JPH0378574B2 - - Google Patents

Info

Publication number
JPH0378574B2
JPH0378574B2 JP60273404A JP27340485A JPH0378574B2 JP H0378574 B2 JPH0378574 B2 JP H0378574B2 JP 60273404 A JP60273404 A JP 60273404A JP 27340485 A JP27340485 A JP 27340485A JP H0378574 B2 JPH0378574 B2 JP H0378574B2
Authority
JP
Japan
Prior art keywords
thermal resistance
probe
heater
resistance value
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60273404A
Other languages
Japanese (ja)
Other versions
JPS62133344A (en
Inventor
Sohei Yamauchi
Juzo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANDENKO KK
TOA DENKI KK
Original Assignee
KANDENKO KK
TOA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANDENKO KK, TOA DENKI KK filed Critical KANDENKO KK
Priority to JP27340485A priority Critical patent/JPS62133344A/en
Publication of JPS62133344A publication Critical patent/JPS62133344A/en
Publication of JPH0378574B2 publication Critical patent/JPH0378574B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はトンネル掘削等の実現場における土
壌の熱抵抗値の計測の他、あらゆる材質の熱抵抗
値の計測に利用できる測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a measuring method that can be used to measure the thermal resistance value of any material as well as the thermal resistance value of soil in tunnel excavation sites and the like.

(従来の技術) 熱伝導率の逆数である熱抵抗値を測定する方法
は定常法と非定常法があり、非定常法の中でもツ
インプローブ法がその測定の容易さ、実験室内で
の計測が可能なことから一般的に使われるように
なつてきている。
(Prior technology) There are two methods for measuring thermal resistance, which is the reciprocal of thermal conductivity, a steady method and an unsteady method. Among the unsteady methods, the twin probe method is easy to measure and can be measured in a laboratory. It is becoming more commonly used because it is possible.

このツインプローブ法は、第4図に示す如く、
一定の恒温水槽イ内に設けた三つの孔ロ,ハ,ニ
に熱抵抗の被測定試料、寒天ゲル等の熱抵抗既知
試料及び基準試料を夫々入れ、これらのうちの被
測定試料及び既知試料内に一定の熱量を供給でき
るヒーターと、その温度勾配を求める熱電対を収
めたプローブホ,ヘを夫々挿入し、各プローブ内
の上記熱電対と直列に接続した熱電対を基準試料
内に入れ、各プローブホ,ヘのヒーターを同様に
加熱し、その際の各プローブホ,ヘの各熱電対の
電圧を検出し、これをX−Yプロツターを使用し
て時間−温度特性曲線を作図し、この作図から被
測定試料の熱抵抗値を算出する。
This twin probe method, as shown in Figure 4,
Place a sample to be measured for thermal resistance, a sample with known thermal resistance such as agar gel, and a reference sample into three holes A, C, and D prepared in a constant temperature water tank A, and place the sample to be measured and the known sample among these. A heater capable of supplying a certain amount of heat and a thermocouple for determining the temperature gradient are inserted into the probes H and H, respectively, and the thermocouple connected in series with the thermocouple in each probe is inserted into the reference sample. Heat the heaters of each probe H and H in the same way, detect the voltage of each thermocouple of each probe H and H at that time, plot the time-temperature characteristic curve using an X-Y plotter, and plot this. Calculate the thermal resistance value of the sample to be measured.

この算出式はGa=Ta−To/Tb−To×Gb ただしGa:被測定試料の熱抵抗値(℃−cm/
w) Gb:既知試料の熱抵抗値(℃−cm/w) Ta:被測定試料の温度(℃) Tb:既知試料の温度(℃) (1%寒天ゲル) To:基準試料温度(℃) (1%寒天ゲル、この温度は恒温
水槽内の温度を示す) (発明が解決しようとする問題点) しかしこのツインプローブ法を実現場において
使用する時には以下の欠点がある。
This calculation formula is Ga=Ta-To/Tb-To×Gb where Ga: Thermal resistance value of the sample to be measured (°C-cm/
w) Gb: Thermal resistance value of known sample (℃-cm/w) Ta: Temperature of sample to be measured (℃) Tb: Temperature of known sample (℃) (1% agar gel) To: Reference sample temperature (℃) (1% agar gel, this temperature indicates the temperature in a constant temperature water bath) (Problems to be solved by the invention) However, when this twin probe method is used in a practical field, there are the following drawbacks.

(1) 熱抵抗既知試料と被測定試料との間に最初か
ら温度差があると、X−Yプロツタ上に作図す
るためのスケーリングが合わなくなり、熱抵抗
値算出のために必要な特性曲線を得ることがで
きなくなる。
(1) If there is a temperature difference from the beginning between the sample with known thermal resistance and the sample to be measured, the scaling for plotting on the you won't be able to get it.

この対策として基準試料の温度を調整して被
測定試料の温度と一致させるか、温度変換器の
部分にバイアスをかけ、みかけ上の温度を一致
させる必要があり、予備加熱装置、バイアス調
整装置が必要となり、装置構成機器を大型化さ
せる要因となつている。
To counter this, it is necessary to adjust the temperature of the reference sample to match the temperature of the sample being measured, or to bias the temperature converter to match the apparent temperature. This has become a factor in increasing the size of the device components.

(2) X−Yプロツターを使用して測定結果をトレ
ースさせるため操作時間がかかり、熱抵抗値算
出を作業者が演算するため、測定結果がでるま
でに相当時間がかかつていた。また上記トレー
スから作業者が線引きして作図し、これを読み
取つて熱抵抗値を算出するため、作図精度や読
み取りに作業者の個人差が出て算出値の信頼性
が低くなる。
(2) It took a long time to trace the measurement results using an X-Y plotter, and because the operator had to calculate the thermal resistance value, it took a considerable amount of time to get the measurement results. In addition, since the operator draws lines from the trace and calculates the thermal resistance value by reading the lines, there are individual differences in drawing accuracy and reading, which lowers the reliability of the calculated values.

(3) この装置にはX−Yプロツター、温度変換
器、直流電源、基準試料、恒温水槽が必要とな
り、装置全体が嵩張り、実現場には適さない。
(3) This device requires an X-Y plotter, a temperature converter, a DC power supply, a reference sample, and a constant temperature water bath, making the entire device bulky and unsuitable for practical use.

(問題点を解決するための手段) この発明はこれらの欠点を除去することを目的
としたもので、ヒーターと二つの示差型熱電対と
をプローブの中に挿入して一つの熱電対は上記ヒ
ーターと対向させ、他の熱電対はヒーターと熱絶
縁して成るプローブを2本設け、一方は熱抵抗値
既知の基準試料に、他方は被測定試料に夫々埋込
み、各プローブの二つの熱電対相互の温度が平衡
してから上記各プローブのヒーターを同一に加熱
し、上記各プローブの各熱電対の温度差により各
プローブ毎に温度上昇分を求め、かつ各プローブ
間の温度上昇差分を検出してこれから熱抵抗値差
を求め、その数値を基準試料の熱抵抗値に加算し
て被測定試料の熱抵抗値を算出する測定法であ
る。またこの発明の装置としてはヒーターと二つ
の示差型熱電対とをプローブの中に挿入して一つ
の熱電対はヒータと対向させ、他の熱電対はヒー
タと熱絶縁して成るプローブを2本設け、これら
の各プローブのヒーターを加熱する直流電源を設
け、またこれらの各プローブの示差型熱電対を直
列接続した示差回路、この回路の出力を温度に変
換する温度変換器、この温度変換器の出力を熱抵
抗値差にし、かつ上記一方のプローブを差し込む
基準試料の既知の熱抵抗値にこれを加算する熱抵
抗演算回路及びこの熱抵抗演算回路の出力を表示
する表示部を夫々設けたものである。
(Means for Solving the Problems) This invention aims to eliminate these drawbacks, and by inserting a heater and two differential thermocouples into the probe, one thermocouple can be Two thermocouple probes are installed facing the heater, and the other thermocouple is thermally insulated from the heater. One is embedded in a reference sample with a known thermal resistance value, and the other is embedded in the sample to be measured. After the mutual temperatures are balanced, heat the heaters of each probe in the same way, calculate the temperature rise for each probe based on the temperature difference between the thermocouples of each probe, and detect the difference in temperature rise between each probe. This measurement method calculates the thermal resistance value of the sample to be measured by calculating the difference in thermal resistance value from this value and adding that value to the thermal resistance value of the reference sample. In addition, the device of this invention has two probes in which a heater and two differential thermocouples are inserted into a probe, one thermocouple facing the heater, and the other thermocouple being thermally insulated from the heater. A DC power supply is provided to heat the heaters of each of these probes, a differential circuit has differential thermocouples of each of these probes connected in series, a temperature converter converts the output of this circuit into temperature, and this temperature converter A thermal resistance calculation circuit that converts the output of the probe into a thermal resistance value difference and adds this to the known thermal resistance value of the reference sample into which one of the probes is inserted, and a display section that displays the output of this thermal resistance calculation circuit are provided, respectively. It is something.

(作用) この発明の測定原理は次の如くなる。(effect) The measurement principle of this invention is as follows.

これらの基準試料の熱抵抗値Gsおよび被測定
試料の熱抵抗値Ggは一般式から Gs=4πls・ΔSH/Ws・ln(t2/t1S ……(1) Gg=4πlg・ΔgH/Wg・ln(t2/t1g ……(2) (但し、ΔSH及びΔgHは夫々t1時とt2時との温
度差を表わす。) そして4πls=4πlg,Ws=Wg,ln(t2/t1S=ln (t2/t1g とし、また基準試料の熱抵抗値と被測定試料の熱
抵抗値の間には Gs−Gg=ΔG ……(3) (但しΔGは熱抵抗値差を示す。) が成り立ち、この(3)式に(1)、(2)式を代入すると、 ΔG=ΔSH−ΔgH ……(4) となる。
The thermal resistance value Gs of these reference samples and the thermal resistance value Gg of the measured sample are calculated from the general formula Gs=4πls・ΔSH/Ws・ln(t 2 /t 1 ) S ……(1) Gg=4πlg・ΔgH/ Wg・ln(t 2 /t 1 ) g ……(2) (However, ΔSH and ΔgH represent the temperature difference between t 1 and t 2 , respectively.) And 4πls = 4πlg, Ws = Wg, ln ( t 2 /t 1 ) S = ln (t 2 /t 1 ) g , and the difference between the thermal resistance value of the reference sample and the thermal resistance value of the measured sample is Gs−Gg=ΔG...(3) (However, ΔG indicates the difference in thermal resistance.) holds true, and substituting equations (1) and (2) into equation (3) yields ΔG=ΔSH−ΔgH...(4).

従つて基準試料と未知試料とを同時に加熱し、
温度上昇差分を検出することにより、熱抵抗値差
を求め、これを基準試料の既知の熱抵抗値に加算
すれば被測定試料の熱抵抗値が算出できる。
Therefore, by heating the reference sample and the unknown sample at the same time,
By detecting the difference in temperature rise, a difference in thermal resistance value is obtained, and by adding this to the known thermal resistance value of the reference sample, the thermal resistance value of the sample to be measured can be calculated.

しかしながらこの方法では被測定試料と基準試
料の初期温度を平衡させなければならず、これに
は手間がかかる。
However, in this method, the initial temperatures of the sample to be measured and the reference sample must be balanced, which is time-consuming.

そこでこの発明の装置では第1図に示す如く被
測定試料A及び基準試料Bに入れるセンサーたる
プローブP1,P2内に二つの示差型熱電対Tg1
Tg2,Ts1,Ts2を夫々設け、Tg1及びTs1をヒー
ターhに相対向して、Ts2,Tg2を、各ヒーター
hから熱絶縁させて示差回路を設けることにより
初期温度を容易に平衡させることができる。
Therefore, in the apparatus of the present invention, two differential thermocouples Tg 1 and
The initial temperature can be determined by providing Tg 2 , Ts 1 , and Ts 2 respectively, and placing Tg 1 and Ts 1 opposite to the heater h, and thermally insulating Ts 2 and Tg 2 from each heater h and providing a differential circuit. Can be easily balanced.

Ts2及びTg2各ヒーターhから熱絶縁され、測
定の初めから終了まで各々外部の固定された温度
を測定している。
Ts 2 and Tg 2 are thermally insulated from each heater h, and each measures a fixed external temperature from the beginning to the end of the measurement.

従つて各プローブP1,P2を夫々第1図に示す
如くセツトした後各プローブP1,P2と外部温度
が一様になじんだ時Ts1−Ts2=0でありTg1
Tg2=0となる。従つて第1図の回路ではΔSH
−ΔgH=0となり、容易にΔG=0の状態ができ
る。この状態で測定開始する。〔ヒーターhを
ONにする〕とTs1及びTg1だけが温度上昇する。
このヒーターhをONにして一定時間後ΔSH=
Ts1−Ts2,ΔgH=Tg1−Tg2となり、これを上記
(4)式に代入すると、 ΔG=(Ts1−Ts2)−(Tg1−Tg2)となり、Ts2
及びTg2はヒーター通電開始前に存在した固定的
温度差であり、熱抵抗値算出には不要であるから
温度変化分だけを指示させることができる。
Therefore, after setting the probes P 1 and P 2 as shown in FIG. 1, when the external temperature of each probe P 1 and P 2 becomes uniform, Ts 1 −Ts 2 = 0, and Tg 1
Tg 2 =0. Therefore, in the circuit of Figure 1, ΔSH
-ΔgH=0, and a state of ΔG=0 can be easily established. Measurement starts in this state. [heater h
ON], only Ts 1 and Tg 1 will rise in temperature.
After turning on this heater h for a certain period of time, ΔSH=
Ts 1 − Ts 2 , ΔgH=Tg 1 − Tg 2 , which can be expressed as above
Substituting into equation (4), ΔG = (Ts 1 − Ts 2 ) − (Tg 1 − Tg 2 ), and Ts 2
and Tg 2 is a fixed temperature difference that existed before the start of energization of the heater, and is not necessary for calculating the thermal resistance value, so only the temperature change can be indicated.

(実施例) 以下この発明の装置の実施例を第2図及び第3
図について説明する。
(Example) Examples of the apparatus of this invention are shown below in Figures 2 and 3.
The diagram will be explained.

1はプローブ、2はこのプローブ1の保護パイ
プ、3はこの保護パイプ2内のほぼ中心に設けた
完全防水処理したテフロンモールド、4はこのテ
フロンモールド3内に入れたヒーター線、5は同
じくこのテフロンモールド3内のヒーター線4と
対向させた熱電対、6はこの保護パイプ2下部に
設けた熱しやへい用テフロン7の下端に設けた熱
電対で、この熱電対6は上記ヒーター線4と熱し
やへい用テフロン7により熱絶縁され上記熱電対
5とは直列に接続されている。8は上記保護パイ
プ2の内周とテフロンモールド3外周との間隙に
充填した酸化マグネシヤ、9はこのプローブ1の
上端に設けたボーリングロツド受け用アダプター
である。
1 is a probe, 2 is a protective pipe for this probe 1, 3 is a completely waterproof Teflon mold placed almost in the center of this protective pipe 2, 4 is a heater wire placed inside this Teflon mold 3, and 5 is also this The thermocouple 6 is placed opposite the heater wire 4 in the Teflon mold 3. The thermocouple 6 is a thermocouple installed at the lower end of the Teflon 7 for heating and protection provided at the bottom of the protective pipe 2. It is thermally insulated by Teflon 7 for heat shielding and is connected in series with the thermocouple 5. 8 is magnesia oxide filled in the gap between the inner periphery of the protective pipe 2 and the outer periphery of the Teflon mold 3, and 9 is an adapter for receiving a boring rod provided at the upper end of the probe 1.

以上の構成から成るプローブ1は2本用意され
一方は基準試料(1%ゲル寒天)10に、他方は
被測定試料、即実現場の土壌に入れるものであ
る。11は定電力電源装置で、この定電力電源装
置11の電源がスイツチSw1を介して上記2本の
プローブ1,1の各ヒーター線4に供給される構
成となつている。12は装置本体で、この装置本
体12内には、上記各プローブ1の熱電対5,6
が直列に接続された示差回路の出力電圧を検出す
る検出部13、その電圧を温度変換する温度変換
器14、この温度変換器14の出力を上記基準試
料10の熱抵抗値に加算する熱抵抗演算回路15
及びこの熱抵抗演算回路の出力を表示する表示部
16が夫々設けられている。また上記各プローブ
1の各熱電対5と示唆回路の出力端子との間には
上記スイツチSw1と連動する常開型接点Sw2及び
常閉型接点Sw3が設けられている。
Two probes 1 having the above configuration are prepared, one of which is inserted into the reference sample (1% gel agar) 10 and the other into the sample to be measured, the soil at the immediate production site. Reference numeral 11 denotes a constant power power supply device, and the power of this constant power power supply device 11 is supplied to each heater wire 4 of the two probes 1, 1 through a switch Sw1. Reference numeral 12 denotes a device main body, and inside this device main body 12 are thermocouples 5 and 6 of each probe 1.
a detection unit 13 that detects the output voltage of a differential circuit connected in series, a temperature converter 14 that converts the voltage into temperature, and a thermal resistor that adds the output of this temperature converter 14 to the thermal resistance value of the reference sample 10. Arithmetic circuit 15
A display section 16 is provided for displaying the output of the thermal resistance calculation circuit. Further, between each thermocouple 5 of each probe 1 and the output terminal of the suggestion circuit, there are provided a normally open contact Sw 2 and a normally closed contact Sw 3 that operate in conjunction with the switch Sw 1 .

この実施例の場合一方のプローブ1を熱抵抗値
既知の基準試料10に入れ、他方のプローブ1を
被測定試料に入れる。そして表示部16の表示が
0を示すと、各プローブ1が外部温度、即各試料
の温度に一様になじんだこととなる。その後スイ
ツチSw1を入れると常開型接点Sw2が閉じ、常閉
型接点Sw3が開き、各プローブ1のヒーター線4
が加熱される。そして一定時間後(例えば10分
後)、基準試料10に入れたプローブ1の熱電対5
と6との差分、即ち温度上昇分と被測定試料に入
れたプローブ1の熱電対5と6との差分、即ち温
度上昇分の差が電圧として出力され、これを温度
変換器14で温度変換し、この出力を熱抵抗演算
回路15で熱抵抗値差とし、基準試料10の熱抵抗
値にこれが加算され、表示部16には被測定試料
の熱抵抗値が直ちに表示される。
In this embodiment, one probe 1 is placed in a reference sample 10 whose thermal resistance value is known, and the other probe 1 is placed in a sample to be measured. When the display section 16 shows 0, it means that each probe 1 has uniformly adapted to the external temperature, that is, the temperature of each sample. Then, when switch Sw 1 is turned on, normally open contact Sw 2 closes, normally closed contact Sw 3 opens, and heater wire 4 of each probe 1 is turned on.
is heated. After a certain period of time (for example, 10 minutes), the thermocouple 5 of the probe 1 placed in the reference sample 10
and 6, that is, the temperature rise, and the difference between the thermocouples 5 and 6 of the probe 1 inserted into the sample to be measured, that is, the difference in temperature rise, is output as a voltage, and this is converted into temperature by the temperature converter 14. This output is then used as a thermal resistance value difference in the thermal resistance calculating circuit 15, which is added to the thermal resistance value of the reference sample 10, and the thermal resistance value of the sample to be measured is immediately displayed on the display section 16.

(発明の効果) この発明の方法及び装置は以上であり、測定方
法が、被測定試料の熱抵抗値が直接演算で出てく
るため、従来のツインプローブ法のように測定結
果を線引きしたり、作図したりして出すのと比
べ、測定値の精度が高く、誤差が生ぜず、かつ測
定者により個人差がない。さらに測定時間が短く
かつ測定が極めて容易であり、従つて熟練を要す
ることなく誰にでも測定できる。
(Effects of the Invention) The method and device of the present invention are as described above, and since the measurement method directly calculates the thermal resistance value of the sample to be measured, it is not possible to delineate the measurement results as in the conventional twin probe method. , compared to drawing and plotting, the accuracy of the measured values is higher, there are no errors, and there are no individual differences among the measurers. Furthermore, the measurement time is short and the measurement is extremely easy, so anyone can perform the measurement without requiring any skill.

またこの方法によれば直流電源と温度センサー
だけでよく車等の入れないところに人手で簡単に
持ち込めるので実現場向きである。またこの装置
では上述の如く各プローブの二つの熱電対を示差
型としたため、被測定試料と基準試料との初期温
度を平衡せしめる必要がなく、測定装置も簡便と
なりかつ測定時間も短縮される。
Also, this method is suitable for practical applications because it requires only a DC power source and a temperature sensor and can be easily brought into places where cars and the like cannot be accessed by hand. Furthermore, in this device, since the two thermocouples in each probe are of the differential type as described above, there is no need to equilibrate the initial temperatures of the sample to be measured and the reference sample, making the measuring device simple and shortening the measurement time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の装置の原理図、第2図はこ
の発明のプローブの断面図、第3図はこの発明の
装置の説明図、第4図は従来のツインプローブ法
の説明図である。 なお図中1はプローブ、4はヒーター線、5,
6は夫々熱電対、7は熱しやへい用テフロン、1
0は基準試料、11は定電力電源、12は装置本
体、16は表示部である。
Fig. 1 is a diagram of the principle of the device of this invention, Fig. 2 is a sectional view of the probe of this invention, Fig. 3 is an explanatory diagram of the device of this invention, and Fig. 4 is an explanatory diagram of the conventional twin probe method. . In the figure, 1 is the probe, 4 is the heater wire, 5,
6 is a thermocouple, 7 is Teflon for heat shielding, 1
0 is a reference sample, 11 is a constant power source, 12 is the main body of the apparatus, and 16 is a display section.

Claims (1)

【特許請求の範囲】 1 ヒーターと二つの示差型熱電対とをプローブ
の中に挿入して一つの熱電対は上記ヒーターと対
向させ、他の熱電対はヒーターと熱絶縁して成る
プローブを2本設け、一方は熱抵抗値既知の基準
試料に、他方は被測定試料にそれぞれ埋込み、各
プローブの二つの熱電対相互の温度が平衡してか
ら上記各プローブのヒーターを同一に加熱し、上
記各プローブ毎の各熱電対の温度差により温度上
昇分を求め、さらに各プローブ間の温度上昇差分
を検出してこれから熱抵抗値差を求め、その数値
を基準試料の既知の熱抵抗値に加算して被測定試
料の熱抵抗値を算出することを特徴とする熱抵抗
値測定法。 2 ヒーターと、二つの示差型熱電対とをプロー
ブの中に挿入して一つの熱電対はヒーターと対向
させ、他の熱電対はヒーターと熱絶縁して成るプ
ローブを2本設け、これらの各プローブのヒータ
ーを加熱する直流電源を設け、またこれらの各プ
ローブの示差型熱電対を直列接続した示差回路、
この回路の出力を温度に変換する温度変換器、こ
の温度変換器の出力を熱抵抗値差にし、かつ上記
一方のプローブを差し込む基準試料の既知の熱抵
抗値にこれを加算する熱抵抗演算回路及びこの熱
抵抗演算回路の出力を表示する表示部を夫々設け
たことを特徴とする熱抵抗値測定装置。
[Claims] 1. A heater and two differential thermocouples are inserted into a probe, one thermocouple facing the heater, and the other thermocouple thermally insulated from the heater. In this method, one is embedded in a reference sample with a known thermal resistance value, and the other is embedded in a sample to be measured, and after the temperatures of the two thermocouples of each probe are balanced, the heaters of each probe are heated equally, and the Calculate the temperature rise from the temperature difference between each thermocouple for each probe, then detect the temperature rise difference between each probe, calculate the thermal resistance difference from this, and add that value to the known thermal resistance value of the reference sample. A thermal resistance measurement method characterized by calculating the thermal resistance value of a sample to be measured. 2 A heater and two differential thermocouples are inserted into the probe, one thermocouple faces the heater, and the other thermocouple is thermally insulated from the heater. A DC power supply is provided to heat the heater of the probe, and a differential circuit connects the differential thermocouples of each probe in series.
A temperature converter that converts the output of this circuit into temperature, and a thermal resistance calculation circuit that converts the output of this temperature converter into a thermal resistance value difference and adds this to the known thermal resistance value of the reference sample into which one of the probes is inserted. and a thermal resistance value measuring device, comprising a display section for displaying the output of the thermal resistance calculation circuit.
JP27340485A 1985-12-06 1985-12-06 Method and device for measuring heat resistance value Granted JPS62133344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27340485A JPS62133344A (en) 1985-12-06 1985-12-06 Method and device for measuring heat resistance value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27340485A JPS62133344A (en) 1985-12-06 1985-12-06 Method and device for measuring heat resistance value

Publications (2)

Publication Number Publication Date
JPS62133344A JPS62133344A (en) 1987-06-16
JPH0378574B2 true JPH0378574B2 (en) 1991-12-16

Family

ID=17527419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27340485A Granted JPS62133344A (en) 1985-12-06 1985-12-06 Method and device for measuring heat resistance value

Country Status (1)

Country Link
JP (1) JPS62133344A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774790B2 (en) * 1987-08-12 1995-08-09 雪印乳業株式会社 Sensor used for electric heating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471679A (en) * 1977-11-17 1979-06-08 Furukawa Electric Co Ltd:The Thermal resistance measuring device
JPS5687850A (en) * 1979-12-18 1981-07-16 Toshiba Corp Thermal conductivity meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471679A (en) * 1977-11-17 1979-06-08 Furukawa Electric Co Ltd:The Thermal resistance measuring device
JPS5687850A (en) * 1979-12-18 1981-07-16 Toshiba Corp Thermal conductivity meter

Also Published As

Publication number Publication date
JPS62133344A (en) 1987-06-16

Similar Documents

Publication Publication Date Title
US6280397B1 (en) High speed accurate temperature measuring device
US5161893A (en) Temperature measurement
JP2010511894A (en) Detection of temperature sensor configuration in a process variable transmitter
US5066140A (en) Temperature measurement
EP3586097B1 (en) Thermocouple temperature sensor with cold junction compensation
US5161892A (en) Temperature measurement in R.F. locations
US4563098A (en) Gradient compensated temperature probe and gradient compensation method
JPH0378574B2 (en)
Kemper et al. Temperature measurements
KR20000054960A (en) Measurement Apparatus for Multiful Thermal Properties of Meterial Using the Needle Probe and Method Thereof
KR100356994B1 (en) Thermal conductivity detecting method for fluid and gas
JPH04547B2 (en)
Zhang et al. Simultaneous measurement of thermal conductivity and thermal diffusivity of solids by the parallel-wire method
Bedford et al. Direct Measurement of the Discontinuity in dt/dt68 at 630.74° C in the IPTS-68
GB1433803A (en) Fouling measuing device
RU2095767C1 (en) Portable thermometer
Hager Measurement of Specific Heat of Polytetrafluoroethylene Using Millidegree Temperature Increments in Thin Foil Calorimeter
SU90237A1 (en) The method of determining the heat-conducting properties of materials
SU873085A1 (en) Device for measuring material thermal physical characteristics
JPS6125086B2 (en)
SU1603272A1 (en) Device for measuring coefficient of thermo-emf of minerals
Ramakrishnan et al. Freezer temperature monitor and alarm
EP0243097A2 (en) Improvements in thermocouples
Masuda et al. Studies on the Temperature of the Gastrointestinal Tract Eleventh Report A New Thermometer for the Gastrointestinal Temperature Measurement
増田久之 et al. Studies on the Temperature of the Gastrointestinal Tract