JPH037845B2 - - Google Patents

Info

Publication number
JPH037845B2
JPH037845B2 JP26399985A JP26399985A JPH037845B2 JP H037845 B2 JPH037845 B2 JP H037845B2 JP 26399985 A JP26399985 A JP 26399985A JP 26399985 A JP26399985 A JP 26399985A JP H037845 B2 JPH037845 B2 JP H037845B2
Authority
JP
Japan
Prior art keywords
combustion
amount
air
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26399985A
Other languages
Japanese (ja)
Other versions
JPS62123220A (en
Inventor
Katsuyoshi Inai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP26399985A priority Critical patent/JPS62123220A/en
Publication of JPS62123220A publication Critical patent/JPS62123220A/en
Publication of JPH037845B2 publication Critical patent/JPH037845B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水や有機物に吸収されやすいので、
近来人体や各種物体の加熱用熱源として利用され
つつある遠赤外線を燃料の燃焼熱によつて発生さ
せる装置、すなわち燃焼熱を熱源とする遠赤外線
放射装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is easily absorbed by water and organic substances, so
The present invention relates to a device that generates far-infrared rays using combustion heat of fuel, which has recently been used as a heat source for heating the human body and various objects, that is, a far-infrared radiator that uses combustion heat as a heat source.

従来の技術 近来赤外線中の波長の長い領域の光で、遠赤外
線と呼ばれる光が人体や各種有機物の加熱用熱源
として利用されつつある。
BACKGROUND OF THE INVENTION In recent years, light in the long wavelength region of infrared rays, called far infrared rays, is being used as a heat source for heating the human body and various organic substances.

該遠赤外線の波長が4〜10マイクロメーターの
光が特に水や有機物に吸収されやすく、該波長の
光を人体に照射して暖房し、またはサウナ用熱源
として利用し、有機物に照射して乾燥または塗
装、印刷の焼付等に利用されている。
Far-infrared light with a wavelength of 4 to 10 micrometers is particularly easily absorbed by water and organic matter, and it can be used to irradiate the human body with light of this wavelength for heating, or as a heat source for saunas, and to irradiate organic matter to dry it. It is also used for painting, printing, etc.

光の波長は光を発生させる物体の温度によつて
定まり、ウイーンの変位則によれば450℃位の温
度の物体から発生する光のなかでは4マイクロメ
ーター位の光が最も多数に放射され、210℃位の
物体からは6マイクロメーター位の光が最も多量
に発生する。
The wavelength of light is determined by the temperature of the object that generates the light, and according to Vienna's displacement law, among the light emitted from an object with a temperature of about 450 degrees Celsius, light of about 4 micrometers is emitted the most. An object at around 210 degrees Celsius emits the largest amount of light at around 6 micrometers.

該6マイクロメーター付近の遠赤外線が水や有
機物に吸収されやすいので、人体に照射して暖房
やサウナ浴用とし、有機物に照射して乾燥や焼付
に利用されている。
Far infrared rays around 6 micrometers are easily absorbed by water and organic matter, so they are used to irradiate the human body for heating and sauna bathing, and to irradiate organic matter for drying and baking.

電力を熱源とする遠赤外線放射装置であればヒ
ータの温度を該210℃位に保つことは容易である
が、燃料の燃焼熱を熱源とする遠赤外線放射装置
では、放射体の表面温度を一定の温度に保つこと
は困難である。
It is easy to maintain the temperature of the heater at around 210°C with a far-infrared radiator that uses electricity as a heat source, but with a far-infrared radiator that uses the combustion heat of fuel as a heat source, it is difficult to maintain the surface temperature of the radiator at a constant temperature. It is difficult to maintain the temperature at

なぜならば通常燃焼炎の温度は1500〜2000℃位
なので、特に水冷または強制的な空冷をおこなわ
なければ燃焼室の外面温度は通常800〜1500℃位
になつてしまい、前記210℃よりは大幅に高くな
り、波長の問題のみならず燃焼室が焼損する恐れ
がある。
This is because the temperature of a combustion flame is usually around 1,500 to 2,000 degrees Celsius, so unless water cooling or forced air cooling is used, the outer surface temperature of the combustion chamber will usually be around 800 to 1,500 degrees Celsius, which is significantly lower than the 210 degrees Celsius mentioned above. This can cause not only wavelength problems but also the risk of burning out the combustion chamber.

一方排気部に近い放射体の温度は排気ガスの温
度が低いほど熱効率が良いので、なるべく低い方
が望ましく一般に150℃位の場合が多い。
On the other hand, the temperature of the radiator near the exhaust section is preferably as low as possible, and is generally around 150°C, since the lower the exhaust gas temperature, the better the thermal efficiency.

従つて熱効率が良い燃料の燃焼熱による遠赤外
線放射装置を得んとすれば燃焼室の外表面等高温
部分の温度を下げる必要がある。
Therefore, in order to obtain a far-infrared radiation device that uses the heat of combustion of fuel with good thermal efficiency, it is necessary to lower the temperature of high-temperature parts such as the outer surface of the combustion chamber.

燃焼室の外表面温度を下げる方法の1つに、筒
状の燃焼室の内側に更に内筒を設けて、該内筒の
内側を燃焼室とし、かつ内筒と外筒の間に冷却用
の空気を強制的に流して内筒の外面と外筒の内面
を冷却し、少なくとも燃焼が完全に終了する距離
以上の長さがある内筒出口において、内筒内部よ
り流出する高温の燃焼ガスと合流して燃焼ガスの
温度を低下させて燃焼外筒をより低い適当な温度
に加熱する方法がある(後述第6,7図参照)。
One method of lowering the outer surface temperature of the combustion chamber is to further provide an inner cylinder inside the cylindrical combustion chamber, use the inside of the inner cylinder as the combustion chamber, and add a cooling tube between the inner cylinder and the outer cylinder. Air is forced to flow to cool the outer surface of the inner cylinder and the inner surface of the outer cylinder, and the high-temperature combustion gas flows out from inside the inner cylinder at the inner cylinder outlet, which is at least as long as the distance for complete combustion. There is a method of lowering the temperature of the combustion gas by merging with the combustion gas and heating the combustion cylinder to a lower appropriate temperature (see FIGS. 6 and 7 below).

該方法を用いると下流の放射体の温度も冷却空
気を用いない場合に比較してより低い温度とする
ことができる。
Using this method, the temperature of the downstream radiator can also be lower than when no cooling air is used.

具体的な例をあげると、内外筒間に燃焼に必要
な理論空気量の2〜3倍の空気を強制的に流し外
筒表面の温度を高い所でも450〜550℃位に保ち、
4〜7マイクロメーターの光を主体に放射する遠
赤外線放射装置が暖房用、サウナ用、乾燥用等の
熱源としてすでに実用化されている。
To give a specific example, by forcing 2 to 3 times the theoretical amount of air required for combustion between the inner and outer cylinders, the temperature of the outer cylinder surface is maintained at around 450 to 550 degrees Celsius, even in high places.
Far-infrared radiation devices that mainly emit light of 4 to 7 micrometers have already been put into practical use as heat sources for heating, saunas, drying, and the like.

該遠赤外線放射装置の大部分は燃焼中か消火中
の2位置動作で温度等のコントロールを行なつて
いるが、近来高燃焼、低燃焼、停止の3位置制御
または比例制御等の高度な燃焼量制御が一部に用
いられるようになつた。
Most of these far-infrared radiating devices control temperature, etc. through two-position operation, either during combustion or during extinguishing.However, in recent years, advanced combustion methods such as three-position control of high combustion, low combustion, and stop, or proportional control have been developed. Amount control has come to be used in some areas.

上記の遠赤外線放射装置は、水や有機物に吸収
され易い波長の光を主体に放射するという利点が
ある反面、余分な空気を加熱して排気ガスといつ
しよに排気するので熱効率が低いという欠点があ
る。
The above-mentioned far-infrared radiator has the advantage of mainly emitting light with wavelengths that are easily absorbed by water and organic substances, but on the other hand, it has low thermal efficiency because it heats excess air and exhausts it together with the exhaust gas. There are drawbacks.

発明が解決しようとする問題点 本発明は前記水や空気に吸収され易いという利
点を損なわずに冷却空気の量をより少なくして熱
効率を上昇させんとするものである。
Problems to be Solved by the Invention The present invention aims to increase thermal efficiency by reducing the amount of cooling air without impairing the advantage of being easily absorbed by water or air.

問題点を解決するための手段 従来の遠赤外線放射装置では燃料の量を増減す
る場合当然燃焼空気量も自動的に同様に増減さ
せ、該増減させる燃焼空気量とほぼ同率で冷却空
気量を自動的に増減させている。
Measures to solve the problem In conventional far-infrared radiating equipment, when the amount of fuel is increased or decreased, the amount of combustion air is automatically increased or decreased in the same way, and the amount of cooling air is automatically increased at approximately the same rate as the amount of combustion air that is increased or decreased. It has been increasing and decreasing.

本発明は燃焼量を減少させる場合、燃焼外筒の
温度を許容できる限りなるべく高く保つように冷
却空気の量を必要最小限とする。換言すれば燃焼
量を減少させた場合、燃焼空気量と同様の比率で
冷却空気の量を減少させれば燃焼外筒の温度は高
燃焼時よりも低下するという現象に着目し、燃焼
外筒の温度が高燃焼時と同程度となるように冷却
空気の量を大幅に減少させて低燃焼時の冷却空気
量を従来より減少させ、低燃焼時の排気ガス量を
自動的に減少させて熱効率を上昇させんとするも
のである。
When reducing the amount of combustion, the present invention minimizes the amount of cooling air needed to keep the temperature of the combustion envelope as high as possible. In other words, we focused on the phenomenon that when reducing the amount of combustion, if the amount of cooling air is reduced in the same proportion as the amount of combustion air, the temperature of the combustion outer cylinder will be lower than during high combustion. The amount of cooling air is significantly reduced so that the temperature during low combustion is similar to that during high combustion, and the amount of cooling air during low combustion is reduced compared to before, and the amount of exhaust gas during low combustion is automatically reduced. The aim is to increase thermal efficiency.

実施例 以下本発明実施例について説明する。Example Examples of the present invention will be described below.

第1図は本発明第1実施例の正面図で、配管等
の一部を系統図で示し、第2図は第1図のA−A
断面の拡大断面図、第3図は第1図の矢印B方向
から見た部分拡大図である。
Fig. 1 is a front view of the first embodiment of the present invention, showing a part of the piping etc. in a system diagram, and Fig. 2 is an A-A in Fig. 1.
An enlarged sectional view of the cross section, and FIG. 3 is a partially enlarged view seen from the direction of arrow B in FIG. 1.

燃料ガスはガバナー1を通りから分岐し、比較
的少量のガスがオリフイス2を通り低燃焼電磁片
3を通つて分岐部から高燃焼電磁片4を通つてく
るより多量のガスと合流し、燃焼内筒5内に設け
られたガスバーナ6内に流入する。
The fuel gas is branched from passing through the governor 1, and a relatively small amount of gas passes through the orifice 2, passes through the low-burning electromagnetic piece 3, and joins with a larger amount of gas passing through the high-burning electromagnetic piece 4 from the branch, resulting in combustion. It flows into the gas burner 6 provided in the inner cylinder 5.

燃焼用空気は燃焼空気ダンパー7を通つて燃焼
内筒5内に入り、黒い矢印で示す通りガスバーナ
6の小孔6−1よりガスバーナ6内に流入し燃料
ガスと混合し燃焼する。
Combustion air enters the combustion inner cylinder 5 through the combustion air damper 7, flows into the gas burner 6 through the small hole 6-1 of the gas burner 6 as shown by the black arrow, mixes with the fuel gas, and burns.

8は点火用スパーク棒、9は火炎検出用電極棒
である。
8 is a spark rod for ignition, and 9 is an electrode rod for flame detection.

冷却用空気は冷却空気ダンパー10よりダクト
11内に入り、白い矢印で示す通り燃焼外筒12
と燃焼内筒5の間を通りながら両筒を冷却し、燃
焼内筒5の出口部より下流において徐々に燃焼ガ
スと混合し、遠赤外線放射管13,14,15を
通り排気用送風機16より煙突17から外部に排
気される。
Cooling air enters the duct 11 from the cooling air damper 10, and flows into the combustion outer cylinder 12 as shown by the white arrow.
It cools both cylinders while passing between the combustion inner cylinder 5 and the combustion inner cylinder 5, gradually mixes with combustion gas downstream from the outlet of the combustion inner cylinder 5, passes through far-infrared radiation tubes 13, 14, and 15, and is discharged from the exhaust blower 16. It is exhausted to the outside from the chimney 17.

上記説明した状況は高燃焼の状態であるが、被
加熱物の状態により燃焼量を減少させなければな
らない状況が生ずる。
Although the above-described situation is a state of high combustion, a situation arises in which the amount of combustion must be reduced depending on the state of the object to be heated.

低燃焼の信号がでると燃料ガスの供給ラインで
は高燃焼電磁片4が自動的に閉じ、ガスは低燃焼
電磁片3のラインのみを流れるが、オリフイス2
の抵抗によりガス量は減少する。
When a low combustion signal is output, the high combustion electromagnetic piece 4 automatically closes in the fuel gas supply line, and gas flows only through the low combustion electromagnetic piece 3 line, but the orifice 2
The amount of gas decreases due to the resistance.

本第1実施例では高燃焼時の半分位にガス量を
減少させる。
In the first embodiment, the gas amount is reduced to about half that of high combustion.

同時に空気はコントロールモータ18の動作に
よりいずれも全開になつている燃焼空気ダンパー
7、冷却空気ダンパー10が自動的に閉じる。
At the same time, the combustion air damper 7 and cooling air damper 10, both of which are fully open, are automatically closed by the operation of the control motor 18.

この時第3図に示す通り、燃焼空気ダンパー7
は45゜閉じるが、冷却空気ダンパー10は60゜閉じ
る。
At this time, as shown in Fig. 3, the combustion air damper 7
is closed by 45 degrees, but the cooling air damper 10 is closed by 60 degrees.

燃焼空気ダンパー7が45゜閉じると開口面積は
全開時(高燃焼時)の30%位となるが、ダンパー
前後の差圧が増加するので第1実施例では燃焼空
気量は高燃焼時の60%位に減少する。
When the combustion air damper 7 is closed by 45 degrees, the opening area becomes about 30% of that when it is fully open (at high combustion), but since the differential pressure before and after the damper increases, in the first embodiment, the combustion air amount is reduced to 60% at high combustion. % decrease.

冷却空気ダンパー10の開口面積は全開時の13
%位に閉じるが差圧の増加により冷却空気量は高
燃焼時の30%位となる。
The opening area of the cooling air damper 10 is 13 when fully opened.
However, due to the increase in differential pressure, the amount of cooling air decreases to about 30% during high combustion.

以上述べた第1実施例はすでにサウナ用等に使
用されている遠赤外線放射装置を改良せんとする
ものであり、各部の温度、空気量等を現在実用化
されている装置のなかでもつとも一般的な実例を
あげて説明すると、燃焼外筒12の温度は該筒内
の燃焼ガスの温度のみならず燃焼外筒12の太
さ、その時の燃焼量、周囲の温度等によつて定ま
るが、高燃焼時の燃焼外筒12の平均的な温度は
400℃位である。
The first embodiment described above is an attempt to improve far-infrared radiation devices already used for saunas, etc., and is one of the most commonly used devices currently in practical use. To explain with a practical example, the temperature of the combustion cylinder 12 is determined not only by the temperature of the combustion gas inside the cylinder, but also by the thickness of the combustion cylinder 12, the amount of combustion at that time, the ambient temperature, etc. The average temperature of the combustion cylinder 12 during high combustion is
The temperature is around 400℃.

該高燃焼時の燃焼空気量は理論空気の1.2倍位
(空気比1.2、過剰空気率20%)、冷却空気量は理
論空気量の2.3倍位で、合計空気比3.5(過剰空気
率250%)であり、排気ガスの量は天然ガスを主
成分とする都市ガス10000キロカロリー当り36N
m3位である。
The amount of combustion air during high combustion is approximately 1.2 times the theoretical air amount (air ratio 1.2, excess air ratio 20%), and the amount of cooling air is approximately 2.3 times the theoretical air amount, total air ratio 3.5 (excess air ratio 250%). ), and the amount of exhaust gas is 36N per 10,000 kilocalories of city gas whose main component is natural gas.
m is in 3rd place.

従つて低燃焼では燃焼空気量は理論空気量の
1.44倍(1.2×0.6×2)、冷却空気量は1.38倍(2.3
×0.3×2)、合計理論空気量の2.82倍であり、こ
の時の燃焼ガス量は都市ガス10000キロカロリー
当り29Nm3位である。
Therefore, at low combustion, the amount of combustion air is equal to the theoretical amount of air.
1.44 times (1.2 x 0.6 x 2), cooling air volume 1.38 times (2.3
×0.3×2), which is 2.82 times the total theoretical air volume, and the combustion gas volume at this time is 29Nm per 10,000 kilocalories of city gas, which ranks third .

以上述べた燃焼用、冷却用空気量について説明
する。
The amount of air for combustion and cooling described above will be explained.

燃焼外筒12の平均的温度は前述の通り400℃
位とすることが望ましく、従来の各種遠赤外線放
射装置において高燃焼時の空気比を3.5位にして
燃焼外筒12の温度を400℃位になるようにして
いる場合が最も一般的である。
The average temperature of the combustion cylinder 12 is 400°C as mentioned above.
In various conventional far-infrared radiating devices, it is most common that the air ratio during high combustion is set at about 3.5 and the temperature of the combustion outer cylinder 12 is set at about 400°C.

これは燃焼筒を太くすれば燃焼外筒12の温度
を低くすることができるが、あまり太くすると装
置が大型化する欠点があり、さらには反射板と対
面する燃焼外筒12の非放射方向部分があまり太
すぎると局部的に加熱する恐れがあるので、燃焼
筒を適当な太さにし、この時の燃焼外筒12の温
度を400℃位にしようとして冷却空気量を調整す
ると、空気比が3.5位となることが最も一般的な
実例である。
This is because if the combustion tube is made thicker, the temperature of the combustion outer tube 12 can be lowered, but if the combustion tube is made too thick, the device will become bulky. If the cylinder is too thick, there is a risk of local heating, so if you make the combustion cylinder an appropriate thickness and adjust the amount of cooling air to bring the temperature of the combustion cylinder 12 to around 400℃, the air ratio will decrease. The most common example is a rank of 3.5.

該空気比3.5の内、燃焼空気を1.2としたのは推
定値である。
The combustion air ratio of 1.2 out of the air ratio of 3.5 is an estimated value.

低燃焼時の燃焼空気量は空気とガスとの混合が
高燃焼時より遅くなるので燃焼速度を高めなけれ
ばならないので、燃焼量は高燃焼時の50%減少さ
せても空気量は60%位に減少させるので、低燃焼
時の燃焼空気の空気比は1.44となる。
The amount of combustion air during low combustion is slower than when the combustion is high, so the combustion speed must be increased, so even if the amount of combustion is reduced by 50% of that during high combustion, the amount of air is only about 60%. Therefore, the air ratio of combustion air during low combustion is 1.44.

該低燃焼時の冷却空気量は従来燃焼空気量と同
率で調節するので高燃焼時の60%、空気比は2.76
となる。
The cooling air amount during low combustion is adjusted at the same rate as the conventional combustion air amount, so the air ratio is 60% during high combustion, and the air ratio is 2.76.
becomes.

これに対し第1実施例では1.38としているが、
該数値は下記のようにして推定した。
On the other hand, in the first embodiment, it is set to 1.38, but
The numerical value was estimated as follows.

天然ガスを主成分とする都市ガスでは、空気比
が3.5の時の理論燃焼温度(燃焼が終了するまで
放熱しなかつたと仮定した場合の燃焼ガスの温
度)は比熱を0.34Kcal/Nm3℃と仮定すると約
735℃となる。
For city gas whose main component is natural gas, the theoretical combustion temperature when the air ratio is 3.5 (the temperature of the combustion gas assuming that no heat is released until combustion is completed) has a specific heat of 0.34 Kcal/Nm 3 °C. Assuming about
It becomes 735℃.

(排気ガス量×比熱×温度=低位発熱量 36×0.34×温度=9000) 低燃焼時には発生する熱量が50%になるので燃
焼内筒5および燃焼外筒12が受ける単位伝熱面
積当りの熱量は高燃焼時の半分になる。
(Exhaust gas amount x specific heat x temperature = lower heating value 36 x 0.34 x temperature = 9000) Since the amount of heat generated during low combustion is 50%, the amount of heat per unit heat transfer area received by the combustion inner cylinder 5 and the combustion outer cylinder 12. is half that of high combustion.

従つて高燃焼時と同様に燃焼外筒12の表面温
度を400℃とするには、単位伝熱面積当りの伝熱
量を2倍にすればよい。
Therefore, in order to make the surface temperature of the combustion outer cylinder 12 400° C. as in the case of high combustion, the heat transfer amount per unit heat transfer area should be doubled.

燃焼室内の熱伝達は放射伝熱が主体となり、該
放射伝熱量は絶対温度の4乗に比例するから燃焼
温度を高めれば熱伝達量を増加させることができ
る。
Heat transfer within the combustion chamber is mainly radiant heat transfer, and since the amount of radiant heat transfer is proportional to the fourth power of the absolute temperature, the amount of heat transfer can be increased by increasing the combustion temperature.

では燃焼温度を何度にすれば熱伝達量が2倍に
なるかを推定しなければならないが、実際の燃焼
温度は数多くの要因があり、推定が困難なので理
論燃焼温度を推定する。
Now, we need to estimate at what combustion temperature the amount of heat transfer should be doubled, but since there are many factors that affect the actual combustion temperature, it is difficult to estimate, so we estimate the theoretical combustion temperature.

放射伝熱量は燃焼温度のみならず伝熱面(燃焼
外筒12の内面)温度、放射伝熱係数等の影響を
受けるが、とりあえずこれらを無視すると低燃焼
時の理論燃焼温度が735℃の時の放射伝熱量Qは
下記の式で求められ、Cは常数である。
The amount of radiant heat transfer is affected not only by the combustion temperature but also by the temperature of the heat transfer surface (inner surface of the combustion outer cylinder 12), the radiant heat transfer coefficient, etc., but if we ignore these for the time being, the theoretical combustion temperature at low combustion is 735°C. The amount of radiant heat transfer Q is determined by the following formula, where C is a constant.

Q=C(T/100)4 Q=C(273+735/100)4 ……(1) 求める温度T〓の時には放射伝熱量が2倍にな
るので下記の式が成立する。
Q=C(T/100) 4 Q=C(273+735/100) 4 ...(1) When the desired temperature is T, the amount of radiant heat transfer is doubled, so the following formula holds true.

2×Q=C(T/100)4 ……(2) 式(1)を式(2)に代入、 2×(1008/100)4=(T/100)4 20647=(T/100)4 (T/100)4=11.99 T=11.99〓 T=926℃ ……(3) 上記の通り926℃に燃焼温度を上昇させれば、
ほぼ熱伝達量が2倍になり、燃焼外筒12の温度
が400℃位になるであろうこと推定できるが、伝
熱面側の条件によつて該推定温度が大幅に変つて
は問題なので更に詳細に検討する。
2×Q=C(T/100) 4 …(2) Substitute equation (1) into equation (2), 2×(1008/100) 4 =(T/100) 4 20647=(T/100) 4 (T/100) 4 =11.99 T=11.99〓 T=926℃...(3) If the combustion temperature is raised to 926℃ as above,
It can be estimated that the amount of heat transfer will almost double and the temperature of the combustion outer cylinder 12 will be around 400°C, but it would be a problem if the estimated temperature changed significantly depending on the conditions on the heat transfer surface side. Let's consider this in more detail.

従来の各種遠赤外線放射装置における低燃焼時
の燃焼外筒12の温度は280℃位のことが多いの
で、該温度を含めて更に推定計算を行なう。
Since the temperature of the combustion cylinder 12 during low combustion in various conventional far-infrared radiating devices is often about 280°C, further estimation calculations are performed including this temperature.

2面体間の放射伝熱量は下記の式により求めら
れる。
The amount of radiant heat transfer between dihedra is determined by the following formula.

D〔(T1/100)4−(T2/100)4〕=Q ここで T1;高温体の表面の絶対温度 T2;低温体の表面の絶対温度 D;係数 従来の低燃焼時の熱伝達量Qは、 D〔(273+735/100)4−(273+280/100)4〕=Q
……(4) 低燃焼時の熱伝達量を2倍にするための理論燃
焼温度T3〓は D〔(T/100)4−(273+400/100)4〕=2×Q…
…(5) (4)式を(5)式に代入、 D=〔(T3/100)4−(6.73)4〕 =2D〔(10.08)4−(5.53)4〕 (T/100)4=2(10324−935)+2051 (T3/100)4=20829 T3=1201〓(928℃) ……(6) 以上の通り(3)と(6)の温度が殆ど同じなので理論
燃焼温度を900゜位にすれば燃焼外筒12の温度
が、高燃焼時と同じ400゜位になるであろうことが
推定できる。
D [(T1/100) 4 - (T2/100) 4 ] = Q where T1; Absolute temperature of the surface of the high temperature body T2; Absolute temperature of the surface of the low temperature body D; Coefficient Amount of heat transfer during conventional low combustion Q is D [(273+735/100) 4 - (273+280/100) 4 ]=Q
...(4) The theoretical combustion temperature T3 to double the amount of heat transfer during low combustion is D [(T/100) 4 - (273 + 400/100) 4 ] = 2 x Q...
...(5) Substitute equation (4) into equation (5), D = [(T3/100) 4 - (6.73) 4 ] = 2D [(10.08) 4 - (5.53) 4 ] (T/100) 4 = 2 (10324-935) + 2051 (T3/100) 4 = 20829 T3 = 1201〓 (928℃) ... (6) As mentioned above, the temperatures in (3) and (6) are almost the same, so the theoretical combustion temperature is 900. It can be estimated that if the temperature is set to about 400°, the temperature of the combustion outer cylinder 12 will be about 400°, which is the same as during high combustion.

理論燃焼温度が900℃の時の天然ガスを主成分
とし、1Nm3当りの発熱量が11000Kcalの都市ガ
ス(13A)10000Kcal(低位発熱量9000Kcal)当
りの燃焼ガス量QNm3は比熱を0.34Kcal/Nm3
とすると下記によつて求められる。
When the theoretical combustion temperature is 900℃, the amount of combustion gas QNm 3 for city gas (13A) whose main component is natural gas and has a calorific value of 11,000 Kcal per 1Nm 3 (lower calorific value 9000 Kcal) is the specific heat of 0.34 Kcal/ Nm 3
Then, it can be found as follows.

Q×900×0.34=9000 Q=29.4Nm3 ……(7) 2.8位である。 Q×900×0.34=9000 Q=29.4Nm 3 ...(7) It is 2.8th place.

以上の計算結果から本第1実施例の低燃焼時に
おける空気量を燃焼空気の空気比を1.44、冷却空
気は1.38、合計理論空気量の2.82倍と推定したも
のである。
From the above calculation results, the air amount during low combustion in the first embodiment is estimated to be 1.44 for the combustion air air ratio, 1.38 for the cooling air, and 2.82 times the total theoretical air amount.

以上を要約すると、従来の遠赤外線放射装置で
は燃焼量を50%に減少させる低燃焼時には理論空
気量の4.2倍(1.44+2.76)の空気を必要とした
が、本発明第1実施例では理論空気量の2.82倍の
空気量でよく、排気ガス量を減少させ熱効率を上
昇させ得たものである。
To summarize the above, in the conventional far-infrared radiation device, 4.2 times the theoretical air amount (1.44 + 2.76) was required for low combustion to reduce the amount of combustion to 50%, but in the first embodiment of the present invention, The amount of air required was 2.82 times the theoretical amount, reducing the amount of exhaust gas and increasing thermal efficiency.

発明の効果 本発明の効果を従来の装置と比較して説明す
る。
Effects of the Invention The effects of the present invention will be explained in comparison with conventional devices.

まず従来最も一般的な装置として第1図に対応
させた第6図を示す。第7図は第6図のC−C断
面の拡大断面図である。
First, FIG. 6, which corresponds to FIG. 1, is shown as the most common conventional device. FIG. 7 is an enlarged sectional view taken along the line CC in FIG. 6.

第1実施例同様に高燃焼時燃料ガスはガバナ1
よりオリフイス2、低燃焼電磁弁3を通る少量の
ガスが高燃焼電磁弁4よりの、より多量のガスと
合流しガスバーナ6内に流入する。
As in the first embodiment, the fuel gas during high combustion is controlled by the governor 1.
A small amount of gas passing through the higher combustion orifice 2 and the low combustion solenoid valve 3 merges with a larger amount of gas from the high combustion solenoid valve 4 and flows into the gas burner 6.

燃焼用空気は燃焼空気口19より燃焼内筒5内
に入り、黒い矢印に示す通りガスバーナ6内に入
り燃料ガスと混合し燃焼する。冷却用空気は白い
矢印に示す通り冷却空気口20よりダクト11内
に入り燃焼外筒12と燃焼内筒5を冷却しながら
燃焼ガスと徐々に混合し、冷却空気と混合した燃
焼ガスは遠赤外線放射管13,14,15を通り
ダンパー21より排気用送風機16を経て煙突1
7から排気される。
Combustion air enters the combustion inner cylinder 5 through the combustion air port 19, enters the gas burner 6 as shown by the black arrow, mixes with fuel gas, and burns. The cooling air enters the duct 11 from the cooling air port 20 as shown by the white arrow, and gradually mixes with the combustion gas while cooling the combustion outer cylinder 12 and the combustion inner cylinder 5, and the combustion gas mixed with the cooling air is exposed to far infrared rays. It passes through the radiant pipes 13, 14, 15, the damper 21, the exhaust blower 16, and the chimney 1.
Exhausted from 7.

低燃焼時には高燃焼電磁弁4が閉じ、燃料ガス
量は高燃焼時の50%減少し、コントロールモータ
18の動作によりダンパー21が閉じるので該ダ
ンパー21を通過する燃焼ガス量は高燃焼時の60
%に減少するので、燃焼空気口19よりの燃焼空
気と、冷却空気口20からの冷却空気の量が同様
に60%に減少する。
When the combustion is low, the high combustion solenoid valve 4 closes, and the amount of fuel gas is reduced by 50% when the combustion is high.The damper 21 is closed by the operation of the control motor 18, so the amount of combustion gas passing through the damper 21 is reduced to 60% when the combustion is high.
%, the amounts of combustion air from the combustion air port 19 and cooling air from the cooling air port 20 are similarly reduced to 60%.

高燃焼時には前述の通り燃焼外筒12の平均的
温度は400℃であり、この時の燃焼空気量は理論
空気の1.2倍、冷却空気量は理論空気の2.3倍、合
計の空気比は3.5(過剰空気率250%)である。
During high combustion, the average temperature of the combustion cylinder 12 is 400°C as mentioned above, the amount of combustion air at this time is 1.2 times the theoretical air, the amount of cooling air is 2.3 times the theoretical air, and the total air ratio is 3.5 ( Excess air rate is 250%).

低燃焼時にはいずれも高燃焼時の60%となるの
で、前述の通り燃焼空気の空気比が1.44、冷却空
気は2.76、合計空気比4.2となる。
At low combustion, both are 60% of high combustion, so as mentioned above, the air ratio of combustion air is 1.44, the cooling air is 2.76, and the total air ratio is 4.2.

上記の従来装置の例に対し本発明第1実施例の
低燃焼時における空気比は2.82であり、その差
(4.2−2.82=1.38)理論空気量の1.38倍の空気が
加熱されて煙突17より排気されることを本発明
第1実施例において防止し得たものである。
Compared to the example of the conventional device described above, the air ratio during low combustion in the first embodiment of the present invention is 2.82, and the difference (4.2-2.82=1.38) is that 1.38 times the theoretical air amount of air is heated and flows from the chimney 17. This could be prevented in the first embodiment of the present invention.

天然ガスを主成分とする都市ガス(13A)
10000Kcal(高位発熱量)の理論空気量は約10N
m3なので、本発明第1実施例の低燃焼時では従来
より10000Kcal当り、13.8Nm3の空気を節約した
こととなり、低燃焼時の排気温度を200℃、気温
を20℃と仮定し、空気の比熱を0.31Kcal/Nm3
とすると、〔13.8×0.31×(200−20)〕節約した熱
量は10000Kcal当り770Kcalとなる。
City gas whose main component is natural gas (13A)
The theoretical air amount for 10000Kcal (higher calorific value) is approximately 10N
m 3 , the first embodiment of the present invention saves 13.8 Nm 3 of air per 10,000 Kcal compared to the conventional method during low combustion. The specific heat of 0.31Kcal/Nm 3
Then, the amount of heat saved is [13.8 x 0.31 x (200-20)] 770 Kcal per 10,000 Kcal.

従来装置の実施例の低燃焼の排気ガス量は、
10000Kcal当り43Nm3なので排気ガスの比熱を
0.31、温度は同様に200℃の時の排気損失熱量は
〔43×0.31×(200−20)〕=2399Kcalであり、熱効
率(低位発熱量基準、高位発熱量10000Kcalの
13Aガスの低位発熱量は9000Kcal)は73.3%であ
る。
The low combustion exhaust gas amount of the conventional device example is:
Since it is 43Nm 3 per 10000Kcal, the specific heat of exhaust gas is
Similarly, when the temperature is 200℃, the exhaust heat loss is [43 x 0.31 x (200 - 20)] = 2399 Kcal, and the thermal efficiency (lower calorific value standard, higher calorific value 10000 Kcal)
The lower calorific value of 13A gas (9000Kcal) is 73.3%.

〔(9000−2399)÷9000〕×100=73.3% 本発明第1実施例の低燃焼時の排気損失は
1629Kcalなので、熱効率は81.9%であり、 2399−770=1629 〔(9000−1629)÷9000〕×100=81.9% 低燃焼時において従来より10.4%燃料を節減で
きた。
[(9000−2399)÷9000]×100=73.3% The exhaust loss during low combustion in the first embodiment of the present invention is
Since it is 1629Kcal, the thermal efficiency is 81.9%, 2399-770=1629 [(9000-1629) ÷ 9000] x 100 = 81.9% At low combustion, fuel can be saved by 10.4% compared to the conventional model.

〔(9000-2399)÷(9000-1629)〕×100=89.6 100−89.6=10.4% 低燃焼時に10.4%燃料を節減すると、装置を連
続的に運転した場合どの程度の効果を発揮するか
について考察する。
[(9000-2399) ÷ (9000-1629)] x 100 = 89.6 100-89.6 = 10.4% How effective is a 10.4% fuel saving during low combustion when the device is operated continuously? Consider.

高燃焼で燃焼する時間をH、低燃焼時間をL、
高燃焼の燃焼量をq、従来装置の総燃焼量をQ1、
本発明第1実施例の総燃焼量をQ2とすると下記
によつて燃料の節減率が求められる。
High combustion time is H, low combustion time is L,
The combustion amount of high combustion is q, the total combustion amount of conventional equipment is Q1,
Letting the total combustion amount of the first embodiment of the present invention be Q2, the fuel saving rate can be calculated as follows.

H×q+L×0.5q=Q1 ……(1) H×q+L×0.5q(1−0.104)=Q2 ……(2) (2)÷(1) H×q+L×0.5q(1−0.104)/H×q+L×0.5q
=Q2/Q1 H+0.448L/H+0.5L=Q2/Q1 ……(3) 高燃焼、低燃焼の運転時間の比率は各装置ごと
に異なるが、一般には始動時は高燃焼で燃焼し、
規定の温度まで上昇した立上り後はほとんど低燃
焼運転となることが多い。従つて長時間連続的に
運転するサウナ用熱源や遠赤外線放射装置、コン
ベアー乾燥機等の連続式乾燥機等ではほとんど低
燃焼での運転となり、本発明の効果は大きく、バ
ツチ式乾燥機等の間欠運転装置では効果が少な
い。
H x q + L x 0.5q = Q1 ... (1) H x q + L x 0.5q (1 - 0.104) = Q2 ... (2) (2) ÷ (1) H x q + L x 0.5q (1 - 0.104) / H×q+L×0.5q
=Q2/Q1 H+0.448L/H+0.5L=Q2/Q1...(3) The ratio of high combustion and low combustion operating time differs for each device, but in general, combustion occurs at high combustion when starting,
After the temperature rises to the specified temperature, low combustion operation often occurs. Therefore, most continuous dryers such as sauna heat sources, far infrared ray radiators, and conveyor dryers that operate continuously for long periods of time operate at low combustion levels. Intermittent operation equipment is less effective.

営業サウナでは1日16時間営業するこたが多
く、1日平均16時間装置を運転する営業サウナで
は年間を通じて始動時間は30分から1時間位なの
で、仮に高燃焼の時間を1日2時間、低燃焼の時
間を12時間、燃焼が停止する時間を2時間と仮定
すると(最も一般的な例であろうと推定するの
で)、(3)式より本発明装置では従来装置の91.0%
の熱量でよく9%の燃料が節約できる。
Many commercial saunas are open for 16 hours a day, and in commercial saunas that operate equipment for an average of 16 hours a day, the startup time is about 30 minutes to 1 hour throughout the year. Assuming that the combustion time is 12 hours and the combustion stop time is 2 hours (as this is assumed to be the most common example), from equation (3), the device of the present invention achieves 91.0% of the conventional device.
of heat can save up to 9% of fuel.

暖房装置では1日10時間運転しシーズンを通じ
ての高燃焼時間を1日1時間、低燃焼時間を8時
間、燃焼停止時間を1時間と仮定すると8.3%の
燃料を節約できる。
If a heating system is operated for 10 hours a day, and assumes that the high combustion time is 1 hour a day, the low combustion time is 8 hours, and the combustion stop time is 1 hour throughout the season, 8.3% of fuel can be saved.

効果の多い装置でも10%以下の省エネルギー効
果しかないが、近来の各種燃焼装置の熱効率はす
でにかなり高効率となつているのでサウナや暖房
装置に用いられた場合本発明装置は簡単な装置の
改良で大きな効果を発揮することができる。
Even highly effective devices have an energy saving effect of less than 10%, but the thermal efficiency of modern combustion devices is already quite high, so when used in saunas and heating devices, the device of the present invention is a simple improvement of the device. can have a great effect.

本発明は以上述べた第1実施例のみならず燃料
の燃焼熱により遠赤外線を発生させる装置におい
て、燃焼室の外側に冷却空気を流し燃焼量を減少
させる場合、自動的に燃焼空気量の減少率よりも
冷却空気量の減少率をより大きくするという特徴
の範囲内で、種々設計変更が可能である。
The present invention is applicable not only to the first embodiment described above, but also to an apparatus that generates far infrared rays by heat of combustion of fuel, when cooling air is flowed outside the combustion chamber to reduce the amount of combustion, the amount of combustion air is automatically reduced. Various design changes are possible within the range of the characteristic that the rate of decrease in the amount of cooling air is made larger than the rate of decrease in the amount of cooling air.

例えば第4図は本発明の第2実施例であり、第
1実施例の燃焼量制御は高燃焼、低燃焼、停止の
3位置制御であるが、本第2実施例はより高度な
比例制御方式の実施例である。
For example, FIG. 4 shows the second embodiment of the present invention, and the combustion amount control in the first embodiment is a three-position control of high combustion, low combustion, and stop, but the second embodiment is a more advanced proportional control. This is an example of the method.

燃焼量ガス量はコントロールモータ18と連動
するバタフライ弁22により比例的に調節され、
コントロールモータ18とバタフライ弁22が最
大60゜動作すると、燃焼空気ダンパー7は最大45゜
動作し、冷却空気ダンパー10は最大60゜動作し
空気量の減少率は常に冷却空気の方が多くなつて
いる。
The combustion amount gas amount is proportionally adjusted by a butterfly valve 22 that is linked to a control motor 18.
When the control motor 18 and butterfly valve 22 operate at a maximum of 60 degrees, the combustion air damper 7 operates at a maximum of 45 degrees, and the cooling air damper 10 operates at a maximum of 60 degrees, so that the rate of decrease in air volume is always greater for cooling air. There is.

第5図は本発明第3実施例のバーナ部分の拡大
図で、第1実施例のガスバーナは先混合式ガスバ
ーナであつたが、本第3実施例では元混合式ガス
バーナを装備している。
FIG. 5 is an enlarged view of the burner portion of the third embodiment of the present invention. The gas burner of the first embodiment was a pre-mixing type gas burner, but the third embodiment is equipped with a pre-mixing type gas burner.

高燃焼時理論空気量の50〜70%位が燃焼空気ダ
ンパー7を通つて混合管23内に入り、燃料ガス
と混合し炎口24より燃焼内筒5内に流出し、冷
却空気ダンパー10を通つてダクト11内に流入
した空気の一部が二次空気口25から流入し二次
空気として混合し燃焼するが、この時の二次空気
量は理論空気量の50〜70%位で、燃焼内筒5と燃
焼外筒12の間を通る冷却空気量は理論空気量の
2.3倍位であり、冷却空気ダンパー10を通過す
る空気量は理論空気量の2.8〜3倍位である。
Approximately 50 to 70% of the theoretical air amount during high combustion passes through the combustion air damper 7 and enters the mixing tube 23, mixes with the fuel gas, flows out from the flame port 24 into the combustion inner cylinder 5, and passes through the cooling air damper 10. A part of the air that has flowed into the duct 11 through the secondary air port 25 flows through the secondary air port 25 and is mixed and burned as secondary air, but the amount of secondary air at this time is about 50 to 70% of the theoretical air amount. The amount of cooling air passing between the combustion inner cylinder 5 and the combustion outer cylinder 12 is the theoretical air amount.
The amount of air passing through the cooling air damper 10 is about 2.8 to 3 times the theoretical amount of air.

燃焼量を50%に減少させる低燃焼時には燃焼空
気ダンパー7は少ししか閉じないので理論空気量
の90〜110%位の空気が一次空気として混合管2
3内に流入し、冷却空気ダンパー10からは理論
空気量の1.6〜1.8倍位の空気が入り、この内の20
%位、すなわち理論空気量の35%位が二次空気口
25から燃焼内筒5内に燃焼用二次空気として供
給される。
During low combustion, where the combustion amount is reduced to 50%, the combustion air damper 7 closes only a little, so air at about 90 to 110% of the theoretical air amount is used as primary air in the mixing tube 2.
3, about 1.6 to 1.8 times the theoretical air amount enters from the cooling air damper 10, of which 20
%, that is, about 35% of the theoretical air amount, is supplied from the secondary air port 25 into the combustion inner cylinder 5 as secondary air for combustion.

この他、 バーナを油圧噴霧式油バーナ等に変更し、燃
料を液体燃料に変更すること。
In addition, the burner should be changed to a hydraulic spray oil burner, etc., and the fuel should be changed to liquid fuel.

燃焼内筒5をパンチングメタルや多孔質のセ
ラミツク等を用いて製作し、該孔を通して燃焼
炎よりの光を燃焼外筒12の内面に放射し、燃
焼外筒12の上流部の伝熱量を増加させるこ
と。
The combustion inner cylinder 5 is manufactured using punched metal, porous ceramic, etc., and light from the combustion flame is radiated to the inner surface of the combustion outer cylinder 12 through the holes, increasing the amount of heat transfer in the upstream part of the combustion outer cylinder 12. to let

燃焼内筒5の長さを短くし、燃焼炎の先端部
を燃焼外筒12内に露出させて該炎先端部より
燃焼外筒12へふく射熱を放射し燃焼外筒12
からの遠赤外線放射量を増加させること。
The length of the combustion inner cylinder 5 is shortened, the tip of the combustion flame is exposed inside the combustion outer cylinder 12, and the radiant heat is radiated from the flame tip to the combustion outer cylinder 12.
increasing the amount of far-infrared radiation emitted from the

等々である。etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第1実施例の正面図で配管図の
一部を系統図で示す。第2図は第1図のA−A断
面の拡大図、第3図は第1図のB方向から見た部
分拡大図である。第4図は本発明の第2実施例の
制御形態を説明する図、第5図は本発明の第3実
施例のバーナ部分の拡大断面図である。第6図は
従来装置例の第1図に対応する図であり、第7図
は第4図のC−C断面図である。 1……ガバナー、2……オリフイス、3……低
燃焼電磁弁、4……高燃焼電磁弁、5……燃焼内
筒、6……ガスバーナ、7……燃焼空気ダンパ
ー、8……点火用スパーク棒、9……火炎検出用
電磁棒、10……冷却空気ダンパー、11……ダ
クト、12……燃焼外筒、13,14,15……
遠赤外線放射管、16……排気用送風機、17…
…煙突、18……コントロールモータ、22……
バタフライ弁、23……混合管、24……炎口、
25……二次空気口。
FIG. 1 is a front view of the first embodiment of the present invention, showing a part of the piping diagram as a system diagram. 2 is an enlarged cross-sectional view taken along the line AA in FIG. 1, and FIG. 3 is a partially enlarged view taken from the direction B in FIG. FIG. 4 is a diagram for explaining the control form of the second embodiment of the present invention, and FIG. 5 is an enlarged sectional view of the burner portion of the third embodiment of the present invention. FIG. 6 is a diagram corresponding to FIG. 1 of the conventional device example, and FIG. 7 is a sectional view taken along the line CC in FIG. 4. 1... Governor, 2... Orifice, 3... Low combustion solenoid valve, 4... High combustion solenoid valve, 5... Combustion inner cylinder, 6... Gas burner, 7... Combustion air damper, 8... For ignition Spark rod, 9... Electromagnetic rod for flame detection, 10... Cooling air damper, 11... Duct, 12... Combustion cylinder, 13, 14, 15...
Far-infrared radiation tube, 16... Exhaust blower, 17...
...Chimney, 18...Control motor, 22...
Butterfly valve, 23...mixing pipe, 24...flame port,
25...Secondary air port.

Claims (1)

【特許請求の範囲】[Claims] 1 管内で気体または液体燃料を燃焼させ、ある
いは管内に燃焼ガスを流通させて管外面より赤外
線を放射して人体、物体等を加熱し、暖房用熱
源、サウナ用熱源、各種乾燥機用熱源として利用
する赤外線放射装置の燃料を燃焼させる燃焼管内
に管状の内筒を設け、該燃焼管内筒内部を燃料を
燃焼させる燃焼室とし、該燃焼管内筒外面と燃焼
管内面との間に冷却用空気を流通させて、燃焼管
外面をほぼ500℃以下位に保ち、発生する赤外線
をより波長の長い遠赤外線主体とすることを特徴
とする遠赤外線放射装置において、主として燃焼
の用に供する燃焼用空気の量と、主として燃焼管
および燃焼管内筒の冷却に利用する冷却空気の量
と、燃料の供給量をそれぞれ別個にかつ自動的に
調整する機構を設け、該燃料の供給量と空気量の
調整機構を燃焼空気量と冷却空気量の比、すなわ
ち燃焼空気量を冷却空気量で除した値が燃焼量が
多い時には燃焼量が少ない時に比べて小さく、燃
焼量が少ない時には燃焼量が多い時に比べて大き
くなるように自動的に作動させることを特徴とす
る遠赤外線放射装置の燃焼量と空気量の制御方
法。
1 Burning gas or liquid fuel in the pipe or circulating combustion gas in the pipe and emitting infrared rays from the outside of the pipe to heat the human body, objects, etc., and use it as a heat source for heating, saunas, and various dryers. A tubular inner cylinder is provided in the combustion tube that burns the fuel of the infrared radiation device to be used, and the inside of the combustion tube inner cylinder is used as a combustion chamber in which the fuel is burned, and cooling air is provided between the outer surface of the combustion tube inner cylinder and the inner surface of the combustion tube. In a far-infrared radiating device, the combustion air used mainly for combustion is used to maintain the outer surface of the combustion tube at approximately 500°C or less by circulating air, and the generated infrared rays are mainly far-infrared rays with longer wavelengths. A mechanism is provided to separately and automatically adjust the amount of cooling air mainly used for cooling the combustion tube and the combustion tube inner cylinder, and the amount of fuel supplied, and the amount of fuel supplied and the amount of air are adjusted. The ratio of the combustion air amount to the cooling air amount, that is, the value obtained by dividing the combustion air amount by the cooling air amount, is smaller when the combustion amount is large than when the combustion amount is small, and when the combustion amount is small compared to when the combustion amount is large. A method for controlling the combustion amount and air amount of a far infrared radiating device, characterized in that the amount of combustion and air amount of a far infrared radiating device is automatically operated so as to increase the amount of infrared rays.
JP26399985A 1985-11-25 1985-11-25 Control of amount of combustion and amount of air in far infrared rays projector Granted JPS62123220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26399985A JPS62123220A (en) 1985-11-25 1985-11-25 Control of amount of combustion and amount of air in far infrared rays projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26399985A JPS62123220A (en) 1985-11-25 1985-11-25 Control of amount of combustion and amount of air in far infrared rays projector

Publications (2)

Publication Number Publication Date
JPS62123220A JPS62123220A (en) 1987-06-04
JPH037845B2 true JPH037845B2 (en) 1991-02-04

Family

ID=17397138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26399985A Granted JPS62123220A (en) 1985-11-25 1985-11-25 Control of amount of combustion and amount of air in far infrared rays projector

Country Status (1)

Country Link
JP (1) JPS62123220A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019027630A (en) * 2017-07-27 2019-02-21 静岡製機株式会社 Infrared radiation heater
EP4194750B1 (en) * 2021-12-10 2024-01-31 Schwank GmbH Dark radiator

Also Published As

Publication number Publication date
JPS62123220A (en) 1987-06-04

Similar Documents

Publication Publication Date Title
US2504315A (en) Fluid heater and thermostatic control means therefor
CN207963148U (en) A kind of small-sized low nitrogen gas fired-boiler
JPH037845B2 (en)
CN207674732U (en) A kind of gas-heating water heater with energy saver mode
US4951649A (en) Method and apparatus for heating and generating infrared rays
CN209484659U (en) A kind of energy-saving environment-friendly furnace
JPS5921927A (en) Sauna facility utilizing gas-burning infrared ray emitting device
JP2653521B2 (en) Pulse burner
JPS5818111Y2 (en) Infrared radiation drying and heating device using combustion gas
CN220541376U (en) Energy-saving environment-friendly hot blast stove
CN212512385U (en) Natural gas drying and burning system composed of proportional regulator
JPS60165463A (en) Hot-water room heater
JPS6248767B2 (en)
CN207487120U (en) A kind of vehicle-mounted water heater with antifreeze function
CN207438568U (en) Parallel combustion type energy-saving environmental protection heating furnace
CN206973690U (en) A kind of gas radiator
JPH0118324B2 (en)
JPH0224053Y2 (en)
JPS6123251Y2 (en)
KR0121043Y1 (en) Far Infrared Heater
SU974837A2 (en) Air heater
JPS6030657Y2 (en) bath equipment
KR200249579Y1 (en) a
CN116734482A (en) Energy-saving environment-friendly hot blast stove
KR820001504Y1 (en) Oil burner having preheated air supplying tubes

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term