JPH0377838B2 - - Google Patents

Info

Publication number
JPH0377838B2
JPH0377838B2 JP9049383A JP9049383A JPH0377838B2 JP H0377838 B2 JPH0377838 B2 JP H0377838B2 JP 9049383 A JP9049383 A JP 9049383A JP 9049383 A JP9049383 A JP 9049383A JP H0377838 B2 JPH0377838 B2 JP H0377838B2
Authority
JP
Japan
Prior art keywords
formula
carbon atoms
oil
hydrocarbon group
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9049383A
Other languages
Japanese (ja)
Other versions
JPS59215394A (en
Inventor
Akishi Odagiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON CHIO KEMIKARU KK
Original Assignee
NIPPON CHIO KEMIKARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON CHIO KEMIKARU KK filed Critical NIPPON CHIO KEMIKARU KK
Priority to JP9049383A priority Critical patent/JPS59215394A/en
Publication of JPS59215394A publication Critical patent/JPS59215394A/en
Publication of JPH0377838B2 publication Critical patent/JPH0377838B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は最滑油等に添加しお䜿甚する油溶性防
錆剀に関するものである。 埓来技術 最滑油䞭に添加しお耐荷重性胜を向䞊させる添
加剀ずしおは䞀般に硫黄化合物、燐化合物、塩玠
化合物等が䜿甚されおおり、実甚䞊はこのうちの
皮類たたは数皮類を組み合わせお目的を達しお
いる。 このうち硫黄化合物は耐荷重性胜が優秀で最も
䞀般的に䜿甚されおいる添加剀であるが、成分䞭
の掻性硫黄の量に比䟋しお金属に察する腐食性が
匷くなるこずが最倧の欠点である。したが぀お金
属に察する腐食性を防止する目的で防食添加剀を
䜵甚する事が䞍可欠ずなり、ベンゟトリアゟヌ
ル、アルキルベンゟトリアゟヌル、ベンゟチアゟ
ヌル、ゞアルキルチオりレア、アルキルむミダゟ
ヌル等の化合物が䜿甚されおいる。 しかしながらこれらの防食添加剀は䞀般的に鉱
物油に察する溶解性が悪いので、実際䞊は充分な
効果を発揮するに至぀おいない。 たた、切削、圧延、匕抜、しがり等各皮機械装
眮の性胜向䞊に䌎い、䜿甚される最滑油に察する
耐荷重性胜の向䞊が匷く芁求されおおり、掻性硫
黄を有する添加剀の甚途も次第に倚様化する傟向
がある。加えお、各皮最滑油の䜿甚枩床も次第に
䞊昇する傟向にあるので、金属に察する腐食防止
性胜向䞊の芁求が匷くな぀おいる。 䟋えば最も代衚的な金属防食剀であるベンゟト
リアゟヌルは埓来最滑油䞭にも、ないし重量
添加しお䜿甚されおいるが、耐熱枩床は110な
いし120℃が限界であり、これより高枩域に斌け
る防食性胜はほずんど期埅出来ない。 本発明に䜿甚する−ゞメルカプト−
−チアゞアゟヌル以䞋DMTDず略す。
は掻性硫黄化合物に察する金属防食剀ずしおは既
知のものであるが、この化合物は氎溶性であり、
このたたでは最滑油に察する溶解性が悪いため鉱
物油補品には䜿甚するこずが出来ない。 DMTDの油溶性化に関しおは䟋えばアメリカ
合衆囜特蚱明现曞第4136043号、第4329475号、第
4301019号、第4210544号䞭に蚘茉されおいる。 しかしながら、これらの特蚱明现曞䞭に蚘茉さ
れおいる化合物は鉱物油に察する溶解性は良奜ず
思われるが、反面高枩に斌ける金属に察する防食
性胜が䞍充分か、あるいは党く認められない。 DMTDに関する他の問題点は臭気が匷い事で
ある。DMTDの臭気は末端基の掻性郚分、即ち
メルカプタン基に起因するものであるが、臭気を
改善する目的でアミン等の塩基性物質で䞭和する
操䜜を行うず、防食性胜が䜎䞋するかあるいは党
く消倱する。 発明の目的 本発明は䞊蚘埓来の問題点を解決するためのも
のであり、その目的ずするずころは高枩においお
も金属に察しお優れた防錆特性を有し、たた実質
的に充分な油溶性を有し䞔぀悪臭が非垞に少ない
もので、最滑油等に添加しお䜿甚する防錆剀を提
䟛するこずにある。 すなわち本発明の油溶性防錆剀は、 (A) 䞀般匏 〔匏䞭、 は炭玠原子数ないし22の飜和たたは䞍飜
和炭化氎玠基たたは炭玠原子数ないし22のβ
−ヒドロキシ炭化氎玠基を衚わし、 R1は氎玠原子たたは炭玠原子数ないし22
の飜和たたは䞍飜和炭化氎玠基を衚わし、 R2は氎玠原子たたはメチル基を衚わし、
はたたはを衚わす。〕で衚わされるアミン
ず、 (B) 䞀般匏 〔匏䞭、R3は炭玠原子数ないし18の鎖状た
たは環状あるいは鎖状ご含む環状炭化氎玠基を
衚わす。〕で衚わされるグリシゞル゚ヌテルず、 (C) 次匏 で衚わされる−ゞメルカプト−
−チアゞアゟヌルず、 (D) 䞀般匏 〔匏䞭、R4およびR5は氎玠原子たたは炭玠原
子数ないし22の飜和炭化氎玠基を衚わす。〕
で衚わされるアルケニルこはく酞無氎物を反応
させるこずにより埗られる化合物であるこずを
特城ずする。 発明の構成 本発明の油溶性防錆剀は以䞋の補法により埗ら
れる。 すなわち、反応容噚に匏で瀺されるアミン類
郚ないし60郚ず匏で衚わされるグリシゞル゚
ヌテル郚ないし30郚を加えお60ないし90℃に加
熱する。 グリシゞル゚ヌテルの゚ポキシ基が開環を開始
するず発熱反応が起るため必芁に応じお冷华操䜜
を行い、反応物の枩床が120℃を越えないよう調
節しながら、ないし時間撹拌を続ける事によ
぀お所定の玚あるいは玚アミンを埗るこずが
できる。 匏で衚わされるアミン類ず匏で衚わされる
グリシゞル゚ヌテルの反応モル比はグリシゞル゚
ヌテルが圓量から圓量の1/4たでが適圓であり、
最も奜たしい割合は1/2圓量付近である。 次にこの反応物にDMTDを添加する。この時
反応枩床は85ないし90℃が望たしく、反応時間は
ないし時間が適圓である。DMTDの添加量
は䞊蚘玚アミンあるいは玚アミンに察しお圓
量以䞋であれば良い。 その埌匏で衚わされるアルケニルこはく酞無
氎物を添加しお過剰の玚アミンあるいは玚ア
ミンを䞭和する。アルケニルこはく酞無氎物の添
加量はアミンに察しお圓量を越えおも差し支えな
い。 以䞊の反応により埗られる化合物は垞枩ではほ
ずんど流動性のない高粘性䜓であるため、必芁に
応じお鉱物油あるいは硫黄系極圧添加剀および油
脂類に溶解しお䜿甚する事が出来る。 本発明に䜿甚される䞀般匏で衚わされるモノ
アミン、ゞアミンの䟋ずしおは、モノ−およびゞ
−オクチルアミン、モノ−およびゞ−デシルアミ
ン、モノ−およびゞ−ラりリルアミン、モノ−お
よびゞ−ヘキサデシルアミン、モノ−およびゞ−
オレむルアミン、モノ−およびゞ−ステアリルア
ミン、モノメチルオクチルアミン、モノ゚チルオ
クチルアミン、モノブチルオクチルアミン、モノ
メチルオレむルアミン、モノオクチルアミン゚
チレンオキシドたたはプロピレンオキシド付加
物、モノラりリルアミン゚チレンオキシドた
たはプロピレンオキシド付加物、モノステアリ
ルアミン゚チレンオキシドたたはプロピレンオ
キシド付加物、および類䌌の玚アミン、類䌌
の玚アミンが挙げられる。 本発明に䜿甚される䞀般匏で衚わされるグリ
シゞル゚ヌテルの䟋ずしおはブチルグリシゞル゚
ヌテル、アリルグリシゞル゚ヌテル、プニルグ
リシゞル゚ヌテル、−゚チルヘキシルグリシゞ
ル゚ヌテル、デシルグリシゞル゚ヌテルなどが挙
げられる。 本発明に䜿甚される䞀般匏で衚わされるアル
ケニルこはく酞無氎物の䟋ずしおはドデセニルこ
はく酞無氎物、ペンタデセニルこはく酞無氎物な
どが挙げられる。 本発明の油溶性防錆剀は、䞊蚘のように䜿甚目
的および䜿甚条件等に応じお化合物成分を皮々組
み合わせお補造するこずが可胜であり、特に奜た
しい特性を有するものずしおは䞋蚘の副矀を挙げ
るこずができる。 (a) 䞊蚘匏においお、が炭玠原子数ないし
18の飜和たたは䞍飜和炭化氎玠基を衚わし、
R1およびR2が氎玠原子たたはメチル基を衚わ
す化合物。 (b) 䞊蚘匏においお、R3が炭玠原子数ない
し18の飜和たたは䞍飜和炭化氎玠基を衚わす化
合物。 (c) 䞊蚘匏においお、基R4およびR5の炭玠原
子数の合蚈がないし19である化合物。通垞の
堎合、R5はメチル基であるがこれに限定され
るものではない。 本発明は玚たたは玚アミンずグリシゞル゚
ヌテルより埗られる玚あるいは玚アミンず、
DMTDの付加反応物を䜜り、さらにアルケニル
こはく酞無氎物を添加するこずにより、DMTD
の䜿甚䞊における埓来技術の欠点をすべお解決す
るこずに成功した。 すなわち既存の玚アミン、玚アミン、およ
び玚アミンを盎接DMTDず反応させお埗られ
た付加反応物は金属に察する防食性が䞍充分であ
るか、あるいは党く認められないが、本発明品は
良奜な防食性が認められる。 たた、既存の玚アミン、玚アミンおよび
玚アミンを盎接DMTDず反応させお埗られた付
加反応物は鉱物油に察する溶解性が䞍足しお著し
い濁りあるいは分離珟象を呈するが、本発明品は
良奜な油溶性を有しおいる。 DMTDの臭気は既存のアミンによる付加反応
物の堎合ず同様に本発明品の物でも䜎枛たたは消
倱させる事ができた。 実斜䟋 以䞋に本発明の油溶性防錆剀の実斜䟋に぀いお
述べる。 実斜䟋 アミンずしおドデシルアミン゚チレンオキサむ
ド付加物を䜿甚し、このアミンをあらかじめ若干
加熱しお溶融した埌60Kgを分取し、反応容噚に仕
蟌埌撹拌しながら90℃たで加熱する。次いでゞグ
リシゞル゚ヌテルずしお、−゚チルヘキシルグ
リシゞル゚ヌテル25Kgを加え、90℃で玄1.5時間
撹拌を続ける。その埌加熱を䞭止しお撹拌を続
け、反応容噚内の枩床を75ないし80℃たで䞋げ
る。反応状態の確認は、生成物の䞀郚を分取しお
オキシラン酞玠を定量するこずにより行なうこず
ができる。この反応物に、次いで−ゞメル
カプト−−チアゞアゟヌルDMTD
粉末1.7Kgを撹拌しながら添加する。急激な発熱
反応が起り、たた粘性も増倧するため液枩が90℃
を越えないように添加量を調節する。この堎合反
応枩床が95℃を越えるずDMTDが分解を始め、
反応物が極端に着色し始める。たた分解物は補品
の防錆力を䜎䞋させるので反応枩床は厳重に管理
する必芁がある。玄20分かけおDMTDを党量添
加した埌、90℃で玄時間撹拌を読け、DMTD
粉末を完党に溶解させる。反応による溶解が䞍完
党な堎合は補品に濁りを生ずる事があるので泚意
する。次にドデセニルこはく酞無氎物55Kgを添加
し、90℃で玄時間反応させる。この堎合も発熱
反応であり、反応の進行に䌎぀お反応物の粘床が
䞊昇する。反応枩床が95℃を越えないように添加
量を調節する。 以䞊の操䜜により、本発明の油溶性防錆剀玄
141.7Kgが埗られる。 同様の方法により䞋蚘の衚に蚘茉した本発明
の油溶性防錆剀を埗た。
(Industrial Application Field) The present invention relates to an oil-soluble rust preventive agent that is added to lubricating oil and the like. (Prior art) Sulfur compounds, phosphorus compounds, chlorine compounds, etc. are generally used as additives added to lubricating oil to improve load-bearing performance.In practice, one or a combination of these compounds is used. has achieved its purpose. Among these, sulfur compounds have excellent load-bearing performance and are the most commonly used additives, but their biggest drawback is that they become more corrosive to metals in proportion to the amount of active sulfur in the ingredients. . Therefore, it is essential to use anticorrosive additives in order to prevent corrosion of metals, and compounds such as benzotriazole, alkylbenzotriazole, benzothiazole, dialkylthiourea, and alkylimidazole are used. However, since these anticorrosion additives generally have poor solubility in mineral oil, they have not yet achieved sufficient effectiveness in practice. In addition, as the performance of various mechanical devices such as cutting, rolling, drawing, and squeezing improves, there is a strong demand for improved load-bearing performance of the lubricating oils used, and the uses of additives containing active sulfur are gradually becoming more diverse. Tend. In addition, as the operating temperatures of various lubricating oils tend to rise gradually, there is a growing demand for improved corrosion prevention performance for metals. For example, benzotriazole, the most typical metal corrosion inhibitor, is conventionally used in lubricating oils by adding 1 to 5% by weight, but its heat resistance temperature is limited to 110 to 120 degrees Celsius, and the temperature range is higher than this. Almost no anti-corrosion performance can be expected. 2,5-dimercapto-1 used in the present invention,
3,4-thiadiazole (hereinafter abbreviated as DMTD)
is known as a metal corrosion inhibitor against active sulfur compounds, but this compound is water-soluble;
In this state, it cannot be used in mineral oil products because of its poor solubility in lubricating oil. Regarding oil solubilization of DMTD, for example, U.S. Pat.
It is described in No. 4301019 and No. 4210544. However, although the compounds described in these patent specifications seem to have good solubility in mineral oil, on the other hand, their anticorrosion performance against metals at high temperatures is insufficient or not observed at all. Another problem with DMTD is its strong odor. The odor of DMTD is due to the active moiety of the terminal group, that is, the mercaptan group, but if neutralization with a basic substance such as amine is performed to improve the odor, the anticorrosion performance may deteriorate or be completely removed. Disappear. (Object of the Invention) The present invention is intended to solve the above-mentioned conventional problems, and its purpose is to provide excellent anti-corrosion properties for metals even at high temperatures, and to provide substantially sufficient corrosion resistance to metals. The object of the present invention is to provide a rust preventive agent that is oil-soluble and has very little odor, and that can be used by adding it to lubricating oil. That is, the oil-soluble rust preventive agent of the present invention has the following formula: (A) General formula: [In the formula, R is a saturated or unsaturated hydrocarbon group having 4 to 22 carbon atoms or β having 4 to 22 carbon atoms
- represents a hydroxy hydrocarbon group, R 1 is a hydrogen atom or has 1 to 22 carbon atoms
represents a saturated or unsaturated hydrocarbon group, R 2 represents a hydrogen atom or a methyl group, and n
represents 0 or 1. ] and (B) general formula: [In the formula, R 3 represents a chain or cyclic hydrocarbon group having 4 to 18 carbon atoms, or a cyclic hydrocarbon group including a chain. ] and (C) the following formula: 2,5-dimercapto-1,3,
4-thiadiazole and (D) General formula: [In the formula, R 4 and R 5 represent a hydrogen atom or a saturated hydrocarbon group having 1 to 22 carbon atoms. ]
It is characterized by being a compound obtained by reacting an alkenylsuccinic anhydride represented by (Structure of the Invention) The oil-soluble rust preventive agent of the present invention can be obtained by the following manufacturing method. That is, 2 parts to 60 parts of the amine represented by the formula and 1 part to 30 parts of the glycidyl ether represented by the formula are added to a reaction vessel and heated to 60 to 90°C. When the epoxy group of the glycidyl ether starts ring-opening, an exothermic reaction occurs, so cooling is performed as necessary, and stirring is continued for 1 to 3 hours while controlling the temperature of the reactant to not exceed 120°C. Thus, a desired secondary or tertiary amine can be obtained. The reaction molar ratio of the amines represented by the formula and the glycidyl ether represented by the formula is appropriately from an equivalent amount of glycidyl ether to 1/4 of the equivalent amount,
The most preferred ratio is around 1/2 equivalent. DMTD is then added to the reaction. At this time, the reaction temperature is preferably 85 to 90°C, and the reaction time is 2 to 6 hours. The amount of DMTD added may be equal to or less than the equivalent amount to the secondary amine or tertiary amine. Thereafter, an alkenylsuccinic anhydride represented by the formula is added to neutralize excess secondary amine or tertiary amine. The amount of alkenylsuccinic anhydride added may exceed the equivalent amount to the amine. Since the compound obtained by the above reaction is a highly viscous substance with almost no fluidity at room temperature, it can be used after being dissolved in mineral oil, a sulfur-based extreme pressure additive, and fats and oils, if necessary. Examples of monoamines and diamines represented by the general formula used in the present invention include mono- and di-octylamine, mono- and di-decylamine, mono- and di-laurylamine, mono- and di-hexadecylamine. , mono- and di-
Oleylamine, mono- and di-stearylamine, monomethyloctylamine, monoethyloctylamine, monobutyloctylamine, monomethyloleylamine, monooctylamine (ethylene oxide or propylene oxide adduct), monolaurylamine (ethylene oxide or propylene oxide adduct) , monostearylamine (ethylene oxide or propylene oxide adduct), and similar primary amines, similar secondary amines. Examples of the glycidyl ether represented by the general formula used in the present invention include butyl glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, 2-ethylhexyl glycidyl ether, decyl glycidyl ether, and the like. Examples of the alkenylsuccinic anhydride represented by the general formula used in the present invention include dodecenylsuccinic anhydride and pentadecenylsuccinic anhydride. The oil-soluble rust preventive agent of the present invention can be manufactured by combining various compound components depending on the purpose of use and conditions of use as described above, and the following subgroups have particularly preferable characteristics: can be mentioned. (a) In the above formula, R has 6 or more carbon atoms.
represents 18 saturated or unsaturated hydrocarbon groups,
A compound in which R 1 and R 2 represent a hydrogen atom or a methyl group. (b) A compound in the above formula in which R 3 represents a saturated or unsaturated hydrocarbon group having 8 to 18 carbon atoms. (c) A compound in the above formula in which the groups R 4 and R 5 have a total number of carbon atoms of 9 to 19. Typically, R 5 is a methyl group, but is not limited thereto. The present invention provides a secondary or tertiary amine obtained from a primary or secondary amine and a glycidyl ether,
By making an addition reaction product of DMTD and further adding alkenylsuccinic anhydride, DMTD
It has succeeded in solving all the drawbacks of the prior art in the use of. In other words, addition reaction products obtained by directly reacting existing primary amines, secondary amines, and tertiary amines with DMTD have insufficient or no corrosion resistance against metals, but the products of the present invention Good corrosion resistance is observed. In addition, existing primary amines, secondary amines and tertiary amines
The addition reaction product obtained by directly reacting a class amine with DMTD lacks solubility in mineral oil and exhibits significant turbidity or separation phenomena, but the product of the present invention has good oil solubility. The odor of DMTD could be reduced or eliminated with the product of the present invention, as in the case of existing addition reaction products with amines. (Example) Examples of the oil-soluble rust preventive agent of the present invention will be described below. Example: A dodecylamine ethylene oxide adduct is used as the amine. The amine is heated slightly in advance to melt it, then 60 kg is taken out, charged into a reaction vessel, and heated to 90°C while stirring. Next, 25 kg of 2-ethylhexyl glycidyl ether was added as diglycidyl ether, and stirring was continued at 90°C for about 1.5 hours. Thereafter, heating is stopped, stirring is continued, and the temperature inside the reaction vessel is lowered to 75 to 80°C. The reaction state can be confirmed by separating a portion of the product and quantifying the amount of oxirane oxygen. This reaction was then treated with 2,5-dimercapto-1,3,4-thiadiazole (DMTD).
Add 1.7Kg of powder with stirring. A rapid exothermic reaction occurs and the viscosity increases, causing the liquid temperature to reach 90℃.
Adjust the amount added so that it does not exceed. In this case, when the reaction temperature exceeds 95℃, DMTD begins to decompose.
The reactants begin to become extremely colored. In addition, the reaction temperature must be strictly controlled because the decomposition products reduce the antirust ability of the product. After adding the entire amount of DMTD over about 20 minutes, stir at 90℃ for about 5 hours.
Dissolve the powder completely. Please note that if the reaction is incompletely dissolved, the product may become cloudy. Next, 55 kg of dodecenyl succinic anhydride is added and reacted at 90°C for about 1 hour. This is also an exothermic reaction, and the viscosity of the reactant increases as the reaction progresses. Adjust the amount added so that the reaction temperature does not exceed 95°C. By the above operations, the oil-soluble rust preventive of the present invention
141.7Kg is obtained. The oil-soluble rust preventive agent of the present invention shown in Table 1 below was obtained in a similar manner.

【衚】【table】

【衚】 衚に瀺す各成分の眮換基の瀺性匏は䞋蚘の通
りである。 (ã‚€) − (ロ) CH3− (ハ) C4H9− (ニ) C5H11− (ホ) C9H17− (ヘ) C10H21− (ト) C12H25− (チ) C16H33− (リ) C18H37− (ヌ)C18H35− (ル) C10H21−CHOHCH2− (オ) C12H25−CHOHCH2− (ワ) C14H29−CHOHCH2− (カ) C16H33−CHOHCH2− (ペ)
[Table] The formulas of the substituents of each component shown in Table 1 are as follows. (a) H- (b) CH 3 - (c) C 4 H 9 - (d) C 5 H 11 - (e) C 9 H 17 - (f) C 10 H 21 - (g) C 12 H 25 − (H) C 16 H 33 − (L) C 18 H 37 − (N)C 18 H 35 − (R) C 10 H 21 −CH(OH)CH 2 − (E) C 12 H 25 −CH( OH)CH 2 − (W) C 14 H 29 −CH(OH)CH 2 − (F) C 16 H 33 −CH(OH)CH 2 − (Y)

【匏】 (タ) C9H20 (レ) C12H28 衚䞭の配合により埗られた各皮混合物は垞枩
に斌おいずれも耐色高粘性䜓である。蚘号
の混合物はそのたたでは鉱物油に察す
る溶解性が䞍充分であるが、高玚アルコヌル、高
玚グリコヌル゚ヌテル等の溶剀を䜵甚する事によ
り完溶させるこずがでる。 その他の蚘号の混合物は単独のたたでも充分な
盞溶性をも぀おいる。 防食性胜比范詊隓−(1) 衚に蚘茉した本発明の油溶性防錆剀および埓
来䟋の防錆剀に぀いおの比范詊隓は以䞋の条件で
行぀た。 すなわち、硫黄系耐荷重性胜向䞊剀であるゞ−
第䞉ノニルポリスルフむドTNPSの重量
マシン油22溶液を暙準液ずし、これに公知の金属
防食剀および本発明の油溶性防錆剀を0.1ないし
1.5wt添加しお詊隓液ずしお、JIS−K2513石
油補品銅板腐食詊隓方法の詊隓管法に埓぀お
100℃、時間の詊隓を行い、ASTM−D130に
芏定されおいる銅板腐食暙準ず比范するこずによ
り銅板詊料片の腐食状態の刀定を行぀た。結果を
衚に瀺す。
[Formula] (T) C 9 H 20 (R) C 12 H 28 The various mixtures obtained by the formulations shown in Table 1 are all brown and highly viscous at room temperature. Symbol G,
Although a mixture of U, V, and W has insufficient solubility in mineral oil as it is, it can be completely dissolved by using a solvent such as higher alcohol or higher glycol ether. Mixtures of other symbols have sufficient compatibility even when used alone. Comparative test of anticorrosion performance (1): A comparative test of the oil-soluble rust preventive agent of the present invention and the conventional rust preventive agent listed in Table 1 was conducted under the following conditions. In other words, the sulfur-based load-bearing performance improver
5% by weight of tertiary nonyl polysulfide (TNPS)
A machine oil 22 solution is used as a standard solution, and a known metal corrosion inhibitor and an oil-soluble rust inhibitor of the present invention are added to this solution in an amount of 0.1 to 100%.
Added 1.5wt% as a test liquid according to the test tube method of JIS-K2513 (Petroleum products copper plate corrosion test method).
A test was conducted at 100°C for 3 hours, and the corrosion state of the copper plate specimen was determined by comparing it with the copper plate corrosion standard specified in ASTM-D130. The results are shown in Table 2.

【衚】【table】

【衚】 䞊蚘衚より明らかなように、本発明の防錆剀は
総お優れた耐腐食性を瀺した。これに察し同皋床
の耐腐食性を瀺した埓来の防食剀は番号お
よびのもののみであ぀た。 防食性胜比范詊隓−(2) 比范詊隓で良奜な結果が埗られた防食剀を詊
隓枩床を倉えお性胜を評䟡した。詊隓結果は110
℃、120℃、130℃、140℃、150℃ずし詊隓時間は
各々時間ずした。その他の詊隓条件は比范詊隓
ず同䞀ずした。結果を衚に瀺す。
[Table] As is clear from the above table, all the rust inhibitors of the present invention exhibited excellent corrosion resistance. On the other hand, the only conventional anticorrosives showing comparable corrosion resistance were Nos. 1, 2, and 7. Comparative test of anticorrosion performance - (2) The performance of the anticorrosive agents that gave good results in Comparative Test 1 was evaluated by changing the test temperature. The test result is 110
℃, 120℃, 130℃, 140℃, and 150℃, and the test time was 1 hour each. Other test conditions were the same as in Comparative Test 1. The results are shown in Table 3.

【衚】 䞊蚘結果より、ベンゟトリアゟヌルおよびトル
むルトリアゟヌルは130℃以䞊の高枩域では防食
効果が倱われるのに察し、本発明の防錆剀はその
倧郚分が140℃たで優れた防食効果を瀺すこずが
刀る。 防食性胜比范詊隓−(3) 次に本発明の防錆剀の添加量を倉化させお防食
効果に及がす圱響を調べた。詊隓枩床は150℃、
詊隓時間は時間ずした。その他の詊隓条件は比
范詊隓ず同䞀ずした。結果を衚に瀺す。
[Table] From the above results, it can be seen that benzotriazole and tolyltriazole lose their anticorrosive effect in the high temperature range of 130°C or higher, whereas most of the rust inhibitors of the present invention show excellent anticorrosive effect up to 140°C. I understand. Corrosion prevention performance comparison test (3): Next, the effect on the corrosion prevention effect was investigated by varying the amount of the rust preventive of the present invention. The test temperature is 150℃,
The test time was 1 hour. Other test conditions were the same as in Comparative Test 1. The results are shown in Table 4.

【衚】【table】

【衚】 䞊蚘結果より、本発明の防錆剀の添加量を増加
させる事により、倧郚分が高枩域150℃にお
いおも優れた防食効果を瀺すこずが刀぀た。 悪臭比范詊隓 本発明の防錆剀は、−ゞメルカプト−
−チアゞアゟヌルDMTDの有す
る防錆効果を損うこずなく、そのメルカプタン臭
を消倱せしめるこずを特城の䞀぀ずするが、以䞋
に本発明の防錆剀ず、DMTDずの悪臭比范詊隓
に぀いお述べる。 臭気は人間の感芚の問題であり、その濃床或
は、悪臭ず良臭を数倀で衚わすこずは非垞に困難
であるが、その䞀぀の方法ずしお、東京郜条䟋で
定められおいる「䞉点比范匏匂い袋法*」に準じ
お枬定を行぀た。 昭和52幎月 東京郜告瀺第238号 東京郜公
害防止条䟋別衚第 悪臭の郚備考に芏定
する知事が定める方法 䞊蚘の方法は、悪臭の封入された特殊ポリ袋
正匏名“におい袋”−容量玄でガラス管を取
付けたもの個及び無臭の空気が封入された同
ポリ袋個を甚意し、正垞な臭気感芚を有する女
性名が、臭気の封入されたポリ袋を遞び出し、
悪臭の封入されたポリ袋を無臭の空気で垌釈し぀
぀、遞定を繰返し名䞭名が遞定䞍胜ずな぀た
垌釈倍率をも぀お臭気濃床ずするものである。 先ず個の詊薬ビンを甚意し、個の詊薬
ピンに本発明の防錆剀、他方の詊薬ピンに
DMTDをそれぞれ200ml入れ、12時間宀枩で攟眮
した埌䞊郚空気局を特殊ポリ袋に移し、䞊蚘方法
により臭気濃床を枬定したずころ本発明の防錆剀
は、玄20002000倍の垌釈によりにおい袋の遞定
䞍胜DMTDは枬定䞍胜垌釈倍数が膚倧ずな
る為枬定䞍胜、恐らく数十䞇倍たたはそれ以䞊の
数倀ず考えられるずなり、DMTDのメルカプ
タン臭が殆ど消倱しおいるこずが刀明した。 発明の効果 䞊述のように本発明の油溶性防錆剀は−
ゞメルカプト−−チアゞアゟヌル
DMTDの優れた防錆効果を曎に高め高枩にお
いおも充分な防錆効果を発揮するものであり、た
た油溶性が著しく向䞊されおいるこずから各皮の
最滑油に添加しお䜿甚するこずができ、䞔぀実質
的に無臭化されおいるため、䜜業環境を悪化させ
ないなど倚くの優れた効果を奏する。
[Table] From the above results, it was found that by increasing the amount of the rust inhibitor of the present invention added, most of the rust inhibitors exhibited excellent corrosion prevention effects even in the high temperature range (150°C). Offensive odor comparison test: The rust inhibitor of the present invention is 2,5-dimercapto-
One of its characteristics is that it eliminates the mercaptan odor of 1,3,4-thiadiazole (DMTD) without impairing its antirust effect. Let's talk about comparative tests. Odor is a matter of human sensation, and it is extremely difficult to quantify its concentration or the difference between bad and good odor.One way to do this is to use the ``three-point comparison'' stipulated by the Tokyo Metropolitan Ordinance. The measurement was carried out according to the ``Style Smell Bag Method * ''. *March 1972 Tokyo Metropolitan Government Public Notice No. 238 Tokyo Metropolitan Pollution Prevention Ordinance Attached Table 4 7 Offensive Odor Section Note 2 The method prescribed by the governor The above method is a special plastic bag (formal name: Six women with a normal sense of odor were asked to use one odor bag (with a glass tube attached and a capacity of about 3) and two of the same plastic bags filled with odorless air. pick out a bag,
The odor concentration is determined by repeating the selection process while diluting the plastic bag containing the odor with odorless air, and taking the dilution ratio at which 4 out of 6 people were unable to make the selection. First, prepare two 1-reagent bottles, and apply the rust preventive agent of the present invention to one reagent pin and the other reagent pin.
After adding 200 ml of DMTD to each bag and leaving it at room temperature for 12 hours, the upper air layer was transferred to a special plastic bag and the odor concentration was measured using the above method. (Unable to select) DMTD became unmeasurable (unmeasurable due to the enormous dilution factor, probably hundreds of thousands of times or more), and it was found that the mercaptan odor of DMTD had almost disappeared. (Effect of the invention) As mentioned above, the oil-soluble rust preventive of the present invention has 2,5-
It further enhances the excellent anti-rust effect of dimercapto-1,3,4-thiadiazole (DMTD) and exhibits sufficient anti-rust effect even at high temperatures.It also has significantly improved oil solubility, making it suitable for various types of lubrication. Since it can be used by adding it to oil and is substantially odorless, it has many excellent effects such as not deteriorating the working environment.

Claims (1)

【特蚱請求の範囲】  (A) 䞀般匏 〔匏䞭、 は炭玠原子数ないし22の飜和たたは䞍飜
和炭化氎玠基たたは炭玠原子数ないし22のβ
−ヒドロキシ炭化氎玠基を衚わし、 R1は氎玠原子たたは炭玠原子数ないし22
の飜和たたは䞍飜和炭化氎玠基を衚わし、 R2は氎玠原子たたはメチル基を衚わし、 はたたはを衚わす。〕で衚わされるア
ミンず、 (B) 䞀般匏 〔匏䞭、R3は炭玠原子数ないし18の鎖状た
たは環状あるいは鎖状を含む環状炭化氎玠基を
衚わす。〕で衚わされるグリシゞル゚ヌテルず、 (C) 次匏 で衚わされる−ゞメルカプト−
−チアゞアゟヌルず、 (D) 䞀般匏 〔匏䞭、R4およびR5は氎玠原子たたは炭玠原
子数ないし22の飜和炭化氎玠基を衚わす。〕
で衚わされるアルケニルこはく酞無氎物を反応
させるこずにより埗られる化合物よりなる油溶
性防錆剀。  䞊蚘匏においお、は炭玠原子数ないし
18の飜和たたは䞍飜和炭化氎玠基を衚わし、R1
が氎玠原子たたはメチル基を衚わす特蚱請求の範
囲第項蚘茉の化合物よりなる油溶性防錆剀。  䞊蚘匏においお、R2が炭玠原子数ない
し18の鎖状たたは環状あるいは鎖状を含む環状炭
化氎玠基を衚わす特蚱請求の範囲第項蚘茉の化
合物よりなる油溶性防錆剀。  䞊蚘匏においお、基R4およびR5の炭玠原
子数の合蚈がないし19である特蚱請求の範囲第
項蚘茉の化合物よりなる油溶性防錆剀。  䞊蚘においお匏で衚わされるアミンない
し60郚、で衚わされるグリシゞル゚ヌテルな
いし30郚、匏で衚わされる−ゞメルカプ
ト−−チアゞアゟヌル0.5ないし30郚、
匏で衚わされるアルケニルこはく酞無氎物な
いし100郚を反応させるこずにより埗られる特蚱
請求の範囲第項蚘茉の化合物よりなる油溶性防
錆剀。
[Claims] 1 (A) General formula: [In the formula, R is a saturated or unsaturated hydrocarbon group having 4 to 22 carbon atoms or β having 4 to 22 carbon atoms
- represents a hydroxy hydrocarbon group, R 1 is a hydrogen atom or has 1 to 22 carbon atoms
represents a saturated or unsaturated hydrocarbon group, R 2 represents a hydrogen atom or a methyl group, and n represents 0 or 1. ] and (B) general formula: [In the formula, R 3 represents a chain or cyclic hydrocarbon group having 4 to 18 carbon atoms, or a cyclic hydrocarbon group including a chain. ] and (C) the following formula: 2,5-dimercapto-1,3,
4-thiadiazole and (D) General formula: [In the formula, R 4 and R 5 represent a hydrogen atom or a saturated hydrocarbon group having 1 to 22 carbon atoms. ]
An oil-soluble rust preventive agent comprising a compound obtained by reacting an alkenylsuccinic anhydride represented by: 2 In the above formula, R has 6 to 6 carbon atoms.
18 saturated or unsaturated hydrocarbon groups, R 1
An oil-soluble rust preventive agent comprising the compound according to claim 1, wherein represents a hydrogen atom or a methyl group. 3. An oil-soluble rust preventive agent comprising the compound according to claim 1, wherein in the above formula, R 2 represents a chain, ring, or chain-containing cyclic hydrocarbon group having 8 to 18 carbon atoms. 4. An oil-soluble rust inhibitor comprising the compound according to claim 1, wherein in the above formula, the total number of carbon atoms of the groups R 4 and R 5 is 9 to 19. 5 2 to 60 parts of the amine represented by the formula above, 1 to 30 parts of the glycidyl ether represented by the formula, 0.5 to 30 parts of 2,5-dimercapto-1,3,4-thiadiazole represented by the formula,
An oil-soluble rust inhibitor comprising the compound according to claim 1 obtained by reacting 1 to 100 parts of an alkenylsuccinic anhydride represented by the formula.
JP9049383A 1983-05-23 1983-05-23 Oil-soluble rust preventive Granted JPS59215394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9049383A JPS59215394A (en) 1983-05-23 1983-05-23 Oil-soluble rust preventive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9049383A JPS59215394A (en) 1983-05-23 1983-05-23 Oil-soluble rust preventive

Publications (2)

Publication Number Publication Date
JPS59215394A JPS59215394A (en) 1984-12-05
JPH0377838B2 true JPH0377838B2 (en) 1991-12-11

Family

ID=14000041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9049383A Granted JPS59215394A (en) 1983-05-23 1983-05-23 Oil-soluble rust preventive

Country Status (1)

Country Link
JP (1) JPS59215394A (en)

Also Published As

Publication number Publication date
JPS59215394A (en) 1984-12-05

Similar Documents

Publication Publication Date Title
US2856363A (en) Stable anti-rust lubricating oil
EP0061693B1 (en) Water-based hydraulic fluids having improved lubricity and corrosion inhibiting properties
JP4460087B2 (en) Borate-containing additive for manual transmission lubricants that provides stable and high synchromesh durability against hydrolysis
JP2008537008A (en) Improved corrosion inhibition method for lubricating compositions
US3968157A (en) Bisphosphoramides
JP2015078411A (en) Composition having a oil film retaining function and anticorrosive agent, and terminal-provided insulated wire using the same
EP0062890A2 (en) Water-based low foam hydraulic fluid concentrates
US4517103A (en) Lubricating compositions containing 5,5'-dithiobis(1,3,4-thiadiazole-2-thiol)
US4425248A (en) Water soluble lubricant compositions
US2967831A (en) Hydraulic fluid and its preparation
EP0135981A2 (en) Multifunctional additives
US2786812A (en) Mineral oil compositions containing tincontaining dithiophosphate compounds
EP0148465B1 (en) Functional fluids and concentrates for functional fluids containing associative polyether thickeners and certain metal dialkyldithiophosphates
EP0061823B1 (en) Synergistically thickened water-based hydraulic or metal-working fluid
EP0196362B1 (en) Polymeric thiadiazole lubricant additive
JP3485933B2 (en) Method for solubilizing benzotriazole with thiadiazole
US3537999A (en) Lubricants containing benzothiadiazole
JPH0377838B2 (en)
US4532062A (en) Additive for power transmission shift fluids
US2892854A (en) Hydraulic fluid and its preparation
US2209976A (en) Stabilized oil composition
US2874120A (en) Lubricating oil compositions
JPH0617268A (en) Anticorrosive agent
EP0237489A1 (en) Conversion products of bis-glycidylthioethers
US4579673A (en) Anti-rust compositions