JPH0377708A - On line processing method for roll surface of cross helical rolling mill - Google Patents

On line processing method for roll surface of cross helical rolling mill

Info

Publication number
JPH0377708A
JPH0377708A JP21304989A JP21304989A JPH0377708A JP H0377708 A JPH0377708 A JP H0377708A JP 21304989 A JP21304989 A JP 21304989A JP 21304989 A JP21304989 A JP 21304989A JP H0377708 A JPH0377708 A JP H0377708A
Authority
JP
Japan
Prior art keywords
roll
depth
knurling
rolling mill
roll surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21304989A
Other languages
Japanese (ja)
Inventor
Ryosuke Mochizuki
亮輔 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21304989A priority Critical patent/JPH0377708A/en
Publication of JPH0377708A publication Critical patent/JPH0377708A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/005Rolls with a roughened or textured surface; Methods for making same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/20Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a non-continuous process,(e.g. skew rolling, i.e. planetary cross rolling)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

PURPOSE:To properly hold a roll gripping force by executing a knurling so as to make the roll surface in the depth shown by an expression while under the size changing of a rolled stock in the state of roll being assembled to a housing. CONSTITUTION:A roll facing device 6 is fitted to the upper part of a cross helical rolling mill. An air cylinder 11 is moved up and down by air pressure, a jig 13 is operated and punching is executed on the roll 1. The cylinder 11 is movable by the rotation of a screw 8 and can be moved to the specific position of the roll 1. The depth (h) in punching is worked in the depth as shown by an expression and the depth is adjusted by a feeding air pressure. In the expression NB: number of billet rollings, DB: billet diameter, a, b: coefficient found experimentally. Since the knurling in an optimum depth is executed on the roll 1 on each size changing, the gripping force can be held properly at all times and the productivity can be improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、マンネスマン法を用いて継目無鋼管を圧延す
る傾斜圧延機のロール表面をオンラインで加工する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for online processing of the roll surface of an inclined rolling mill for rolling seamless steel pipes using the Mannesmann method.

〈従来の技術〉 従来、マンネスマン・プラグミル方式やマンドレルミル
方式などのマンネスマン法によって継目M#jJ管を圧
延する場合、素材である丸ビレットは通常傾斜配置され
る一対のロールと一対のガイドシュー、さらに1個の穿
孔プラグで構成されるピアサと称する傾斜圧延機によっ
て穿孔される。
<Prior art> Conventionally, when rolling a seam M#j J pipe by Mannesmann method such as Mannesmann plug mill method or mandrel mill method, the raw material round billet is usually rolled by a pair of inclined rolls, a pair of guide shoes, Further, the holes are perforated by an inclined rolling mill called a piercer, which is composed of one perforation plug.

このtIJI斜圧延機に用いられるロールの表面には、
丸ビレットの穿孔時にスリップして噛み込み不良や灰抜
は不良を防止すべくロールグリップ力を確保するために
、ロールの製作時点で予めナーリングが施されているの
が一般的である(例えば第3版鉄鋼便覧111(2) 
 P、935参照)。
On the surface of the roll used in this tIJI inclined rolling mill,
In order to ensure the roll grip force to prevent slipping during drilling of round billets and poor biting and poor ash removal, knurling is generally applied in advance at the time of roll manufacture (for example, 3rd Edition Steel Handbook 111(2)
(See p. 935).

このナーリングは、第4図(a)、 (b)に示すよう
に、ゴージ部Gに対して入口側2の所定の幅l2、ある
いは入口側2の幅1tと出口側3の幅l、にかけて、所
定の径d(m)で所定の深さh(m)のナーリング4が
所定のIn隔て平タガネあるいは丸ポンチによって人手
でポンチされる。
As shown in FIGS. 4(a) and 4(b), this knurling is applied to the gorge G by a predetermined width l2 on the entrance side 2, or between a width 1t on the entrance side 2 and a width l on the exit side 3. , a knurling 4 having a predetermined diameter d (m) and a predetermined depth h (m) is manually punched using a predetermined In gap chisel or round punch.

このナーリング4の深さhは深いほどロールグリップ力
が大きくなってスリップ防止の効果が大きいが、あまり
深ずぎるとプリントきずなとを発生しやすいので注意を
要し、例えば0.25〜0.45mの範囲で全面に同じ
深さになるようにポンチがなされる。
The deeper the depth h of this knurling 4, the greater the roll grip force and the greater the slip prevention effect. However, if it is too deep, it is likely to cause print flaws, so care must be taken, for example, 0.25 to 0.45 m. Punches are made to the same depth on the entire surface.

〈発明が解決しようとする課題〉 しかしながら、上記のようなナーリングによるロール表
面加工は、圧延本数が増加するに従いロール表面の摩耗
が進むと、当然のことながら、その深さhが浅くなって
F!!擦係数が低下して、ロールグリップ力が低下する
という問題がある。
<Problems to be Solved by the Invention> However, in the roll surface processing by knurling as described above, as the number of rolling rolls increases and the wear of the roll surface progresses, the depth h naturally becomes shallower and F ! ! There is a problem in that the coefficient of friction decreases and the roll grip force decreases.

第5図は、ロール表面と圧延材との間の摩擦係数が圧延
本数によってffi移する状況の一例を示したものであ
る。
FIG. 5 shows an example of a situation in which the coefficient of friction between the roll surface and the rolled material varies depending on the number of rolled materials.

図において、lIh線Aはロール表面のナーリング加工
によるPJFJ係数の変化を示したもので、圧延本数が
増加するにつれて摩擦係数は減少傾向にあり、一方、r
lIl線Bはロール表面の肌荒れに起因する摩擦係数の
変化を示したもので、圧延本数が増加するにつれて摩擦
係数は増加仰向にあることがわかる。したがって、ロー
ル表面と圧延材との間のトータルのP7!擦係数は、曲
線Cに示すような略U字状を溝いて推移して、一定の値
を保持することができない。
In the figure, the lIh line A shows the change in the PJFJ coefficient due to the knurling process on the roll surface, and as the number of rolls increases, the friction coefficient tends to decrease, while the r
The line B shows the change in the friction coefficient due to roughness on the roll surface, and it can be seen that the friction coefficient increases as the number of rolled rolls increases. Therefore, the total P7 between the roll surface and the rolled material! The friction coefficient changes in a substantially U-shape as shown by curve C, and cannot maintain a constant value.

それ故、トータルの摩擦係数を常に所定値以上に保持す
るためには、摩擦係数がある値以下になったときにロー
ル表面のナーリングを施す必要があるが、その都度ハウ
ジングからロールを外して人手でポンチしていたのでは
時間が掛かり、生産性を低下することになるから問題で
ある。
Therefore, in order to always maintain the total friction coefficient above a predetermined value, it is necessary to knurling the roll surface when the friction coefficient drops below a certain value, but each time the roll is removed from the housing and knurling is performed manually. This is a problem because it takes time and reduces productivity.

特に、例えば高合金鋼などの難加工性材料等を圧延する
場合は、大きなロールグリップ力を必要とされるから、
その圧延チャンスに対して規制を受けることになる。
In particular, when rolling difficult-to-work materials such as high alloy steel, a large roll grip force is required.
The rolling opportunities will be regulated.

本発明は、上記のような!!Iaを解決した傾斜圧延機
ロール表面のオンライン加工方法を提供することを目的
とする。
The present invention is as described above! ! The purpose of the present invention is to provide an online processing method for the surface of an inclined rolling mill roll that solves Ia.

<!!INを解決するための手段〉 本発明は、継目無鋼管を圧延する傾斜圧延機に用いられ
るロールの表面をハl〉ジングに組み込んだ状態で、圧
延材のサイズ替えの間に、下記式%式% ここで、N、;丸ビレツト圧延本数。
<! ! Means for Solving IN〉 According to the present invention, when the surface of a roll used in an inclined rolling mill for rolling seamless steel pipes is incorporated into a housing, the following formula % is applied during size change of a rolled material. Formula % Here, N: Number of round billets rolled.

D、;丸ビレツト径(−一)。D,; Round billet diameter (-1).

a、b;経験的に求められる係数 で求められる深さh(m)になるように加工することに
より、上記目的を達成しようとするものである。
a, b: The above objective is achieved by processing the material to a depth h (m) determined by a coefficient determined empirically.

〈作 用〉 本発明者は、ロールグリップ力を常に所定の値に維持す
るために鋭意検討した結果、ロール表面のナーリング加
工による摩擦係数(前出第5図の+th II A )
の値を圧延中に所定の範囲に保持するために必要なナー
リングの深さを数式化して、そのナーリングの深さを確
保するためにオンラインで短時間にロール表面をポンチ
する手段を設けるようにしたものである。
<Function> As a result of intensive studies to maintain the roll grip force at a predetermined value, the present inventor found that the friction coefficient (+th II A in Figure 5 above) due to the knurling process on the roll surface.
The knurling depth required to keep the value within a predetermined range during rolling is expressed mathematically, and a means is provided to punch the roll surface in a short time online to ensure that knurling depth. This is what I did.

すなわち、例えばマンドレル壽ルに使用されるピアサロ
ールについて、圧延材のサイズ替えとミルのロール替え
毎にそのナーリングの深さを調査したところ、その深さ
h(閣)は穿孔圧延される丸ビレットの径Da  (m
φ)とその圧延本数Nや(本)に依存して変化し、それ
らの関係は下記(1)式で表せる。
In other words, for example, when we investigated the depth of knurling for a piercer roll used for mandrel rolls each time the size of the rolled material was changed and the rolls of the mill were changed, we found that the depth h (knurling) was the same as that of the round billet being pierced and rolled. Diameter Da (m
φ) and its rolling number N and (rolls), and the relationship between them can be expressed by the following equation (1).

h = (a−b −N* )  −DI−−−・−(
11ここで、a、bは経験的に求められる無次元の係数
であり、例えばaは2X10−’〜5X10−”であり
、bはlXl0−−〜5X10−’である。
h = (a-b −N*) −DI−−・−(
11 Here, a and b are dimensionless coefficients determined empirically; for example, a is 2X10-' to 5X10-'', and b is lX10- to 5X10-'.

そこで、次の圧延チャンスで径がり、■φの丸ビレット
をN。本圧延す、るのに必要とされるナーリングの深さ
hを上記(1)式で予め求めるようにして、その深さh
を次の圧延チャンスの前に圧延材のサイズ替えの時間を
利用してポンチすることにより、確保することができる
Therefore, at the next rolling opportunity, the diameter was reduced and the ■φ round billet was rolled. The depth h of the knurling required for the main rolling is calculated in advance using the above formula (1), and the depth h
This can be ensured by punching the rolled material using the time available for resizing it before the next rolling opportunity.

第3図は、圧延材のサイズ替え毎に、ロール表面に上記
(+)式を用いて求めた必要な深さhのナーリングを加
工した場合の圧延中におけ名摩擦係数すなわちロールグ
リップ力の推移を示したものである。
Figure 3 shows the nominal friction coefficient, or roll grip force, during rolling when a knurling of the necessary depth h determined using the above (+) formula is formed on the roll surface each time the size of the rolled material is changed. This shows the progress.

この図かられかるように、従来は圧延本数の増加ととも
に減少していたロール表面加工による摩擦係数(第5図
のIIII線八に相へ)は、曲線A′に示すようにナー
リングを施す毎に回復させて高めることができるので、
圧延本数の増加とともに増加する[Ib線Bの肌荒れに
よる摩擦係数とを合わせたトータル摩擦係数(曲線C′
で示す)を必要最小の摩擦係数りよりも常に高く保持す
ることが可能である。
As can be seen from this figure, the friction coefficient due to roll surface treatment (toward line III in Figure 5), which conventionally decreased as the number of rolled rolls increased, decreased with each knurling process as shown by curve A'. Because it can be restored and increased,
The total friction coefficient including the friction coefficient due to surface roughness of Ib line B (curve C'
It is possible to always maintain the coefficient of friction (denoted by ) higher than the minimum required coefficient of friction.

このようにして、圧延材のサイズ替え時間の都度、II
J1斜圧延機の停止中にロールの表面を加工することに
より、ロールグリップ力を常に適正な範囲に保つことが
可能である。
In this way, each time the size of the rolled material is changed,
By processing the surface of the roll while the J1 skew rolling mill is stopped, it is possible to always maintain the roll grip force within an appropriate range.

〈実施例〉 以下に、本発明の実施例について、図面を参照して詳し
く説明する。
<Examples> Examples of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明に係る実施例を示す正面図であり、第
2図は、ロール表面加工装置を模式的に示す側面図であ
る。
FIG. 1 is a front view showing an embodiment of the present invention, and FIG. 2 is a side view schematically showing a roll surface processing apparatus.

図に示すように、一対のロール1と一対のガイドシュー
5からなる傾斜圧延機のロールlの上方に、ロール表面
加工装置6がそれぞれ取付けられる。
As shown in the figure, a roll surface processing device 6 is installed above each roll 1 of an inclined rolling mill consisting of a pair of rolls 1 and a pair of guide shoes 5.

このロール表面加工装置6は、第2図に詳しく示すよう
に、一対の軸受7と、この軸受7で軸支されるスクリュ
ー軸8と、このスクリュー軸8に結合して回転自在とす
るモータ9と、スクリュー軸8に螺合されて軸方向すな
わちロール1の長さ方向に移動自在とされる架台10と
、この架台10に固設されるシリンダ11と、シリンダ
11のロッド12の先端部に装着される例えば丸ポンチ
などのナーリング治具I3とから構成される。
As shown in detail in FIG. 2, this roll surface processing device 6 includes a pair of bearings 7, a screw shaft 8 supported by the bearings 7, and a motor 9 coupled to the screw shaft 8 so as to be freely rotatable. , a pedestal 10 screwed onto the screw shaft 8 and movable in the axial direction, that is, the length direction of the roll 1; a cylinder 11 fixed to the pedestal 10; It is comprised of a knurling jig I3, such as a round punch, which is attached.

そして、空気圧制御装置14から管15を介して(Jj
給される空気圧によってシリンダitが上下に駆動され
ることにより、治具13が動作して、ロールlの所定の
位置に所定の深さでポンチ加工を施す。
Then, from the air pressure control device 14 via the pipe 15 (Jj
By driving the cylinder it up and down by the supplied air pressure, the jig 13 operates and punches the roll l at a predetermined position to a predetermined depth.

なお、空気圧制御n装置f14の空気圧を数段階に調整
可能とすることにより、ロールlヘポンチする深さhを
11節することができる。
In addition, by making it possible to adjust the air pressure of the air pressure control device f14 in several stages, the depth h at which the roll l is punched can be adjusted to 11 sections.

このように構成されたロール表面加工装R4を用いて、
圧延材のサイズ替え毎にその都度前出(1)式によって
求められる次の圧延チャンスで必要とされるナーリング
の深さhをポンチすることにより、ロールグリップ力を
適正な範囲に保持することができる。
Using the roll surface processing equipment R4 configured in this way,
The roll grip force can be maintained within an appropriate range by punching the knurling depth h required for the next rolling chance, which is determined by equation (1) above, each time the size of the rolled material is changed. can.

〈発明の効果〉 以上説明したように、本発明によれば、サイズ替え毎に
ロールに適切な深さのナーリングを施すことができるか
ら、常にロールグリップ力を適正な範囲に保持すること
ができ、従来困難とされていた難加工性材料の圧延チャ
ンスを拡大することが可能となるので、生産性の向上に
大いに寄与する。
<Effects of the Invention> As explained above, according to the present invention, the roll can be knurled to an appropriate depth each time the roll is changed in size, so the roll grip force can always be maintained within an appropriate range. , it becomes possible to expand the chances of rolling difficult-to-process materials, which have been considered difficult in the past, and thus greatly contributes to improving productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る実施例を示す正面図、第2図は
、ロール表面加工装置を模式的に示す側面図、第3図は
、本発明の詳細な説明図、第4図(a)、山)は、傾斜
圧延機のロールの側面図、第5図は、摩擦係数の推移を
示す説明図である。 表面加工装置、  8・・・スクリュー軸、  11・
・・シリンダ、  13・・・ナーリング治具、14・
・・空気圧制御装置。
FIG. 1 is a front view showing an embodiment of the present invention, FIG. 2 is a side view schematically showing a roll surface processing apparatus, FIG. 3 is a detailed explanatory diagram of the present invention, and FIG. a), crest) is a side view of the roll of the inclined rolling mill, and FIG. 5 is an explanatory diagram showing the transition of the friction coefficient. Surface processing device, 8... Screw shaft, 11.
...Cylinder, 13...Knurling jig, 14.
...Pneumatic control device.

Claims (1)

【特許請求の範囲】  継目無鋼管を圧延する傾斜圧延機に用いられるロール
の表面をハウジングに組み込んだ状態で、圧延材のサイ
ズ替えの間に、下記式で求められる深さh(mm)にな
るように、加工することを特徴とする傾斜圧延機ロール
表面のオンライン加工方法。 h=(a−b・N_R)・D_W ここで、N_R;ビレット圧延本数、 D_W;ビレット径(mmφ)、 a、b;経験的に求められる係数。
[Claims] When the surface of a roll used in an inclined rolling mill for rolling seamless steel pipes is assembled into a housing, the depth h (mm) determined by the following formula is An online processing method for the surface of an inclined rolling mill roll. h=(a-b・N_R)・D_W Here, N_R: Number of rolled billets, D_W: Billet diameter (mmφ), a, b: Coefficients determined empirically.
JP21304989A 1989-08-21 1989-08-21 On line processing method for roll surface of cross helical rolling mill Pending JPH0377708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21304989A JPH0377708A (en) 1989-08-21 1989-08-21 On line processing method for roll surface of cross helical rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21304989A JPH0377708A (en) 1989-08-21 1989-08-21 On line processing method for roll surface of cross helical rolling mill

Publications (1)

Publication Number Publication Date
JPH0377708A true JPH0377708A (en) 1991-04-03

Family

ID=16632679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21304989A Pending JPH0377708A (en) 1989-08-21 1989-08-21 On line processing method for roll surface of cross helical rolling mill

Country Status (1)

Country Link
JP (1) JPH0377708A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028770A (en) * 2007-07-30 2009-02-12 Jfe Steel Kk Caliber roll for rolling steel sheet with longitudinal rib, and method for rolling steel sheet with longitudinal rib
US7866378B2 (en) 2004-11-09 2011-01-11 Denso Corporation Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same
CN109772890A (en) * 2019-02-28 2019-05-21 西北工业大学 A kind of Ultra-fine Grained milling method of large scale high temperature alloy bar
CN109909295A (en) * 2019-02-28 2019-06-21 西安建筑科技大学 A kind of Ultra-fine Grained milling method of large-sized aluminium alloy bar

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866378B2 (en) 2004-11-09 2011-01-11 Denso Corporation Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same
US9669499B2 (en) 2004-11-09 2017-06-06 Denso Corporation Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same
JP2009028770A (en) * 2007-07-30 2009-02-12 Jfe Steel Kk Caliber roll for rolling steel sheet with longitudinal rib, and method for rolling steel sheet with longitudinal rib
CN109772890A (en) * 2019-02-28 2019-05-21 西北工业大学 A kind of Ultra-fine Grained milling method of large scale high temperature alloy bar
CN109909295A (en) * 2019-02-28 2019-06-21 西安建筑科技大学 A kind of Ultra-fine Grained milling method of large-sized aluminium alloy bar
CN109772890B (en) * 2019-02-28 2020-01-31 西北工业大学 Superfine crystal rolling method for large-size high-temperature alloy bars

Similar Documents

Publication Publication Date Title
JPH06179003A (en) Method and device for stretch reducing metallic tube by mandrel mill
US20090301155A1 (en) Method of manufacturing seamless pipes
JPH0377708A (en) On line processing method for roll surface of cross helical rolling mill
EP1407836A1 (en) Structural body and method for cold rolling
JP3823762B2 (en) Seamless metal pipe manufacturing method
JP3425718B2 (en) Seamless pipe manufacturing method
JP2996077B2 (en) Piercing method of seamless metallic tube
JPWO2009119245A1 (en) Manufacturing method for seamless pipes for automobile parts
JP3503552B2 (en) Seamless pipe manufacturing method
US4307595A (en) Method of rolling a metal workpiece
JP3503559B2 (en) Manufacturing method of seamless pipe
JPH01181905A (en) Manufacture of seamless tube
JP3082414B2 (en) Tube rolling method
JP6950858B1 (en) Inclined rolling equipment, seamless pipe manufacturing method and seamless steel pipe manufacturing method
JP2697144B2 (en) Rolling method of seamless pipe
JP2696718B2 (en) Tilt rolling method for seamless pipe
JPH03169413A (en) Method and device for rolling seamless steel tube by skew rolling mill
JP3820896B2 (en) Seamless pipe inclined rolling mill and rolling method thereof
JP2001038407A (en) Piercing rolling method of seamless metallic pipe
JP2000190006A (en) Billet drilling method
JPH0377004B2 (en)
JP2016185553A (en) Manufacturing method of seamless steel pipe excellent in inner surface quality
JPH07164020A (en) Production of seamless steel pipe
JPH05185116A (en) Production of billet for seamless metallic tube and seamless metallic tube
JP2000140911A (en) Method for piercing round billet