応する前フレームの内容とが減算器1
2に於いて減算されて、フレーム間差分が求められ、離
散コサイン変換部11に於いて処理ブロック毎に直交変
換符号化され、量子化器13により変換係数が量子化さ
れて符号制御部14に加えられ、この符号制御部14に
より図示を省略した可変長符号化部へ加える処理ブロッ
ク毎の信号数を一定数以下に制御するものである。
FIG. 5 is a block diagram of main parts of another embodiment of the present invention,
The same reference numerals as those in FIG.
2, the inter-frame difference is obtained, orthogonal transform coding is performed for each processing block in the discrete cosine transform unit 11, and the transform coefficients are quantized by the quantizer 13 and sent to the code control unit 14. The code controller 14 controls the number of signals per processing block to be added to a variable length encoder (not shown) to a fixed number or less.

又この実施例に於いては、直交変換を含むループを形成
する為に、逆量子化器17の出力信号を加える逆離散コ
サイン変換部11′を設け、離散コサイン変換部11に
よる直交変換符号を元に戻して、加算器18に加える構
成としている。
Further, in this embodiment, in order to form a loop including orthogonal transformation, an inverse discrete cosine transform section 11' which adds the output signal of the inverse quantizer 17 is provided, and the orthogonal transform code by the discrete cosine transform section 11 is The configuration is such that the data is returned to its original state and added to the adder 18.

本発明は、前述の各実施例のみに限定されるものではな
く、直交変換符号化部1は、フーリエ変化やアダマール
変換等の各種の直交変換手段のみにより構成することも
可能であり、又フィールド間符号化等の各種の予測符号
化手段との組合せによる構成とすることも可能である。
The present invention is not limited to the above-described embodiments, and the orthogonal transform encoding unit 1 can be configured only by various orthogonal transform means such as Fourier transformation or Hadamard transform, or can be configured using only field It is also possible to have a configuration in combination with various predictive encoding means such as inter-coding.

又符号制御部に於ける一定数は、処理ブロックの大きさ
や直交変換手段の種類等に対応して選定することができ
るものである。
Further, the fixed number in the code control section can be selected depending on the size of the processing block, the type of orthogonal transformation means, etc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の画像符号化制御方式は、
直交変換符号化部工から可変長符号化部2へ加える処理
ブロック毎の信号数を、符号制御部4により一定数以下
に制御するものであり、それによって、可変長符号化部
2は、処理ブロックの大きさに相当する回路規模から、
符号制御部4により制御される一定数に相当する回路規
模に縮小することが可能となる利点がある。
As explained above, the image encoding control method of the present invention is
The number of signals for each processing block added from the orthogonal transform encoding unit to the variable length encoding unit 2 is controlled by the code control unit 4 to a certain number or less, so that the variable length encoding unit 2 From the circuit scale equivalent to the block size,
There is an advantage that the circuit scale can be reduced to a certain number controlled by the code control section 4.

又直交変換による周波数成分によって処理を省略するも
のではないから、画像の性質によっては高周波成分を処
理する可能性があり、従って、再生画質の劣化を少なく
して、回路規模の縮小を図ることができる。
Also, since processing is not omitted depending on the frequency components due to orthogonal transformation, there is a possibility that high frequency components may be processed depending on the nature of the image. Therefore, it is possible to reduce the deterioration of the reproduced image quality and reduce the circuit scale. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、第2図は本発明の一実施
例のブロック図、第3図は可変長符号出力説明図、第4
図は符号制御による可変長符号出力説明図、第5図は本
発明の他の実施例の要部ブロック図、第6図は従来例の
要部ブロック図である。 lは直交変換符号化部、2は可変長符号化部、3はバッ
ファメモリ、4は符号制御部である。 本究明の!理説明図 第1図
FIG. 1 is a diagram explaining the principle of the present invention, FIG. 2 is a block diagram of an embodiment of the present invention, FIG. 3 is a diagram explaining variable length code output, and FIG.
FIG. 5 is a block diagram of a main part of another embodiment of the present invention, and FIG. 6 is a block diagram of a main part of a conventional example. 1 is an orthogonal transform encoding section, 2 is a variable length encoding section, 3 is a buffer memory, and 4 is a code control section. The real investigation! Figure 1

Claims (1)

【特許請求の範囲】 入力画像信号の1画面分を複数に分割した処理ブロック
毎に直交変換符号化を行う直交変換符号化部(1)と、
該直交変換符号化部(1)の出力信号を可変長符号化す
る可変長符号化部(2)と、該可変長符号化部(2)の
可変長符号化出力信号を加えるバッファメモリ(3)と
を備えて、前記入力画像信号の高能率符号化を行う画像
符号化制御方式に於いて、 前記直交変換符号化部(1)の出力信号を加える符号制
御部(4)を設け、該符号制御部(4)により、前記直
交変換符号化部(1)から前記可変長符号化部(2)に
加える処理ブロック毎の信号数を一定数以下となるよう
に制御する ことを特徴とする画像符号化制御方式。
[Scope of Claims] An orthogonal transform encoding unit (1) that performs orthogonal transform encoding for each processing block obtained by dividing one screen of an input image signal into a plurality of blocks;
A variable length encoder (2) that variable length encodes the output signal of the orthogonal transform encoder (1), and a buffer memory (3) that adds the variable length encoded output signal of the variable length encoder (2). ), the image encoding control method performs high-efficiency encoding of the input image signal, further comprising: a code control unit (4) that adds an output signal of the orthogonal transform encoding unit (1); A code control unit (4) controls the number of signals for each processing block added from the orthogonal transform encoding unit (1) to the variable length encoding unit (2) so that the number is equal to or less than a certain number. Image encoding control method.
JP1214822A 1989-08-23 1989-08-23 Image encoding control system Pending JPH0379182A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1214822A JPH0379182A (en) 1989-08-23 1989-08-23 Image encoding control system
CA 2039734 CA2039734C (en) 1989-08-23 1990-08-21 Control system for encoding image
JP51150090A JP2547479B2 (en) 1989-08-23 1990-08-21 Image coding control system
DE69029317T DE69029317T2 (en) 1989-08-23 1990-08-21 CONTROL SYSTEM FOR IMAGE CODING
PCT/JP1990/001057 WO1991003128A1 (en) 1989-08-23 1990-08-21 Control system for encoding image
EP19900912371 EP0439624B1 (en) 1989-08-23 1990-08-21 Control system for encoding image
US08/452,834 US5844611A (en) 1989-08-23 1995-05-30 Image coding system which limits number of variable length code words

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214822A JPH0379182A (en) 1989-08-23 1989-08-23 Image encoding control system

Publications (1)

Publication Number Publication Date
JPH0379182A true JPH0379182A (en) 1991-04-04

Family

ID=16662104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214822A Pending JPH0379182A (en) 1989-08-23 1989-08-23 Image encoding control system

Country Status (6)

Country Link
US (1) US5844611A (en)
EP (1) EP0439624B1 (en)
JP (1) JPH0379182A (en)
CA (1) CA2039734C (en)
DE (1) DE69029317T2 (en)
WO (1) WO1991003128A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331573A (en) * 1991-05-07 1992-11-19 Oki Electric Ind Co Ltd Image coding device
JPH0686261A (en) * 1991-12-24 1994-03-25 General Instr Corp Statistical multiplexer for multichannel image compression system

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475501A (en) * 1991-09-30 1995-12-12 Sony Corporation Picture encoding and/or decoding method and apparatus
EP0535272A1 (en) * 1991-10-02 1993-04-07 Alcatel N.V. Hybrid encoder arrangement for an image processing system
US5510785A (en) * 1993-03-19 1996-04-23 Sony Corporation Method of coding a digital signal, method of generating a coding table, coding apparatus and coding method
US5321522A (en) * 1993-07-19 1994-06-14 Xerox Corporation ADCT compression with minimum compression ratio
US6408102B1 (en) * 1993-12-20 2002-06-18 Canon Kabushiki Kaisha Encoding/decoding device
GB2300537B (en) * 1995-04-29 2000-02-16 Motorola Israel Ltd Method of encoding images and video encoder
JP2001024515A (en) * 1999-07-07 2001-01-26 Sony Corp Method and device for processing signal
US7212681B1 (en) * 2003-01-15 2007-05-01 Cisco Technology, Inc. Extension of two-dimensional variable length coding for image compression
US7194137B2 (en) * 2003-05-16 2007-03-20 Cisco Technology, Inc. Variable length coding method and apparatus for video compression
US7440633B2 (en) * 2003-12-19 2008-10-21 Sharp Laboratories Of America, Inc. Enhancing the quality of decoded quantized images
US7454073B2 (en) * 2004-06-15 2008-11-18 Cisco Technology, Inc. Video compression using multiple variable length coding processes for multiple classes of transform coefficient blocks
CN102790880B (en) * 2004-06-15 2015-04-08 思科技术公司 Hybrid variable length coding method and apparatus for video compression
US7454076B2 (en) * 2004-06-15 2008-11-18 Cisco Technology, Inc. Hybrid variable length coding method for low bit rate video coding
US7499596B2 (en) 2004-08-18 2009-03-03 Cisco Technology, Inc. Amplitude coding for clustered transform coefficients
US7499595B2 (en) * 2004-08-18 2009-03-03 Cisco Technology, Inc. Joint amplitude and position coding for photographic image and video coding
US7492956B2 (en) * 2004-08-18 2009-02-17 Cisco Technology, Inc. Video coding using multi-dimensional amplitude coding and 2-D non-zero/zero cluster position coding
US7471840B2 (en) * 2004-08-18 2008-12-30 Cisco Technology, Inc. Two-dimensional variable length coding of runs of zero and non-zero transform coefficients for image compression
US7471841B2 (en) 2004-06-15 2008-12-30 Cisco Technology, Inc. Adaptive breakpoint for hybrid variable length coding
US7680349B2 (en) 2004-08-18 2010-03-16 Cisco Technology, Inc. Variable length coding for clustered transform coefficients in video compression
US7620258B2 (en) * 2004-08-18 2009-11-17 Cisco Technology, Inc. Extended amplitude coding for clustered transform coefficients
KR100668324B1 (en) * 2005-01-21 2007-01-12 삼성전자주식회사 Method and apparatus for controlling bit rate on coding of an image data
US7242328B1 (en) 2006-02-03 2007-07-10 Cisco Technology, Inc. Variable length coding for sparse coefficients
TWI332770B (en) * 2007-03-21 2010-11-01 Via Tech Inc Variable length decoding device and method for improving variable length decoding performance
US8743963B2 (en) * 2007-08-13 2014-06-03 Ntt Docomo, Inc. Image/video quality enhancement and super-resolution using sparse transformations
US8731062B2 (en) * 2008-02-05 2014-05-20 Ntt Docomo, Inc. Noise and/or flicker reduction in video sequences using spatial and temporal processing
US8050355B2 (en) * 2008-06-11 2011-11-01 Korea Electronics Technology Institute Transmitter and receiver using pseudo-orthogonal code
WO2012098646A1 (en) * 2011-01-18 2012-07-26 富士通株式会社 Moving picture encoding device, moving picture encoding method and computer program for moving picture encoding
US11128866B2 (en) * 2018-10-18 2021-09-21 Qualcomm Incorporated Scans and last coefficient position coding for zero-out transforms

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751742A (en) * 1985-05-07 1988-06-14 Avelex Priority coding of transform coefficients
JPS622721A (en) * 1985-06-28 1987-01-08 Nec Corp Coding and decoding device for picture signal
FR2589020B1 (en) * 1985-10-22 1987-11-20 Eude Gerard TRANSFORMATION HYBRID CODING METHOD FOR TRANSMITTING IMAGE SIGNALS
JPH0681307B2 (en) * 1986-03-17 1994-10-12 富士写真フイルム株式会社 Orthogonal transform coding method for image data
US5007102A (en) * 1986-03-20 1991-04-09 At&T Bell Laboratories Data compression using block list transform
EP0260748B1 (en) * 1986-09-13 1994-07-13 Philips Patentverwaltung GmbH Bitrate reduction method and circuitry
EP0260721B1 (en) * 1986-09-25 1993-12-01 Nec Corporation Method and apparatus for coding motion image signal
CA1296430C (en) * 1986-11-10 1992-02-25 Masahide Kaneko Encoding system capable of accomplishing a high efficiency by anterior and/or posterior processing to quantization
US4816914A (en) * 1987-01-07 1989-03-28 Pictel Corporation Method and apparatus for efficiently encoding and decoding image sequences
US4833535A (en) * 1987-02-04 1989-05-23 Kabushiki Kaisha Toshiba Image transmission apparatus
JP2511669B2 (en) * 1987-04-02 1996-07-03 コニカ株式会社 Compressor for gradation image data
US4922273A (en) * 1987-04-02 1990-05-01 Konica Corporation Compression method of halftone image data
BE1000643A5 (en) * 1987-06-05 1989-02-28 Belge Etat METHOD FOR CODING IMAGE SIGNALS.
NL8800988A (en) * 1988-04-15 1989-11-01 Philips Nv SYSTEM FOR TRANSMISSION OF VIDEO SIGNALS WITH ADAPTIVE CODEWORD ALLOCATION, AND TRANSMITTER AND RECEIVER SUITABLE FOR THE SYSTEM.
US4941043A (en) * 1988-06-14 1990-07-10 Siemens Aktiengesellschaft Method for reducing blocking artifacts in video scene coding with discrete cosine transformation (DCT) at a low data rate
US4942467A (en) * 1988-12-05 1990-07-17 General Electric Company Predictor controlled encoder for digital transmission systems
JPH0797753B2 (en) * 1989-01-24 1995-10-18 日本ビクター株式会社 Encoding output data amount control method
US5327173A (en) * 1989-06-19 1994-07-05 Fujitsu Limited Moving image coding apparatus and moving image decoding apparatus
US5086488A (en) * 1989-08-19 1992-02-04 Mitsubishi Denki Kabushiki Kaisha Transform coding apparatus
JPH0828875B2 (en) * 1989-08-21 1996-03-21 三菱電機株式会社 Encoding device and decoding device
JP3085465B2 (en) * 1989-10-31 2000-09-11 オリンパス光学工業株式会社 Image data encoding apparatus and encoding method
US5162908A (en) * 1990-08-31 1992-11-10 Samsung Electronics Co., Ltd. Coding method for increasing data compression efficiency in transmitting or storing picture signals
JPH04368088A (en) * 1991-06-14 1992-12-21 Kokusai Denshin Denwa Co Ltd <Kdd> Adaptive coding system for ac component in moving picture orthogonal transformation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331573A (en) * 1991-05-07 1992-11-19 Oki Electric Ind Co Ltd Image coding device
JPH0686261A (en) * 1991-12-24 1994-03-25 General Instr Corp Statistical multiplexer for multichannel image compression system

Also Published As

Publication number Publication date
EP0439624A1 (en) 1991-08-07
EP0439624A4 (en) 1992-10-07
WO1991003128A1 (en) 1991-03-07
DE69029317D1 (en) 1997-01-16
CA2039734C (en) 1995-02-21
EP0439624B1 (en) 1996-12-04
US5844611A (en) 1998-12-01
DE69029317T2 (en) 1997-04-24

Similar Documents

Publication Publication Date Title
JPH0379182A (en) Image encoding control system
JPH0537915A (en) Method and device for coding image signal
KR100510756B1 (en) Image decoding apparatus and method and image reproducing apparatus
EP0755156B1 (en) Code amount controlling method for coded pictures
JP3426668B2 (en) Video coding method
JPH089375A (en) Inverse discrete cosine transformation anticoincidence controller and picture encoding device
JP2002112268A (en) Compressed image data decoding apparatus
WO2000001158A1 (en) Encoder and encoding method
JP2871139B2 (en) Image data encoding device and decoding device
JPH07240926A (en) Inter-image predictive encoder
JP2768260B2 (en) Image coding control method
JP2534914Y2 (en) Image data compression encoding device
JPH06339111A (en) Compressed moving picture reproduction device
JPH02122767A (en) Encoding/decoding system for picture signal
JPH0984011A (en) Moving image coding system converter
JP2916027B2 (en) Image coding device
JPH0366228A (en) Block encoder and decoder
JPH0993133A (en) Coding form converter
JP2760711B2 (en) Image encoding device and image decoding device
KR20040073095A (en) A Device for Both Encoding and Decoding MPEG or JPEG Data
JPH04175085A (en) Moving picture encoding system
JP3517795B2 (en) Image coding device
JP3191462B2 (en) High efficiency coding device
JPH07135652A (en) Method and device for compression still picture data and method and device for expanding still picture data
JPH05304661A (en) Picture encoding and transmitting device