JPH037767A - Nonashing resin composition - Google Patents

Nonashing resin composition

Info

Publication number
JPH037767A
JPH037767A JP7913090A JP7913090A JPH037767A JP H037767 A JPH037767 A JP H037767A JP 7913090 A JP7913090 A JP 7913090A JP 7913090 A JP7913090 A JP 7913090A JP H037767 A JPH037767 A JP H037767A
Authority
JP
Japan
Prior art keywords
thermoplastic polymer
urea
resin composition
nonashing
softener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7913090A
Other languages
Japanese (ja)
Other versions
JP2634285B2 (en
Inventor
Yoshihiro Nakagawa
善博 中川
Yoshiaki Kodera
小寺 嘉秋
Mitsuo Nagata
永田 光男
Takayuki Kusu
久須 隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2079130A priority Critical patent/JP2634285B2/en
Publication of JPH037767A publication Critical patent/JPH037767A/en
Application granted granted Critical
Publication of JP2634285B2 publication Critical patent/JP2634285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a nonashing resin composition, capable of being incinerated while exhibiting flame retardance without emitting toxic gases with hardly any generation of ashes in incineration and suitable in places for handling radioactive substances by blending a combustible thermoplastic polymer having a specific melt viscosity with a specified amount of urea. CONSTITUTION:A nonashing resin composition obtained by blending (A) 100 pts.wt. combustible thermoplastic polymer (e.g. polyethylene or ethylene-vinyl acetate copolymer) having <=300000P melt viscosity at 120 deg.C and 10-1000/sec shearing rate or a mixture thereof with a softener (e.g. dioctyl phthalate) with (B) 5-100 pts.wt., preferably 10-40 pts.wt. urea.

Description

【発明の詳細な説明】[Detailed description of the invention] 【 産業上の利用分野 】[ Industrial application field ]

本発明は、難燃性を示しながら焼却可能であり、焼却の
際に有害ガスを発生せず、灰分の発生が少ない非灰分性
樹脂組成物に関する。
The present invention relates to a non-ash resin composition that can be incinerated while exhibiting flame retardancy, does not generate harmful gases during incineration, and generates little ash.

【 従来の技術 】[Conventional technology]

従来から、ポリオレフィン系樹脂などのような可燃性の
合成樹脂の難燃化方法には、ハロゲン系化合物と三酸化
アンチモンを併用して配合する方法や、水酸化アルミニ
ウム、炭酸マグネシウムなどの含水化合物を配合する方
法などがよく知られている。また、燃焼の際に有害なガ
スが発生しないように、例えば、可燃性の非塩素系ポリ
マーに塩素系添加剤を配合することなく、オルガノポリ
シロキサンと有機金属化合物とを配合してなる難燃性組
成物の発明が知られている(特公昭63−65710号
公報)。
Traditionally, methods for making combustible synthetic resins such as polyolefin resins flame retardant include combining halogen compounds and antimony trioxide, and adding hydrous compounds such as aluminum hydroxide and magnesium carbonate. The methods of blending are well known. In addition, in order to prevent the generation of harmful gases during combustion, for example, flame-retardant materials made by blending organopolysiloxane and organometallic compounds without adding chlorine additives to flammable non-chlorine polymers are also available. The invention of a sexual composition is known (Japanese Patent Publication No. 63-65710).

【 発明が解決しようとする課題 】[Problem to be solved by the invention]

従来から行われているような、可燃性の合成樹脂にハロ
ゲン系化合物と三酸化アンチモンを併用して配合し難燃
化したものは、用済後焼却すると塩素を含む有害なガス
を発生して公害を招き、焼却炉の損傷を早め、更に多量
の灰分の処理に多額の費用を必要とする。一方、特公昭
63−65710号公報に記載の難燃性組成物では、焼
却時に有害ガスは発生しないとしても焼却によってオル
ガノポリシロキサン、有機金属化合物などによる多量の
灰分が残る。 特に放射性物質を取り扱う場所、例えば原子力発電所や
放射性物質研究所等では、床、壁、天井、間仕切り等に
放射性物質が付着しないように、これらを合成樹脂フィ
ルムで被覆する。そして一定期間経過後に取り除いて新
しいフィルムと交換し古いフィルムは焼却する。しかし
、焼却しても灰分の放射性は消滅せず、灰分が多ければ
多いほどその処理に要する設備や費用が多大となる。即
ち、放射能を持った灰分を何らかの方法で封入するが、
封入体の容積が大きくなり、封入に要する材料費及び保
管場所も大きなものとなってしまうのである。従って、
特にこのような場所に用いる被覆用のフィルムは焼却後
に灰分が少ないことが要求される。 また、鉛やバリウム等を含む有機金属化合物を配合した
組成物を焼却して発生する煙やガスは無害とは言えない
。 更に、上記のような樹脂組成物を用いたものは焼却し尽
くすまで点火器で着炎し続ける必要があり、膨大な燃料
を要する。
Traditionally, combustible synthetic resins made by blending halogenated compounds and antimony trioxide to make them flame retardant emit harmful gases containing chlorine when incinerated after use. It causes pollution, accelerates damage to incinerators, and requires large amounts of ash to dispose of. On the other hand, in the flame-retardant composition described in Japanese Patent Publication No. 63-65710, a large amount of ash remains due to organopolysiloxane, organometallic compound, etc., even though no harmful gas is generated during incineration. Particularly in places where radioactive materials are handled, such as nuclear power plants and radioactive material laboratories, floors, walls, ceilings, partitions, etc. are covered with synthetic resin films to prevent radioactive materials from adhering to them. After a certain period of time, it is removed and replaced with a new film, and the old film is incinerated. However, the radioactivity of the ash does not disappear even if it is incinerated, and the more ash there is, the more equipment and costs are required to process it. In other words, radioactive ash is encapsulated in some way,
The volume of the encapsulation body becomes large, and the cost of materials and storage space required for encapsulation also become large. Therefore,
In particular, coating films used in such locations are required to have a low ash content after incineration. Furthermore, the smoke and gas generated when a composition containing an organic metal compound containing lead, barium, etc. is incinerated cannot be said to be harmless. Furthermore, in the case of using a resin composition as described above, it is necessary to continue igniting the flame with an igniter until the resin composition is completely incinerated, which requires an enormous amount of fuel.

【 課題を解決するための手段 】[Means to solve the problem]

本発明は上記従来の問題点を解決するためになされたも
のであって、その要旨は、120℃での剪断速度が10
〜1000/秒に於いて溶融粘度が300000ボイズ
以下である可燃性の熱可塑性重合体もしくは熱可塑性重
合体と軟化剤との混合物100重量部に、尿素5重量部
乃至100重量部を配合してなる非灰分性樹脂組成物に
存し、特に放射性物質を取り扱う場所に用いて好適なも
のである。 本発明に使用できる可燃性の熱可塑性重合体としては、
ポリエチレン(PE)、エチレン−酢酸ビニル共重合体
(EVA) 、エチレン−エチルアクリレート共重合体
(EE八)、ポリプロピレン(PP)、ポリスチレン(
PS)、ポリメタクリル酸メチル(PMMA)等の熱可
塑性合成樹脂、スチレン−ブタジェン−スチレン共重合
体(SBS)、スチレン−イソプレン−スチレン共ff
i合体(SIS) 、スチレン−エチレン−イソプレン
−スチレン−ブロック共重合体(SEIS)、スチレン
−エチレン−ブチレン−スチレン−ブロック共重合体(
SEBS)、ポリウレタンゴム、ポリエステルゴム、ス
チレン−ブチジエンゴム(SBR)、ニトリルゴム(N
BR) 、ポリブタジェン、ポリイソブチレン、ポリイ
ソプレン等が挙げられる。 上記熱可塑性重合体もしくは熱可塑性重合体と軟化剤と
の混合物は酸素指数が19未満では難燃効果が充分に得
られないので、酸素指数が19以上であることが好まし
い。しかしながら、本発明者は、酸素指数の条件よりも
、熱可塑性重合体もしくは熱可塑性重合体と軟化剤との
混合物の溶融粘度により、自己消火性の発現が左右され
ることを見出した。 即ち、本発明に於ける熱可塑性重合体もしくは熱可塑性
重合体と軟化剤との混合物は且つ120℃での剪断速度
が10〜1000/秒に於ける溶融粘度が300000
ボイズ以下であると自己消火性となり、難燃効果が発現
されることが判った。上記熱可塑性重合体の燃焼温度域
での溶融粘度を低くすることにより、難燃剤としての尿
素の分解ガスの発生を容易にして難燃効果を高めるため
に軟化剤を添加してもよい、軟化剤を添加することは熱
可塑性重合体の溶融粘度を低下させると共に成形温度を
132℃未満に調整することである。 上記軟化剤としてはフタル酸ジブチル(DOP)、フタ
ル酸ジブチル(DBP)、セバシン酸ジオクチル(00
5)等の可塑剤や流動パラフィン、ポリブタジェン、ポ
リイソプレン、ポリイソブチレン、ポリブテン等の液状
高分子、クマロン・インデン樹脂、キシレン樹脂、低融
点の石油樹脂等が挙げられる。 上記軟化剤の添加量は熱可塑性重合体に対し、20〜7
0重量%が適当である。 上記熱可塑性重合体もしくは熱可塑性重合体と軟化剤と
の混合物100重量部に、難燃剤として尿素5重量部乃
至100重量部を配合する。5重量部未満では難燃効果
が乏しく、100重量部を超えると熱可塑性重合体もし
くは熱可塑性重合体と軟化剤との混合物の強度が著しく
低下し、成形後に所要の形状を維持し得ない場合もある
。尿素の配合量は、上記範囲であり、好ましくは10重
量部以上、40重量部以下である。 燃焼時に尿素による分解ガスが効果的に消火作用をなす
ために、燃焼温度域における熱可塑性重合体の溶融粘度
は低い方が望ましく、120“Cでの剪断速度が10〜
1000/秒に於いて300000ボイズ以下であれば
よい。120℃での溶融粘度が 300000ポイズを
超えると尿素の分解ガスが組成物の外へ出ることができ
ず、難燃効果が殆ど得られない。 尿素は132℃で溶融し、さらに加熱すると尿素粒子が
互いに凝集し、分解し易くなるので、尿素を配合した組
成物の成形温度は132℃未満であることが好ましい。 尿素は、粉末、結晶等どんな形でもよいが、粉末尿素は
組成物内の分散を良くする。そして、尿素は極性が強く
、熱可塑性重合体との相溶性が悪いので熱可塑性重合体
への分散をよくし、配合量を多くするためにその粒径は
50μ以下が好ましく、20μ以下の粉末状であること
がより好ましい。粉末尿素は枝糸が小さくなるほど潮解
し易くなり、このため本発明の組成物同士がブロッキン
グを生じ易いので、ブロッキング防止のために数%のス
テアリン酸等の助剤を添加するのが好ましい。 更に、上記熱可塑性重合体もしくは熱可塑性重合体と軟
化剤との混合物には、必要に応じて充填剤、顔料、抗酸
化剤、紫外線吸収剤等を適宜添加してもよい。 尚、塩素化パラフィン、塩素化ポリエチレン、臭素化合
物等の如きハロゲン系難燃化剤を主とする難燃剤の尿素
と補助的に併用することもできる。 ハロゲン系難燃化剤は、有害ガスの発生を微量にとどめ
る範囲に添加するのがよい。
The present invention was made to solve the above-mentioned conventional problems, and its gist is that the shear rate at 120°C is 10
5 to 100 parts by weight of urea is blended with 100 parts by weight of a flammable thermoplastic polymer or a mixture of a thermoplastic polymer and a softener having a melt viscosity of 300,000 voids or less at ~1000/sec. It is a non-ash resin composition, and is particularly suitable for use in places where radioactive materials are handled. Flammable thermoplastic polymers that can be used in the present invention include:
Polyethylene (PE), ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EE8), polypropylene (PP), polystyrene (
PS), thermoplastic synthetic resins such as polymethyl methacrylate (PMMA), styrene-butadiene-styrene copolymer (SBS), styrene-isoprene-styrene copolymer ff
i polymerization (SIS), styrene-ethylene-isoprene-styrene-block copolymer (SEIS), styrene-ethylene-butylene-styrene-block copolymer (
SEBS), polyurethane rubber, polyester rubber, styrene-butidiene rubber (SBR), nitrile rubber (N
BR), polybutadiene, polyisobutylene, polyisoprene, and the like. If the thermoplastic polymer or the mixture of the thermoplastic polymer and the softener has an oxygen index of less than 19, a sufficient flame retardant effect cannot be obtained, so it is preferable that the oxygen index is 19 or more. However, the present inventors have found that the expression of self-extinguishing properties is more influenced by the melt viscosity of the thermoplastic polymer or the mixture of the thermoplastic polymer and the softener than by the oxygen index condition. That is, the thermoplastic polymer or the mixture of the thermoplastic polymer and the softener in the present invention has a melt viscosity of 300,000 at a shear rate of 10 to 1,000/sec at 120°C.
It was found that when it is below the void, it becomes self-extinguishing and exhibits a flame retardant effect. By lowering the melt viscosity of the thermoplastic polymer in the combustion temperature range, a softening agent may be added to facilitate the generation of decomposition gas of urea as a flame retardant and enhance the flame retardant effect. The purpose of adding the agent is to lower the melt viscosity of the thermoplastic polymer and to adjust the molding temperature to below 132°C. The above-mentioned softeners include dibutyl phthalate (DOP), dibutyl phthalate (DBP), dioctyl sebacate (00
Examples include plasticizers such as 5), liquid polymers such as liquid paraffin, polybutadiene, polyisoprene, polyisobutylene, and polybutene, coumaron-indene resin, xylene resin, and low-melting point petroleum resin. The amount of the softener added is 20 to 7
0% by weight is suitable. 5 to 100 parts by weight of urea as a flame retardant is blended with 100 parts by weight of the above thermoplastic polymer or a mixture of the thermoplastic polymer and a softener. If it is less than 5 parts by weight, the flame retardant effect will be poor, and if it exceeds 100 parts by weight, the strength of the thermoplastic polymer or the mixture of the thermoplastic polymer and the softener will decrease significantly and the desired shape cannot be maintained after molding. There is also. The amount of urea to be blended is within the above range, preferably 10 parts by weight or more and 40 parts by weight or less. In order for the decomposition gas caused by urea to effectively extinguish the fire during combustion, it is desirable that the melt viscosity of the thermoplastic polymer in the combustion temperature range is low, and the shear rate at 120"C is 10~10".
It is sufficient that the number of voices is 300,000 or less at 1,000/sec. If the melt viscosity at 120° C. exceeds 300,000 poise, the decomposed gas of urea cannot escape from the composition, and almost no flame retardant effect can be obtained. Urea melts at 132°C, and further heating causes the urea particles to aggregate with each other and easily decompose, so the molding temperature of the composition containing urea is preferably less than 132°C. Urea may be in any form such as powder or crystal, but powdered urea provides better dispersion within the composition. Urea has strong polarity and poor compatibility with thermoplastic polymers, so in order to improve dispersion in thermoplastic polymers and increase the amount blended, the particle size is preferably 50μ or less, and powder of 20μ or less. More preferably, the shape is Powdered urea becomes more easily deliquescent as the branch threads become smaller, and the compositions of the present invention are therefore more likely to block each other. Therefore, it is preferable to add several percent of an auxiliary agent such as stearic acid to prevent blocking. Furthermore, fillers, pigments, antioxidants, ultraviolet absorbers, etc. may be appropriately added to the thermoplastic polymer or the mixture of the thermoplastic polymer and the softener, if necessary. In addition, urea, which is a flame retardant mainly composed of halogen-based flame retardants such as chlorinated paraffin, chlorinated polyethylene, and bromine compounds, can also be used supplementarily. The halogen-based flame retardant is preferably added in an amount that keeps the generation of harmful gases to a minimum.

【 作用 】[Effect]

本発明の非灰分性樹脂組成物は、可燃性の熱可塑性重合
体もしくは熱可塑性重合体と軟化剤との混合物100重
量部に尿素5重量部乃至100重量部を配合してなるの
で、粉末尿素は熱可塑性重合体もしくは熱可塑性重合体
と軟化剤との混合物の燃焼により最終的には二酸化炭素
とアンモニアに分解し、これにより上記熱可塑性重合体
もしくは熱可塑性重合体と軟化剤との混合物の燃焼初期
(特に着火時)に消火作用をなし、自己消火性を付与す
るものである。 しかし乍ら、用済後に焼却する場合には、焼却炉の中で
点火された初期のうちは尿素の分解による二酸化炭素と
アンモニアの作用により難燃効果を示すが、焼却炉の中
で強い火力を受は続け、燃焼が進行するにつれて尿素は
すべて分解し、発生した二酸化炭素とアンモニアは飛散
してしまうので難燃性は無くなり、その後は熱可塑性重
合体もしくは熱可塑性重合体と軟化剤との混合物が有す
る本来の可燃性により燃焼し尽くされる。このときには
点火器を取り除いても熱可塑性重合体は燃焼を続けるこ
とができる。
The non-ash resin composition of the present invention is made by blending 5 to 100 parts by weight of urea with 100 parts by weight of a flammable thermoplastic polymer or a mixture of a thermoplastic polymer and a softening agent. is finally decomposed into carbon dioxide and ammonia by combustion of the thermoplastic polymer or the mixture of thermoplastic polymer and softener, and thereby the thermoplastic polymer or the mixture of thermoplastic polymer and softener is decomposed into carbon dioxide and ammonia. It has a fire extinguishing effect at the initial stage of combustion (especially at the time of ignition) and has self-extinguishing properties. However, in the case of incineration after use, the initial ignition in the incinerator shows a flame retardant effect due to the action of carbon dioxide and ammonia from the decomposition of urea; As the combustion progresses, all of the urea decomposes, and the generated carbon dioxide and ammonia are scattered, so the flame retardancy is lost.After that, the combination of thermoplastic polymer or thermoplastic polymer and softener The mixture is burnt out due to its inherent flammability. At this time, the thermoplastic polymer can continue to burn even if the igniter is removed.

【 実施例 】【 Example 】

(実施例1) 可燃性の熱可塑性樹脂と50μ通過の試薬1級の粉末状
の尿素を夫々配合し、120℃の加熱二本ロールで5分
間混練し、半透明のシートを得た。 これを二枚の鏡面ステンレス板に挟み120℃の加熱プ
レスで厚さ100μに5分間圧縮し、冷却後厚さ100
μのフィルムNo、 1〜No、 7を得た。このフィ
ルムを幅15薗に切断し、これを垂直に垂らしてライタ
ーで着火したところ、No、 1の試料のみは自己消火
性で、他はすべて燃え続けた。結果を表1に示す。 (実施例2) 液状ポリウレタン(PU)、液状ポリイソプレン(IP
)を夫に結晶状の尿素と共に乳鉢で常温で混合し、スチ
レン−エチレン−ブチレン−スチレン−ブロック共重合
体(SRBS)は夫々軟化剤及び尿素と共に120℃で
ニーグーで10分間混練した。燃焼テストではNα8、
Nα13はガラス棒に付着させ、他は実施例1と同様に
して着火テストを行った。結果を表2に示す。 (以下 余白) 0 〔発明の効果〕 本発明の非灰分性樹脂組成物は上述の構成となされてい
るので、特に着火時に難燃効果が大である。 また、焼却しても有害ガスの発生が微量もしくは発生せ
ず、焼却炉の損傷も殆ど無く、従来用いられていたよう
な灰分を残す難燃化剤を多量に使用しないので、灰分の
発生は極めて微量で、その処理は非常に容易である。更
に、炉の中では尿素が速やかに分解、飛散し、次第に可
燃性となるので焼却が容易であるという種々の顕著な効
果を有するものである。 これにより、特に放射性物質を取り扱う場所の床、壁、
天井等の表面被覆フィルム、間仕切り、靴のごみ取り用
マット、包装材や容器等に用いれば用済後に焼却すると
放射性物質を含む灰分が非常に少ないので、その処理が
容易である。
(Example 1) A flammable thermoplastic resin and powdered urea of the first class reagent passing through 50μ were blended and kneaded for 5 minutes using two rolls heated at 120°C to obtain a translucent sheet. This was sandwiched between two mirror-finished stainless steel plates and compressed for 5 minutes to a thickness of 100 μm using a hot press at 120°C, and after cooling, it became 100 μm thick.
Films No. 1 to No. 7 of μ were obtained. When this film was cut into 15 mm width pieces, hung vertically, and ignited with a lighter, only sample No. 1 was self-extinguishing, while all the others continued to burn. The results are shown in Table 1. (Example 2) Liquid polyurethane (PU), liquid polyisoprene (IP
) was mixed with crystalline urea in a mortar at room temperature, and the styrene-ethylene-butylene-styrene block copolymer (SRBS) was kneaded with a softener and urea at 120° C. for 10 minutes in a Nigu machine. In the combustion test, Nα8,
Nα13 was attached to a glass rod, and an ignition test was conducted in the same manner as in Example 1 except for the above. The results are shown in Table 2. (Hereinafter, blank space) 0 [Effects of the Invention] Since the non-ash resin composition of the present invention has the above-described structure, it has a great flame retardant effect, especially at the time of ignition. In addition, even when incinerated, no harmful gases are generated, there is almost no damage to the incinerator, and since large amounts of flame retardants that leave ash, which are conventionally used, are not used, there is no generation of ash. The amount is extremely small and processing is very easy. Furthermore, urea quickly decomposes and scatters in the furnace, and gradually becomes flammable, so it has various remarkable effects such as being easy to incinerate. As a result, floors, walls, especially in areas where radioactive materials are handled,
If used for surface coating films such as ceilings, partitions, shoe dust removal mats, packaging materials, containers, etc., they can be easily disposed of by incineration after use, as the ash content containing radioactive substances is very small.

Claims (1)

【特許請求の範囲】[Claims] (1)120℃での剪断速度が10〜1000/秒に於
いて溶融粘度が300000ポイズ以下である可燃性の
熱可塑性重合体もくしは熱可塑性重合体と軟化剤との混
合物100重量部に、尿素5重量部乃至100重量部を
配合してなる非灰分性樹脂組成物。
(1) 100 parts by weight of a flammable thermoplastic polymer or a mixture of a thermoplastic polymer and a softener having a melt viscosity of 300,000 poise or less at a shear rate of 10 to 1,000/sec at 120°C. , a non-ash resin composition containing 5 to 100 parts by weight of urea.
JP2079130A 1989-03-28 1990-03-28 Non-ash resin composition for coating materials at radioactive material handling offices Expired - Fee Related JP2634285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2079130A JP2634285B2 (en) 1989-03-28 1990-03-28 Non-ash resin composition for coating materials at radioactive material handling offices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-77712 1989-03-28
JP7771289 1989-03-28
JP2079130A JP2634285B2 (en) 1989-03-28 1990-03-28 Non-ash resin composition for coating materials at radioactive material handling offices

Publications (2)

Publication Number Publication Date
JPH037767A true JPH037767A (en) 1991-01-14
JP2634285B2 JP2634285B2 (en) 1997-07-23

Family

ID=26418784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2079130A Expired - Fee Related JP2634285B2 (en) 1989-03-28 1990-03-28 Non-ash resin composition for coating materials at radioactive material handling offices

Country Status (1)

Country Link
JP (1) JP2634285B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720202B1 (en) * 1999-04-30 2007-05-21 디에스엠 아이피 어셋츠 비.브이. Process for preparing spray granules containing riboflavin
JP2012188499A (en) * 2011-03-09 2012-10-04 Tohoku Ricoh Co Ltd Flame retardant composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033696A (en) * 1973-07-30 1975-03-31
JPS57100156A (en) * 1980-12-16 1982-06-22 Mitsubishi Chem Ind Ltd Polybutylene terephthalate composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033696A (en) * 1973-07-30 1975-03-31
JPS57100156A (en) * 1980-12-16 1982-06-22 Mitsubishi Chem Ind Ltd Polybutylene terephthalate composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720202B1 (en) * 1999-04-30 2007-05-21 디에스엠 아이피 어셋츠 비.브이. Process for preparing spray granules containing riboflavin
JP2012188499A (en) * 2011-03-09 2012-10-04 Tohoku Ricoh Co Ltd Flame retardant composition

Also Published As

Publication number Publication date
JP2634285B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
KR101562715B1 (en) New method for extinguishing fire
Das et al. The flammability of biocomposites
Lomakin et al. Ecological aspects of polymer flame retardancy
Pang et al. Law of variation for low density polyethylene dust explosion with different inert gases
RU2006239C1 (en) Aerosol-forming fire-extinguishing composition
Kesner et al. Teaching about flame retardants. A joint Israeli-Dutch project
JPH037767A (en) Nonashing resin composition
Barbot’ko Ways of providing fire safety of aviation materials
CN101558113B (en) Flame retardant additives for polymers free of halogens, antimony oxides and phosphorus-containing substances
JPH0315539A (en) Ashless composite film
JP2017206425A (en) Smoking agent composition and smoke emitting device
JPH0446966A (en) Flame-retardant composition
Brossas Fire retardance in polymers: an introductory lecture
Ortega et al. Mechanical and fire characterization of composite material made of polyethylene matrix and dry chemical powder obtained from end‐of‐life extinguishers
JP2894935B2 (en) Flame retardant sheet
Hong et al. Flame retarded polyethylene/wood flour composites with high performances: Satisfying both sides with intumescent flame retardants and synergistic compatibilizers, respectively
US9951286B2 (en) Material consisting of a preparation comprising ferrocene
Cullis Thermal stability and flammability of organic polymers
JPH0446963A (en) Flame-retardant composition
US5080735A (en) Low flammability cap-sensitive flexible explosive composition
KR100603055B1 (en) Polypropylene resin composition of complete combustion type
Sabaruddin et al. Flame retardancy evaluation of polymer composite-reinforced ceramic nanofillers
JP2012236962A (en) Flame-retardant and unburnable eva resin material and flame-retardant and unburnable product using the same
JPH04332640A (en) Composite film
JPH0280468A (en) Flame-retarding putty-like composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees