JPH0377736A - Method and apparatus for isothermal forging - Google Patents
Method and apparatus for isothermal forgingInfo
- Publication number
- JPH0377736A JPH0377736A JP21211989A JP21211989A JPH0377736A JP H0377736 A JPH0377736 A JP H0377736A JP 21211989 A JP21211989 A JP 21211989A JP 21211989 A JP21211989 A JP 21211989A JP H0377736 A JPH0377736 A JP H0377736A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- heater
- mold
- forging
- plates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 22
- 238000010275 isothermal forging Methods 0.000 title claims description 6
- 239000000463 material Substances 0.000 claims abstract description 26
- 238000010438 heat treatment Methods 0.000 claims description 35
- 238000005242 forging Methods 0.000 claims description 29
- 229910000990 Ni alloy Inorganic materials 0.000 abstract description 5
- 230000006698 induction Effects 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Landscapes
- Forging (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、恒温鍛造方法及び装置に係り、舶用ブレード
等の長尺材の鍛造に利用される。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a constant temperature forging method and apparatus, and is used for forging long materials such as marine blades.
(従来の技術)
TiおよびNi基合金等の難加工性材料を、その鍛造金
型温度と鍛造素材温度とを略同程度に維持しながら鍛造
する技術として、超塑性鍛造法あるいは恒温鍛造法があ
る。(Prior art) As a technology for forging difficult-to-work materials such as Ti and Ni-based alloys while maintaining the temperature of the forging die and the temperature of the forging material at approximately the same level, the superplastic forging method or the isothermal forging method is used. be.
上記技術にあっては、鍛造金型を加熱する必要があり、
このため、第5図および第6図に示した誘導加熱方式が
採用されている。In the above technology, it is necessary to heat the forging die.
For this reason, the induction heating method shown in FIGS. 5 and 6 is employed.
第5図、第6図において、上部支持金型107に断熱盤
104を介して鍛造用上金型102が設けられるととも
に、下部支持金型106に断熱盤105を介して鍛造用
下金型101が設けられ、また開側では下金型101内
には製品取出用ノックアウト棒109を介してインサー
ト金型103が設けられることによって、鍛造品110
を成形するようにしである。In FIGS. 5 and 6, an upper forging die 102 is provided to an upper support die 107 via a heat insulating disk 104, and a lower forging die 101 is provided to a lower support die 106 via a heat insulating disk 105. An insert mold 103 is provided in the lower mold 101 on the open side via a knockout rod 109 for removing the product, so that a forged product 110 can be removed.
It is like molding.
この装置において、金型加熱のための誘導加熱装置にお
ける加熱コイル111は、図示のように金型外周をめぐ
って包囲状に配置され、金型温度を鍛造素材温度と略同
程度に加熱維持しながら、その鍛造成形動作が進行する
のであり、このさい加熱コイルH1の有効加熱帯の幅と
位置とを、独立して動的に可調整とし、金型温度分布の
均一を期するのである。In this device, a heating coil 111 in an induction heating device for heating the mold is arranged in an encircling manner around the outer periphery of the mold as shown in the figure, and maintains the mold temperature at approximately the same level as the forging material temperature. The forging operation proceeds, and at this time the width and position of the effective heating zone of the heating coil H1 are independently and dynamically adjustable to ensure uniform mold temperature distribution.
(発明が解決しようとする課題)
上記した誘導加熱方式については、次の点において問題
点がある。即ち、誘導加熱方式においては、その加熱原
理の制約から、対象とする金型は軸対称形状の金型にし
か使用できない。従って例えば矩形、長尺製品鍛造のた
めの、矩形形状を呈する金型の加熱には適用不可能であ
る。(Problems to be Solved by the Invention) The above-mentioned induction heating method has the following problems. That is, in the induction heating method, due to restrictions on its heating principle, the target mold can only be used for molds having an axially symmetrical shape. Therefore, it cannot be applied to heating a rectangular mold for forging rectangular or long products, for example.
またこの加熱方式では、構造上、金型外周にのみ加熱が
集中し、その金型内部へは、金型材料の熱伝導性により
昇温する方法をとるので、熱伝導率の小さなNi基合金
等を金型材として使用する場合、内外周部の温度差が大
きくなり、熱応力の発生や、甚だしい場合には金型破損
にもつながる。In addition, with this heating method, heating is concentrated only on the outer periphery of the mold due to its structure, and the temperature inside the mold is raised by the thermal conductivity of the mold material, so Ni-based alloys with low thermal conductivity are heated. When used as a mold material, the temperature difference between the inner and outer circumferential parts becomes large, leading to the generation of thermal stress and, in extreme cases, mold breakage.
上記した欠陥を回避するために、金型を体熱する手段を
とると、所期温度、例えば900°C等の温度にまで到
達させるためには長時間の加熱が必要とされる。更にま
たこの方式では、熱の供給が常に外周部に限定されるの
で、金型温度を実質的に均一制御することは困難であり
、このような誘導加熱方式における均熱制御の困難に対
処するには、複数の加熱ゾーンを有する加熱構造の開発
が必要となる。In order to avoid the above-mentioned defects, if a method of body heating the mold is used, a long period of heating is required to reach the desired temperature, for example, 900°C. Furthermore, in this method, the supply of heat is always limited to the outer periphery, so it is difficult to control the mold temperature substantially uniformly. requires the development of heating structures with multiple heating zones.
前記した誘導加熱による金型加熱が円形金型に限定され
、かつその均一加熱制御が困難である原因は、同方式の
加熱原理に由来するものであり、かかる制約と困難とを
克服するためには、誘導加熱原理と異なる加熱原理を用
い、また複数の加熱源を用いて、個々の加熱源を独立し
て個別に、あるいはゾーン毎に温度制御可能である金型
加熱方式が必要である。The reason why mold heating by induction heating is limited to circular molds and it is difficult to control uniform heating is due to the heating principle of this method, and in order to overcome these restrictions and difficulties, This requires a mold heating method that uses a heating principle different from the induction heating principle and uses a plurality of heating sources, and the temperature of each heating source can be controlled independently or zone by zone.
そこで、本出願人は、先に、第4図に示す恒温鍛造技術
(公知技術ではない〉を提案している。Therefore, the present applicant has previously proposed a constant temperature forging technique (not a known technique) as shown in FIG.
第4図において、Ni合金製の矩形下金型2および矩形
上金型3を用い、両金型2,3を約900″Cに加熱保
持するものとして、両金型2.3の各底面部に下金型底
面用ヒータプレート8、上金型底面用ヒータプレート9
を配設するとともに、各側面にもそれぞれ下金型側面用
ヒータプレート11および上金型側面用ヒータプレート
12を配設しである。In FIG. 4, it is assumed that a rectangular lower mold 2 and a rectangular upper mold 3 made of Ni alloy are used, and both molds 2 and 3 are heated and maintained at approximately 900''C. Heater plate 8 for the bottom of the lower mold, heater plate 9 for the bottom of the upper mold.
In addition, a lower mold side surface heater plate 11 and an upper mold side surface heater plate 12 are also provided on each side surface.
この際、各ヒータプレート8,9.11.12はそれぞ
れ分離、独立したものとされ、また、底面用ヒータプレ
ート8.9においてはシース型抵抗線ヒータ10を用い
、また側面用ヒータブレー目1,12においてはパッド
型抵抗線ヒータ13を用い、何れもヒータ10,13を
プレート側に内蔵状に設けている。At this time, each heater plate 8, 9, 11, 12 is separated and independent, and the bottom heater plate 8, 9 uses a sheathed resistance wire heater 10, and the side heater plate 1, In No. 12, a pad type resistance wire heater 13 is used, and both heaters 10 and 13 are built into the plate side.
更に底面用のヒータプレート8.9においては鍛造負荷
が作用するため、そのプレート材質は900’Cの温度
下においても強度を有する部材とされ、例えばNi基合
金製の耐熱材料を用いている。Furthermore, since a forging load acts on the heater plate 8.9 for the bottom surface, the material of the plate is a member that has strength even at a temperature of 900'C, and is made of a heat-resistant material made of, for example, a Ni-based alloy.
また全体構造としては、底面用ヒータプレート8.9の
各下部には、加熱効率を高めるとともにプレス側への伝
熱を抑えるために、セラミック製等の断面盤(体)4.
5を付設し、更に全体を支承する下部支持金型6、上部
支持金型7が設けられることにより、金型全体が構成さ
れたものであり、各ヒータプレート8,9およびII、
12は各プレート毎に分離、独立したものであって、個
別あるいは複数のプレート毎のゾーン制御によって温度
調整可能とされたものである。In addition, as for the overall structure, at the bottom of each bottom heater plate 8.9, a cross-sectional plate (body) 4.
5 is attached, and a lower support mold 6 and an upper support mold 7 that support the whole are provided to constitute the entire mold, and each heater plate 8, 9 and II,
Reference numeral 12 indicates that each plate is separate and independent, and the temperature can be adjusted by zone control for each individual plate or a plurality of plates.
この第4図に示した技術では、金型2,3、延いては被
鍛造材1を均一温度に加熱できる点で、前述した従来技
術(第5.6図)の問題点を解消できる。The technique shown in FIG. 4 can solve the problems of the prior art (FIG. 5.6) in that the molds 2, 3 and, by extension, the material to be forged 1 can be heated to a uniform temperature.
しかしながら、被鍛造材lが長尺材であるときには、そ
の変形抵抗が作用して金型2,3やプレスフレームの弾
性変形に波及し、これが寸法不良となる問題点が残存し
ている。However, when the material to be forged I is a long material, the problem remains that its deformation resistance acts and affects the elastic deformation of the molds 2 and 3 and the press frame, resulting in dimensional defects.
すなわち、長尺材の鍛造では一般に金型2,3やプレス
フレームのたわみ変形により中央部が厚肉となり、これ
は、鍛造後において、機械加工により製品寸法に仕上げ
なければならず、加工の手間は勿論、歩留りの点でも問
題となる。In other words, when forging long materials, the central part generally becomes thicker due to the bending deformation of the dies 2 and 3 and the press frame, and this requires machining to achieve the product dimensions after forging, which increases the processing time. Of course, this also poses a problem in terms of yield.
また、金型2,3、ヒータプレート8,9,11,12
、断熱板4.5が面接触しているため、三者間の熱伝達
が容易となり、断熱板4,5の温度が金型2,3と同程
度まで上昇する。この断熱板4.5としてセラミックを
用いたとしても高温で耐荷重性には限界があり、破損の
おそれがあるし、これをなくすためには、極力低い温度
で使用しなければならないという制約がある。In addition, molds 2, 3, heater plates 8, 9, 11, 12
Since the heat insulating plates 4 and 5 are in surface contact with each other, heat transfer between the three is facilitated, and the temperature of the insulating plates 4 and 5 rises to the same level as that of the molds 2 and 3. Even if ceramic is used as the heat insulating plate 4.5, there is a limit to its load resistance at high temperatures and there is a risk of damage, and in order to eliminate this, there is a restriction that it must be used at as low a temperature as possible. be.
本発明は前述した問題点に鑑み案出されたもので、長尺
の被鍛造材を恒温鍛造するとき、核材の変形抵抗の作用
にてたわみ変形しようとする金型等のたわみ変形を打ち
消し、製品のネットシャープ化を可能とするとともに、
断熱板の温度上昇を抑えてその破損を防止したことを第
1の目的とする。The present invention was devised in view of the above-mentioned problems, and when a long forged material is isothermally forged, the deformation of the mold, etc., which tends to be deformed due to the deformation resistance of the core material, is canceled out. , enables the net sharpening of products, and
The first purpose is to suppress the temperature rise of the heat insulating board and prevent its damage.
更に、本発明は、前述の第1の目的を達成しつつ併せて
均一加熱を保証できるようにしたことを第2の目的とす
る。Furthermore, a second object of the present invention is to achieve the above-mentioned first object while also ensuring uniform heating.
(課題を解決するための手段)
本発明は、恒温鍛造用の上下金型2.3の上下底面に、
抵抗線加熱体10.10を内蔵する板状のヒータプレー
ト8.9が配置され、各ヒータプレート89と上下金型
支持盤6.7との間に断熱板4.5を備え、前記上下金
型2,3に装入した被鍛造物lを、前記ヒータプレート
8.9を加熱源として加熱しながら鍛造する方法におい
て、前述の第1の目的を達成するために、次の技術的手
段を講じている。(Means for Solving the Problems) The present invention provides the upper and lower bottom surfaces of the upper and lower molds 2.3 for isothermal forging.
A plate-shaped heater plate 8.9 having a built-in resistance wire heating element 10.10 is disposed, and a heat insulating plate 4.5 is provided between each heater plate 89 and the upper and lower mold support plates 6.7. In the method of forging the to-be-forged object l charged into the dies 2 and 3 while heating it using the heater plate 8.9 as a heat source, the following technical means are used to achieve the above-mentioned first objective. I am teaching.
すなわち、本発明は、少なくとも、上金型3用のヒータ
プレート9と断熱板5との間に、中央部がヒータプレー
ト9に向って突隆されて厚肉部16Aとされかつ金型と
同種材料よりなる中間板16を挿入して鍛造することを
第1の特徴とする。That is, the present invention provides at least a thick wall portion 16A with a central portion protruding toward the heater plate 9 between the heater plate 9 and the heat insulating plate 5 for the upper mold 3, and which is of the same type as the mold. The first feature is that the intermediate plate 16 made of material is inserted and forged.
更に、本発明は、少なくとも、上金型3用のヒータプレ
ート9と断熱板5との間に、金型と同種材料よりなる中
間板16が挿入され、該中間板16はこの中央部がヒー
タプレート9に向って突隆されている厚肉部16Aを有
することを第2の特徴とする。Further, in the present invention, an intermediate plate 16 made of the same material as the mold is inserted between at least the heater plate 9 for the upper mold 3 and the heat insulating plate 5, and the intermediate plate 16 has a central portion that is heated by the heater. The second feature is that the thick portion 16A is protruded toward the plate 9.
更に、本発明は前述した第2の目的を達成するために、
上下金型2,3が矩形等の非軸対称形状とされ、該金型
2,3の各側面にも板状のヒータプレート11.12が
配置され、上下底面および各側面のヒータプレート8.
9,11.12をそれぞれ独立し、た加熱源としかつそ
の加熱温度を、個別あるいはゾーン毎に制御して鍛造す
ることを第3の特徴とする。Furthermore, in order to achieve the second object mentioned above, the present invention has the following features:
The upper and lower molds 2 and 3 have a non-axisymmetric shape such as a rectangle, and plate-shaped heater plates 11 and 12 are also arranged on each side of the molds 2 and 3, and heater plates 8 and 12 are arranged on the upper and lower bottom surfaces and on each side.
The third feature is that 9, 11, and 12 are each used as an independent heating source, and the heating temperature is controlled individually or zone by zone for forging.
(実施例と作用)
以下、本発明の実施例と作用を説明するが、恒温鍛造金
型装置としての基本構成は、第4図を参照して説明した
ものと基本的に同じであり、従って、共通部分は共通符
号で示し、以下、改良部分を主に説明する。(Embodiments and operations) Examples and operations of the present invention will be described below, but the basic configuration as a constant temperature forging die device is basically the same as that explained with reference to FIG. , common parts are indicated by common symbols, and improved parts will be mainly explained below.
第1図で示す如く、下部のヒータプレート8と断熱板4
との間には、金型2,3と同種材料、すなわち、Ni合
金製の中間板14が挿入されており、この中間板14に
はヒータプレート8に向って中央部が突隆する厚肉部1
4Aを有し、ここに、厚肉部14^の外側に、空気11
15が形威しである。As shown in FIG. 1, the lower heater plate 8 and the heat insulating plate 4
An intermediate plate 14 made of the same material as the molds 2 and 3, that is, a Ni alloy, is inserted between the metal molds 2 and 3, and this intermediate plate 14 has a thick wall with a protruding central portion toward the heater plate 8. Part 1
4A, where air 11 is placed on the outside of the thick part 14^.
15 is a formality.
更に、上部のヒータプレート9と断熱板5との間には、
Ni合金製の中間板16が挿入されており、この中間板
16にはヒータプレート9に向って中央部が突隆する厚
肉部16Aを有し、ここに、厚肉部16Aの外側に、空
気層17が形成しである。Furthermore, between the upper heater plate 9 and the heat insulating plate 5,
An intermediate plate 16 made of Ni alloy is inserted, and the intermediate plate 16 has a thick wall portion 16A whose central portion protrudes toward the heater plate 9. On the outside of the thick wall portion 16A, An air layer 17 is formed.
なお、被鍛造材1は翼表約500−をもつTi合金(T
i−10V −2Fe −3AZ)製ブレードのような
長尺材であり、金型2.3は幅350nw*、長さ80
0mm、厚さ240nnaのNi合金製とされている。The forged material 1 is a Ti alloy (T
It is a long material like a blade made of i-10V-2Fe-3AZ), and the mold 2.3 has a width of 350nw* and a length of 80nm.
It is made of Ni alloy with a thickness of 0 mm and a thickness of 240 nna.
第2図を参照すると、鍛造荷重1000屯で前述した被
鍛造材1を、前述した金型2,3によって鍛造したとき
の鍛造中心からの長手方向の距離と中心部と端部との肉
厚差を有限要素法による弾性解析したもので、図示の曲
線Aとなった。Referring to FIG. 2, the distance in the longitudinal direction from the forging center and the wall thickness at the center and end portions when the forged material 1 described above is forged using the aforementioned dies 2 and 3 with a forging load of 1000 tons. The difference was elastically analyzed using the finite element method, resulting in curve A shown in the figure.
この曲線Aはとりもなおさず、突隆すなわち厚肉部14
A、16^の形状を決定するもので、これに基づいて製
作した第3図に中間板14.16を例示している。This curve A is, in other words, a protrusion, that is, a thick portion 14.
This determines the shape of A, 16^, and the intermediate plate 14.16 is illustrated in FIG. 3, which was manufactured based on this.
これによれば、ブレード(被鍛造材1)の翼長よりも外
側では鍛造中も空気層15.17を保持し、ヒータプレ
ート8,9および金型2,3への曲げモーメントを軽減
するとともに、ヒータプレート8.9から断熱板4.5
までの熱量の移動を極力低減することが明らかとなった
。According to this, an air layer 15,17 is maintained outside the blade length of the blade (material 1 to be forged) even during forging, reducing the bending moment to the heater plates 8, 9 and the molds 2, 3. , heater plate 8.9 to insulation plate 4.5
It has become clear that the transfer of heat amount can be reduced as much as possible.
具体例には第4図の技術では、中央部の鍛造材肉厚が両
端より0.2mm厚くなったのに対し、本発明の実施例
では0.2+maが0.02mm以下となり、ネットシ
ャープとして十分な精度のものが鍛造でき、歩留りも向
上した。For example, in the technique shown in Fig. 4, the thickness of the forged material at the center is 0.2 mm thicker than at both ends, whereas in the embodiment of the present invention, 0.2+ma is 0.02 mm or less, and the net sharpness is It was possible to forge products with sufficient precision, and yields improved.
なお、ヒータプレート8.9.11.12による温度調
整に当っては、図示省略しであるが、金型内部の各点の
温度をモニターしながら、その個別、ゾーン毎の制御を
行い、例えば1000トン程度の鍛造負荷中においても
、900’Cの均一温度を維持しながら、目的ブレード
の恒温鍛造を支障なく完了させることができたものであ
る。Although not shown in the figure, the temperature adjustment by the heater plate 8.9.11.12 is performed by monitoring the temperature at each point inside the mold and controlling it individually and zone by zone, for example. Even under a forging load of about 1000 tons, the isothermal forging of the target blade could be completed without any problems while maintaining a uniform temperature of 900'C.
また、側面用ヒータプレート11.12に用いるヒータ
として、パッド型抵抗線ヒータ13の代わりに、シース
型抵抗線ヒータを用いることもできる。Moreover, a sheath type resistance wire heater can also be used instead of the pad type resistance wire heater 13 as a heater used for the side heater plate 11.12.
また、中間板14.16は上下に設けることが望ましい
が、上金型あるいは下金型のみに設けることもできる。Furthermore, although it is desirable to provide the intermediate plates 14 and 16 on the upper and lower sides, they may also be provided only on the upper mold or the lower mold.
(発明の効果)
本発明は以上の通りであり、本発明の第1.2の特徴に
よれば、中央部が肉厚の中間板を用いているので、金型
等のたわみ変形を打消し、長尺難加工材であっても、ネ
ットシャープ化が可能となり、歩留りも向上する。(Effects of the Invention) The present invention is as described above, and according to the 1.2 feature of the present invention, since the intermediate plate with a thick center portion is used, the bending deformation of the mold etc. is canceled out. Even with long materials that are difficult to process, net sharpening is possible and yields are improved.
また、ヒータプレートと断熱板との間に、厚内部を中央
に有する中間板を挿入することは、ヒータプレートと断
熱板間に空気層が形成されることを意味し、これにより
、断熱板の温度上昇が抑えられ、破を員のおそれがない
。In addition, inserting an intermediate plate with a thick interior in the center between the heater plate and the heat insulating board means that an air layer is formed between the heater plate and the heat insulating board. Temperature rise is suppressed and there is no risk of damage.
更に、本発明の第3の特徴によれば、前述の利点に加え
て、金型、延いては被鍛造材を均等加熱することができ
、非軸対称形状の金型であってもその内外部の均一な温
度分布を保証する。Furthermore, according to the third feature of the present invention, in addition to the above-mentioned advantages, it is possible to uniformly heat the mold and, by extension, the material to be forged, even if the mold has a non-axisymmetric shape. Guarantees uniform temperature distribution outside.
第1図は本発明に係る実施例の立面断面図、第2図は中
間板の形状設定のためのグラフ、第3図は中間板の斜視
図、第4図は提案技術(比較例)の立面断面図、第5図
は従来例の立面断面図、第6図は同じく平面断面図であ
る。
2・・・下金型、3・・・上金型、4.5・・・断熱板
(盤)、8.9.11.12・・・ヒータプレート、1
4.16・・・中間板、14A、16A・・・厚肉部。Fig. 1 is an elevational sectional view of an embodiment according to the present invention, Fig. 2 is a graph for setting the shape of the intermediate plate, Fig. 3 is a perspective view of the intermediate plate, and Fig. 4 is the proposed technology (comparative example). FIG. 5 is an elevational sectional view of the conventional example, and FIG. 6 is a plan sectional view of the conventional example. 2...Lower mold, 3...Upper mold, 4.5...Insulation board (board), 8.9.11.12...Heater plate, 1
4.16... Intermediate plate, 14A, 16A... Thick wall part.
Claims (3)
、抵抗線加熱体(10)(10)を内蔵する板状のヒー
タプレート(8)(9)が配置され、各ヒータプレート
(8)(9)と上下金型支持盤(6)(7)との間に断
熱板(4)(5)を備え、前記上下金型(2)(3)に
装入した被鍛造物(1)を、前記ヒータプレート(8)
(9)を加熱源として加熱しながら鍛造する方法におい
て、 少なくとも、上金型(3)用のヒータプレート(9)と
断熱板(5)との間に、中央部がヒータプレート(9)
に向って突隆されて厚肉部(16A)とされかつ金型と
同種材料よりなる中間板(16)を挿入して鍛造するこ
とを特徴とする恒温鍛造方法。(1) Plate-shaped heater plates (8) (9) containing resistance wire heating elements (10) (10) are arranged on the upper and lower bottom surfaces of the upper and lower molds (2) and (3) for isothermal forging, and each Heat insulating plates (4) (5) are provided between the heater plates (8) (9) and the upper and lower mold support plates (6) (7), and the materials charged into the upper and lower molds (2) (3) are The forged product (1) is attached to the heater plate (8).
In the method of forging while heating (9) as a heat source, at least the central part is located between the heater plate (9) for the upper mold (3) and the heat insulating plate (5).
A constant temperature forging method characterized by inserting and forging an intermediate plate (16) which is made of the same material as the mold and has a thick wall portion (16A) that is protruded toward the mold.
、抵抗線加熱体(10)(10)を内蔵する板状のヒー
タプレート(8)(9)が配置され、各ヒータプレート
(8)(9)と上下金型支持盤(6)(7)との間に断
熱板(4)(5)を備えた恒温鍛造装置において、少な
くとも、上金型(3)用のヒータプレート(9)と断熱
板(5)との間に、金型と同種材料よりなる中間板(1
6)が挿入され、該中間板(16)はこの中央部がヒー
タプレート(9)に向って突隆されている厚肉部(16
A)を有することを特徴とする恒温鍛造装置。(2) Plate-shaped heater plates (8) (9) containing resistance wire heating elements (10) (10) are arranged on the upper and lower bottom surfaces of the upper and lower molds (2) and (3) for isothermal forging, and each In a constant temperature forging device equipped with heat insulating plates (4) (5) between heater plates (8) (9) and upper and lower mold support plates (6) (7), at least An intermediate plate (1) made of the same material as the mold is placed between the heater plate (9) and the heat insulating plate (5).
6) is inserted, and the intermediate plate (16) has a thick portion (16) whose central portion is protruded toward the heater plate (9).
A) A constant temperature forging device characterized by having the following.
され、該金型(2)(3)の各側面にも板状のヒータプ
レート(11)(12)が配置され、上下底面および各
側面のヒータプレート(8)(9)(11)(12)を
それぞれ独立した加熱源としかつその加熱温度を、個別
あるいはゾーン毎に制御して鍛造することを特徴とする
請求項(1)記載の恒温鍛造方法。(3) The upper and lower molds (2) and (3) have non-axisymmetric shapes such as rectangles, and plate-shaped heater plates (11 and 12) are arranged on each side of the molds (2 and 3). The forging is characterized in that the heater plates (8), (9), (11), and (12) on the upper and lower bottom surfaces and each side surface are used as independent heating sources, and the heating temperature is controlled individually or zone by zone. The constant temperature forging method according to claim (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1212119A JPH069723B2 (en) | 1989-08-19 | 1989-08-19 | Constant temperature forging method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1212119A JPH069723B2 (en) | 1989-08-19 | 1989-08-19 | Constant temperature forging method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0377736A true JPH0377736A (en) | 1991-04-03 |
JPH069723B2 JPH069723B2 (en) | 1994-02-09 |
Family
ID=16617196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1212119A Expired - Lifetime JPH069723B2 (en) | 1989-08-19 | 1989-08-19 | Constant temperature forging method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH069723B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100389784B1 (en) * | 1999-09-13 | 2003-07-02 | 가부시키가이샤 고이토 세이사꾸쇼 | Vehicle lamp |
JP2006192502A (en) * | 2005-01-14 | 2006-07-27 | Snecma | Hot-die type forging press and thermal-insulating means in press |
WO2013151063A1 (en) * | 2012-04-05 | 2013-10-10 | 株式会社神戸製鋼所 | Method for heating forging die device |
JP2013212533A (en) * | 2012-04-04 | 2013-10-17 | Kobe Steel Ltd | Forging mold device and die attachment and detachment method |
CN108714677A (en) * | 2018-05-31 | 2018-10-30 | 安徽扬子职业技术学院 | A kind of multi-process Forge Heating device of aluminium alloy wheel hub of vehicle |
-
1989
- 1989-08-19 JP JP1212119A patent/JPH069723B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100389784B1 (en) * | 1999-09-13 | 2003-07-02 | 가부시키가이샤 고이토 세이사꾸쇼 | Vehicle lamp |
JP2006192502A (en) * | 2005-01-14 | 2006-07-27 | Snecma | Hot-die type forging press and thermal-insulating means in press |
JP2013212533A (en) * | 2012-04-04 | 2013-10-17 | Kobe Steel Ltd | Forging mold device and die attachment and detachment method |
WO2013151063A1 (en) * | 2012-04-05 | 2013-10-10 | 株式会社神戸製鋼所 | Method for heating forging die device |
JP2013215746A (en) * | 2012-04-05 | 2013-10-24 | Kobe Steel Ltd | Method for heating forging die device |
US9623476B2 (en) | 2012-04-05 | 2017-04-18 | Kobe Steel, Ltd. | Method for heating forging die device |
CN108714677A (en) * | 2018-05-31 | 2018-10-30 | 安徽扬子职业技术学院 | A kind of multi-process Forge Heating device of aluminium alloy wheel hub of vehicle |
CN108714677B (en) * | 2018-05-31 | 2020-01-10 | 安徽扬子职业技术学院 | Multi-process forging heating device for automobile aluminum alloy wheel hub |
Also Published As
Publication number | Publication date |
---|---|
JPH069723B2 (en) | 1994-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9610630B2 (en) | Closed-die forging method and method of manufacturing forged article | |
JP5869944B2 (en) | Heating method of forging die equipment | |
CN110252899B (en) | Rapid heating cold die hot plate forming method for titanium alloy thin-wall component | |
US4819709A (en) | Heat shield for a casting furnace | |
JPH0377736A (en) | Method and apparatus for isothermal forging | |
JP6528938B2 (en) | Forging apparatus and method of manufacturing forged product | |
JPS6218254B2 (en) | ||
JP5902978B2 (en) | Forging die equipment | |
KR20160109489A (en) | Warm press mold device, and forming method using the same | |
WO2003076096A1 (en) | Heating apparatus for formable metals | |
JPH0377741A (en) | Heating device for forging die | |
US4308080A (en) | Method of shaping coils | |
KR102013926B1 (en) | Electroplastic forming method | |
JPH08187168A (en) | Manufacture of electromagnetic cooking pot | |
JPH0457416B2 (en) | ||
KR20140102107A (en) | Mold device for molding Mg plate | |
US4235278A (en) | Ring for a casting machine wheel | |
US4767493A (en) | Method for heat-treating metal | |
KR970002014B1 (en) | Electromagnetic induction heating cooking device | |
JP4578724B2 (en) | Mold heating apparatus and mold heating method | |
JP2707351B2 (en) | Carbon crucible for silicon single crystal production | |
JP3757324B2 (en) | Molding equipment for forging | |
JPH07100612A (en) | Heating device for half melting working | |
KR100764551B1 (en) | A cookpot and a manufacturing method thereof | |
KR100834413B1 (en) | A cookpot and a manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |