JPH0378773B2 - - Google Patents

Info

Publication number
JPH0378773B2
JPH0378773B2 JP16620084A JP16620084A JPH0378773B2 JP H0378773 B2 JPH0378773 B2 JP H0378773B2 JP 16620084 A JP16620084 A JP 16620084A JP 16620084 A JP16620084 A JP 16620084A JP H0378773 B2 JPH0378773 B2 JP H0378773B2
Authority
JP
Japan
Prior art keywords
acid
ethylene glycol
integer
electrolytic solution
ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16620084A
Other languages
Japanese (ja)
Other versions
JPS6144418A (en
Inventor
Masanori Oota
Michio Ishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamura Oil Mill Ltd
Original Assignee
Okamura Oil Mill Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamura Oil Mill Ltd filed Critical Okamura Oil Mill Ltd
Priority to JP16620084A priority Critical patent/JPS6144418A/en
Publication of JPS6144418A publication Critical patent/JPS6144418A/en
Publication of JPH0378773B2 publication Critical patent/JPH0378773B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Secondary Cells (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、電解コンデンサ駆動用電解液に関す
るものであり、その目的とするところは特に中高
圧用電解コンデンサに使用して内部抵抗の低減や
使用温度範囲の拡大を図りうる電解液を提供する
ことにある。 従来の技術 一般に乾式電解コンデンサに用いられる電解コ
ンデンサ駆動用電解液(以下単に「電解液」とい
う)の特性が電解コンデンサの性能を決定する大
きな要因となることはよく知られた事実である。
而して従来電解液としては、例えばエチレングリ
コールを主体とした溶媒に硼酸若しくはその塩を
溶解した所謂エチレングリコール−硼酸系電解液
が知られている。しかしながら、この種の電解液
は、その比抵抗が大きく、それゆえ損失若しくは
等価直列抵抗の大きい電解コンデンサしか得るこ
とが出来ない。また該電解液は各薬品中に本来含
まれている水分の他にエチレングリコールと硼酸
とのエステル化反応で生ずる多量の水分をも含有
しており、そのため陽極電極箔表面に形成された
誘電体酸化皮膜の劣化が激しく、長期間安定した
特性を維持することが極めて困難である。更に、
多量の水が高温下で多量の蒸気を発生し、電解コ
ンデンサ内圧を上昇させるために、105℃を越え
る高温下での使用により防爆弁部の膨みや外観変
形を起こすという欠点を有している。このような
欠点を改良するために、溶質としてアゼライン
酸、セバシン酸、デカンジカルボン酸等の直鎖飽
和ジカルボン酸又はその塩を含有する電解液が用
いられることもあるが、該直鎖飽和ジカルボン酸
はエチレングリコール等の溶媒に対する溶解度が
低いために、低温で該ジカルボン酸が結晶として
析出しやすく、それ故コンデンサの低温特性を劣
化させるという欠点を免れ得なかつた。更に上記
直鎖飽和ジカルボン酸の欠点を解消するために、
ブチルオクタン二酸、1,6−デカンジカルボン
酸等側鎖を有する飽和の二塩基酸又はその塩を溶
質として使用することも一部でなされている。し
かし、之等のジカルボン酸又はその塩のエチレン
グリコール等の溶媒に対する溶解度は上記直鎖飽
和ジカルボン酸又はその塩のそれに比し改良され
ているものの、低温での特性が尚不充分であつ
て、より一層の改善が望まれている。 本発明は斯かる現状に鑑み、上記欠点のない電
解液を開発すべく鋭意研究を重ねた結果、下記一
般式[]で表わされるカルボン酸又はその塩を
溶質として使用した場合に、所望の電解液が得ら
れることを見い出し、ここに本発明を完成するに
至つた。 即ち本発明は、エチレングリコールを主とした
溶媒に一般式 [式中R1はCH3(CH2)m−基(mは0〜12の整
数)、R2はCH3(CH2)n−基(nは0〜8の整
数)又は水素原子を示す。R3はCH3(CH2)l−
基(lは0〜8の整数)又は水素原子を示す。
R4はCH3(CH2)k−基(kは0〜8の整数)又
は水素原子を示す。]で表わされるカルボン酸又
はその塩を溶解させたことを特徴とする電解コン
デンサ駆動用電解液に係る。 本発明で用いられる上記一般式[]で表わさ
れるカルボン酸としては、例えば、次のものを挙
げることが出来る。 (1) 2,2−ジメチル−3−プロピル−3−カル
ボキシ吉草酸(3−エチル−2,2−ジメチル
−3−プロピルブタン二酸) (2) 2−プロピル−2,3−ジブチル−3−カル
ボキシ酪酸(2,3−ジブチル−3−メチル−
2−プロピルブタン二酸) (3) 2,3−ジプロピル−3−カルボキシ酪酸
(3−メチル−2,3−ジプロピルブタン二酸) (4) 3−カルボキシ−3−ブチルペラルゴン酸
(3−ブチル−3−ヘキシルブタン二酸) (5) 3−エチル−3−カルボキシカプロン酸(3
−エチル−3−プロピルブタン二酸) (6) 3−カルボキシウンデカン酸(3−オクチル
ブタン二酸) (7) 3−カルボキシドデカン酸(3−ノニルブタ
ン二酸) (8) 2−プロピル−2−ブチル−3−カルボキシ
−3−エチルウンデカン酸(2−ブチル−3−
エチル−2−プロピル−3−オクチルブタン二
酸) (9) 2−メチル−2−ブチル−3−オクチル−3
−カルボキシエナント酸(2,3−ジブチル−
2−メチル−3−オクチルブタン二酸) (10) 2−メチル−2−エチル−3−カルボキシペ
ンタデカン酸(2−エチル−2−メチル−3−
ドデシルブタン二酸) (11) 3−カルボキシカプリル酸(3−ペンチルブ
タン二酸) (12) 2−ペンチル−3−ブチル−3−カルボキシ
ミリスチン酸(3−ブチル−2−ペンチル−3
−ウンデシルブタン二酸) (13) 2−ペンチル−3−ブチル−3−カルボキ
シ吉草酸(3−ブチル−3−エチル−2−ペン
チルブタン二酸) (14) 2−ウンデシル−3−カルボキシプロピオ
ン酸(2−ウンデシルブタン二酸) (15) 2−プロピル−2−メチル−3−ヘキシル
−3−カルボキシトリデカン酸(3−デシル−
3−ヘキシル−2−メチル−2−プロピルブタ
ン二酸) (16) 2−ノニル−2−ヘキシル−3−プロピル
−3−カルボキシカプロン酸(2−ヘキシル−
2−ノニル−3,3−ジプロピルブタン二酸) (17) 3−ヘプチル−3−カルボキシプロピオン
酸(3−ヘプチルブタン二酸) (18) 2,2−ジメチル−3−エチル−3−カル
ボキシペラルゴン酸(3−エチル−3−ヘキシ
ル−2,2−ジメチルブタン二酸) (19) 2−エチル−2−ブチル−3−メチル−3
−カルボキシプロピオン酸(2−ブチル−2−
エチル−3−メチルブタン二酸) (20) 2−ノニル−3−カルボキシプロピオン酸
(2−ノニルブタン二酸) (21) 2−メチル−2,3−ジプロピル−3−カ
ルボキシプロピオン酸(2−メチル−2,3−
ジプロピルブタン二酸) 上記カルボン酸の塩としては、例えばアンモニ
ウム塩を挙げることが出来る。 上記カルボン酸又はその塩とエチレングリコー
ルとの使用割合としては特に限定がなく広い範囲
内で適宜選択することが出来るが、通常前者:後
者を5〜30:95〜70(w/w)なる割合で使用す
るのがよい。本発明では、溶媒としてエチレング
リコールに例えばメチルセルソルブ等の他の溶媒
を適宜添加してもよく、また溶媒として上記カル
ボン酸若しくはその塩に硼酸、アジピン酸等を適
宜添加することも出来る。 発明の効果 本発明の電解液は、比抵抗が小さく、含水量が
少なく、−70℃の低温から150℃の高温に至る広い
温度範囲で使用可能であり、この温度範囲内での
長期に亙る使用によつても電気特性が損われる恐
れがなく、しかも使用電圧範囲も広いものであ
る。 実施例 実施例 下記に示す試験化合物1〜7を従来品のセバシ
ン酸アンモニウム(以下「化合物A」という)、
6−カルボキシウンデカン酸アンモニウム(以下
「化合物B」という)及び7,12−カルボキシト
リデカン酸アンモニウム(以下「化合物C」とい
う)と比較する。 試験化合物No. 1 2,2−ジメチル−3−プロピル−3−カル
ボキシ吉草酸 2 2−プロピル−2,3−ジブチル−3−カル
ボキシ酪酸 3 2,3−ジプロピル−3−カルボキシ酪酸 4 3−カルボキシ−3−ブチルペラルゴン酸 5 3−エチル−3−カルボキシカプロン酸 6 3−カルボキシウンデカン酸 7 3−カルボキシドデカン酸 上記試験化合物1〜7及び化合物A〜Cをそれ
ぞれ酸のままエチレングリコール90gに対し10g
加え、アンモニアガスを吹き込みPHを調整した
後、30℃における比抵抗(Ωcm)及び火花発生電
圧(V)を求めた。結果を第1表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to an electrolytic solution for driving electrolytic capacitors, and its purpose is particularly to provide an electrolytic solution that can be used in medium and high voltage electrolytic capacitors to reduce internal resistance and expand the operating temperature range. The goal is to provide liquid. BACKGROUND ART It is a well-known fact that the characteristics of an electrolytic solution for driving an electrolytic capacitor (hereinafter simply referred to as "electrolytic solution"), which is generally used in a dry electrolytic capacitor, are a major factor in determining the performance of an electrolytic capacitor.
As a conventional electrolytic solution, for example, a so-called ethylene glycol-boric acid electrolytic solution is known, in which boric acid or a salt thereof is dissolved in a solvent mainly composed of ethylene glycol. However, this type of electrolytic solution has a large specific resistance, and therefore only electrolytic capacitors with large loss or equivalent series resistance can be obtained. In addition to the water originally contained in each chemical, the electrolyte also contains a large amount of water generated from the esterification reaction between ethylene glycol and boric acid, and therefore the dielectric formed on the surface of the anode electrode foil The deterioration of the oxide film is severe and it is extremely difficult to maintain stable characteristics for a long period of time. Furthermore,
A large amount of water generates a large amount of steam at high temperatures, increasing the internal pressure of the electrolytic capacitor, which has the disadvantage that the explosion-proof valve part swells and deforms when used at high temperatures exceeding 105℃. . In order to improve these drawbacks, an electrolytic solution containing a linear saturated dicarboxylic acid such as azelaic acid, sebacic acid, decanedicarboxylic acid, or a salt thereof as a solute is sometimes used; Since the dicarboxylic acid has low solubility in solvents such as ethylene glycol, the dicarboxylic acid tends to precipitate as crystals at low temperatures, which inevitably causes the deterioration of the low-temperature characteristics of the capacitor. Furthermore, in order to eliminate the drawbacks of the above linear saturated dicarboxylic acids,
In some cases, saturated dibasic acids having side chains such as butyloctanedioic acid and 1,6-decanedicarboxylic acid or salts thereof are used as solutes. However, although the solubility of these dicarboxylic acids or their salts in solvents such as ethylene glycol is improved compared to that of the linear saturated dicarboxylic acids or their salts, their low-temperature properties are still insufficient. Further improvements are desired. In view of the current situation, the present invention has conducted intensive research to develop an electrolytic solution free from the above-mentioned drawbacks.The present invention has been made as a result of intensive research to develop an electrolytic solution free from the above-mentioned drawbacks. They have discovered that a liquid can be obtained, and have now completed the present invention. That is, the present invention provides a method for applying the general formula to a solvent mainly composed of ethylene glycol. [In the formula, R 1 is a CH 3 (CH 2 ) m- group (m is an integer of 0 to 12), R 2 is a CH 3 (CH 2 ) n- group (n is an integer of 0 to 8) or a hydrogen atom. show. R 3 is CH 3 (CH 2 )l-
represents a group (l is an integer of 0 to 8) or a hydrogen atom.
R 4 represents a CH 3 (CH 2 ) k- group (k is an integer of 0 to 8) or a hydrogen atom. The present invention relates to an electrolytic solution for driving an electrolytic capacitor, characterized in that a carboxylic acid represented by the following formula or a salt thereof is dissolved therein. Examples of the carboxylic acid represented by the above general formula [] used in the present invention include the following. (1) 2,2-dimethyl-3-propyl-3-carboxyvaleric acid (3-ethyl-2,2-dimethyl-3-propylbutanedioic acid) (2) 2-propyl-2,3-dibutyl-3-carboxybutyric acid (2,3-dibutyl-3-methyl-
2-propyl butanedioic acid) (3) 2,3-dipropyl-3-carboxybutyric acid (3-methyl-2,3-dipropylbutanedioic acid) (4) 3-carboxy-3-butylpelargonic acid (3-butyl-3-hexylbutanedioic acid) (5) 3-ethyl-3-carboxycaproic acid (3
-ethyl-3-propylbutanedioic acid) (6) 3-carboxyundecanoic acid (3-octylbutanedioic acid) (7) 3-carboxydodecanoic acid (3-nonylbutanedioic acid) (8) 2-propyl-2-butyl-3-carboxy-3-ethylundecanoic acid (2-butyl-3-
ethyl-2-propyl-3-octylbutanedioic acid) (9) 2-methyl-2-butyl-3-octyl-3
-Carboxyenanthate (2,3-dibutyl-
2-methyl-3-octylbutanedioic acid) (10) 2-Methyl-2-ethyl-3-carboxypentadecanoic acid (2-ethyl-2-methyl-3-
dodecylbutanedioic acid) (11) 3-carboxycaprylic acid (3-pentylbutanedioic acid) (12) 2-pentyl-3-butyl-3-carboximiristic acid (3-butyl-2-pentyl-3
-undecylbutanedioic acid) (13) 2-pentyl-3-butyl-3-carboxyvaleric acid (3-butyl-3-ethyl-2-pentylbutanedioic acid) (14) 2-Undecyl-3-carboxypropionic acid (2-undecylbutanedioic acid) (15) 2-propyl-2-methyl-3-hexyl-3-carboxytridecanoic acid (3-decyl-
3-hexyl-2-methyl-2-propylbutanedioic acid) (16) 2-nonyl-2-hexyl-3-propyl-3-carboxycaproic acid (2-hexyl-
2-nonyl-3,3-dipropylbutanedioic acid) (17) 3-heptyl-3-carboxypropionic acid (3-heptylbutanedioic acid) (18) 2,2-dimethyl-3-ethyl-3-carboxypelargonic acid (3-ethyl-3-hexyl-2,2-dimethylbutanedioic acid) (19) 2-ethyl-2-butyl-3-methyl-3
-Carboxypropionic acid (2-butyl-2-
ethyl-3-methylbutanedioic acid) (20) 2-nonyl-3-carboxypropionic acid (2-nonylbutanedioic acid) (21) 2-Methyl-2,3-dipropyl-3-carboxypropionic acid (2-methyl-2,3-
dipropyl butanedioic acid) Examples of the above carboxylic acid salts include ammonium salts. The ratio of the above carboxylic acid or its salt and ethylene glycol is not particularly limited and can be appropriately selected within a wide range, but the ratio of the former to the latter is usually 5 to 30:95 to 70 (w/w). It is best to use . In the present invention, other solvents such as methylcellosolve may be appropriately added to ethylene glycol as a solvent, and boric acid, adipic acid, etc. can also be appropriately added to the above-mentioned carboxylic acid or its salt as a solvent. Effects of the Invention The electrolytic solution of the present invention has a low resistivity, a low water content, and can be used in a wide temperature range from a low temperature of -70°C to a high temperature of 150°C, and can be used for a long period of time within this temperature range. There is no fear that the electrical characteristics will be impaired during use, and the operating voltage range is wide. Examples Examples Test compounds 1 to 7 shown below were mixed with conventional ammonium sebacate (hereinafter referred to as "compound A"),
Comparison will be made with ammonium 6-carboxyundecanoate (hereinafter referred to as "Compound B") and ammonium 7,12-carboxytridecanoate (hereinafter referred to as "Compound C"). Test compound No. 1 2,2-dimethyl-3-propyl-3-carboxyvaleric acid 2 2-propyl-2,3-dibutyl-3-carboxybutyric acid 3 2,3-dipropyl-3-carboxybutyric acid 4 3-carboxy -3-Butylpelargonic acid 5 3-ethyl-3-carboxycaproic acid 6 3-carboxyundecanoic acid 7 3-carboxydodecanoic acid 10 g of each of the above test compounds 1 to 7 and compounds A to C as acids per 90 g of ethylene glycol
In addition, after adjusting the pH by blowing in ammonia gas, the specific resistance (Ωcm) and spark generation voltage (V) at 30°C were determined. The results are shown in Table 1.

【表】 上記のように本発明の試験化合物1〜7はアル
ミ電解コンデンサ用電解液として優れた特性を有
し、従来品(化合物A〜C)に比し極めて小さい
比抵抗において高い火花発生電圧を得ることが出
来る。 次に試験化合物1〜7(之等の化合物はいずれ
もアンモニウム塩の形態である)及び化合物A〜
Cのエチレングリコール100gに対する低温での
溶解度を下記第2表に示す。
[Table] As shown above, test compounds 1 to 7 of the present invention have excellent properties as electrolytes for aluminum electrolytic capacitors, and have a high spark generation voltage at extremely low resistivity compared to conventional products (compounds A to C). can be obtained. Next, test compounds 1 to 7 (all of these compounds are in the form of ammonium salts) and compounds A to
The solubility of C in 100 g of ethylene glycol at low temperatures is shown in Table 2 below.

【表】 上記第2表から、本発明の試験化合物1〜7の
低温におけるエチレングリコールに対する溶解度
は極めて大きく、従来品(化合物A〜C)より低
温特性が優れていることが判る。 次に試験化合物1〜7(之等の化合物はいずれ
もアンモニウム塩の形態である)及び化合物A〜
Cをアルミ電解コンデンサ(400V,220μF)の
電解液として、150℃の高温下にて1000時間使用
し、使用前後における該コンデンサの容量変化
率、tanδ、漏れ電流及び外観について調べた。結
果を下記第3表に示す。
[Table] From Table 2 above, it can be seen that test compounds 1 to 7 of the present invention have extremely high solubility in ethylene glycol at low temperatures, and have superior low temperature properties than conventional products (compounds A to C). Next, test compounds 1 to 7 (all of these compounds are in the form of ammonium salts) and compounds A to
C was used as an electrolyte in an aluminum electrolytic capacitor (400 V, 220 μF) at a high temperature of 150° C. for 1000 hours, and the capacitance change rate, tan δ, leakage current, and appearance of the capacitor before and after use were investigated. The results are shown in Table 3 below.

【表】 上記第3表から次のことが判る。即ち化合物A
〜Cの電解液は全て高温におけるガス発生の為に
全数破壊したが、化合物1〜7を電解液として使
用したコンデンサは、外観に変化は認められず、
また容量変化率、tanδ、及び漏れ電流のいずれに
おいても優れていた。
[Table] The following can be seen from Table 3 above. That is, compound A
All of the electrolytes of ~C were destroyed due to gas generation at high temperatures, but no change was observed in the appearance of the capacitors using Compounds 1 to 7 as the electrolyte.
Furthermore, the capacitance change rate, tan δ, and leakage current were all excellent.

Claims (1)

【特許請求の範囲】 1 エチレングリコールを主とした溶媒に一般式 [式中R1はCH3(CH2)m−基(mは0〜12の整
数)、R2はCH3(CH2)n−基(nは0〜8の整
数)又は水素原子を示す。R3はCH3(CH2)l−
基(lは0〜8の整数)又は水素原子を示す。
R4はCH3(CH2)k−基(kは0〜8の整数)又
は水素原子を示す。] で表わされるカルボン酸又はその塩を溶解させた
ことを特徴とする電解コンデンサ駆動用電解液。
[Claims] 1. General formula for a solvent mainly composed of ethylene glycol [In the formula, R 1 is a CH 3 (CH 2 ) m- group (m is an integer of 0 to 12), R 2 is a CH 3 (CH 2 ) n- group (n is an integer of 0 to 8) or a hydrogen atom. show. R 3 is CH 3 (CH 2 )l-
represents a group (l is an integer of 0 to 8) or a hydrogen atom.
R 4 represents a CH 3 (CH 2 ) k- group (k is an integer of 0 to 8) or a hydrogen atom. ] An electrolytic solution for driving an electrolytic capacitor, characterized in that a carboxylic acid represented by the following or a salt thereof is dissolved therein.
JP16620084A 1984-08-08 1984-08-08 Electrolyte for driving electrolytic condenser Granted JPS6144418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16620084A JPS6144418A (en) 1984-08-08 1984-08-08 Electrolyte for driving electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16620084A JPS6144418A (en) 1984-08-08 1984-08-08 Electrolyte for driving electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS6144418A JPS6144418A (en) 1986-03-04
JPH0378773B2 true JPH0378773B2 (en) 1991-12-16

Family

ID=15826944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16620084A Granted JPS6144418A (en) 1984-08-08 1984-08-08 Electrolyte for driving electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS6144418A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122636U (en) * 1988-02-17 1989-08-21
JP6051938B2 (en) * 2013-02-27 2016-12-27 宇部興産株式会社 Electrolytic capacitor electrolyte

Also Published As

Publication number Publication date
JPS6144418A (en) 1986-03-04

Similar Documents

Publication Publication Date Title
JPH0378773B2 (en)
JPH0797541B2 (en) Electrolytic solution for electrolytic capacitors
JPH01124210A (en) Electrolyte for driving electrolytic capacitor
JPS62254415A (en) Electrolyte for electrolytic capacitor
JP3749913B2 (en) Electrolytic solution for electrolytic capacitor drive
JPS62145714A (en) Electrolyte for electrolytic capacitor
JPH0461488B2 (en)
JP3103369B2 (en) Electrolyte for driving electrolytic capacitors
JPH03225908A (en) Electrolyte for electrolytic capacitor
JPH09275037A (en) Electrolytic capacitor driving electrolyte
JP4699649B2 (en) Electrolytic solution for electrolytic capacitor drive
KR970008556B1 (en) Electrolyte of aluminium electrolytic condenser
KR19980053010A (en) Electrolytic Solution for Aluminum Electrolytic Capacitors
JP2774525B2 (en) Electrolyte for electrolytic capacitors
JPH046816A (en) Electrolyte for driving electrolytic capacitor
JP3657664B2 (en) Electrolytic solution for electrolytic capacitor drive
JPS63306612A (en) Electrolytic capacitor
JPH0376007B2 (en)
JPH07249547A (en) Driving electrolyte of electrolytic capacitor
JPS6351620A (en) Electrolytic capacitor driving electrolyte
JPH07335497A (en) Electrolyte for driving electrolytic capacitor
JPS63261822A (en) Electrolyte for driving electrolytic capacitor
JPH0325005B2 (en)
JPS63232410A (en) Electrolytic capacitor
JPS63219119A (en) Electrolytic capacitor