JPH0377617A - Gas generator - Google Patents

Gas generator

Info

Publication number
JPH0377617A
JPH0377617A JP1213159A JP21315989A JPH0377617A JP H0377617 A JPH0377617 A JP H0377617A JP 1213159 A JP1213159 A JP 1213159A JP 21315989 A JP21315989 A JP 21315989A JP H0377617 A JPH0377617 A JP H0377617A
Authority
JP
Japan
Prior art keywords
gas
concentration
valve
oxygen
adsorption tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1213159A
Other languages
Japanese (ja)
Other versions
JPH0691927B2 (en
Inventor
Kazuyuki Watanabe
和幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP1213159A priority Critical patent/JPH0691927B2/en
Publication of JPH0377617A publication Critical patent/JPH0377617A/en
Publication of JPH0691927B2 publication Critical patent/JPH0691927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To set the concn. of a gas at a specified value by providing a means for refluxing a gas to an adsorption vessel and refluxing a part of the gas from the vessel to the vessel. CONSTITUTION:The oxygen concn. is set at 5% by an oxygen concn. setting switch 29, and operation is started. The compressed air from a compressor 1 is supplied to the adsorption vessel 3 via an air delivery pipe 4, an air supply valve 6 and an air supply pipeline 8. A gas low is oxygen is discharged from the vessel 3 and supplied to a buffer tank 19 via a delivery pipeline 14, a delivery valve 16 and a common delivery valve 18. The low oxygen gas is made uniform in concn. By the buffer tank 19 and discharged from the tank 19 through a delivery throttle valve 20 and a final delivery pipeline 24.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気体生成装置に係り、特にPSA式%式% に係り、特に気体濃度変更時に吸着剤の脱@粘度を高め
吸着剤の再生を確実に行なうよう構成した気体生成装置
に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a gas generation device, and particularly to a PSA type % formula %, which improves the deviscosity of an adsorbent and ensures the regeneration of the adsorbent when the gas concentration is changed. The present invention relates to a gas generation device configured to perform.

従来の技術 一般に、PSA式気体分離装璽は、分子ふるいカーボン
からなる吸着剤を用いて、低1本濃度ガス等の体濃度の
ガスを取出そうとするものである。
2. Description of the Related Art In general, a PSA type gas separation device attempts to extract a gas having a body concentration, such as a gas having a low concentration of one molecule, by using an adsorbent made of molecular sieve carbon.

PSA式は、@着Mを充填した吸着槽に圧縮空気を導入
して酸素を吸着剤に吸着する吸着]L程と、該吸着槽内
を大気開放し又は真空ポンプで減圧して吸着した酸素を
wetsするI21!工程とを繰返し、脱着工程では吸
着槽内の吸着剤に酸素分子を吸着させ、一方、脱着工程
では吸着された酸素を脱着し、次の工程に備えるように
なっている。
The PSA method involves introducing compressed air into an adsorption tank filled with M and adsorbing oxygen onto the adsorbent. I21 to wets! The steps are repeated, and in the desorption step, the adsorbent in the adsorption tank adsorbs oxygen molecules, while in the desorption step, the adsorbed oxygen is desorbed in preparation for the next step.

また、このような装置で酸素濃度を変更するためには吸
着工程及び脱着工程の時間を変えたり、圧縮空気の圧力
を変える方法が考えられる。
In addition, in order to change the oxygen concentration in such an apparatus, it is possible to change the time of the adsorption step and the desorption step, or to change the pressure of compressed air.

発明が解決しようとする課題 しかるに、従来のPSA式の気体生成装置で濃度をある
一定濃度からより低い濃度に変更しようとする場合、吸
脱着のサイクルvt間等のPSA条件の変更だけでは吸
着剤の気体の1211の条件が変更した状態に達するま
でに時間がかかるため設定した濃度に達するまでに長い
19間がかかってしまう等の問題点があった。
Problems to be Solved by the Invention However, when trying to change the concentration from a certain concentration to a lower concentration in a conventional PSA type gas generator, it is difficult to change the adsorbent by simply changing the PSA conditions such as during the adsorption/desorption cycle vt. Since it takes time for the conditions of 1211 of the gas to reach the changed state, there are problems such as it takes a long time to reach the set concentration.

本発明は上記の点に鑑みてなされたもので、濃度の変更
時により短時間で設定した濃度を得ることができる気体
生成装置を提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a gas generating device that can obtain a set concentration in a shorter time when changing the concentration.

課題を解決するための手段 本発明は内部に一の気体を@着する吸着剤が充填された
吸着槽に一の気体を含む混合気体を供給し、一の気体を
吸着剤に@着する吸着工程と、前記吸着剤に吸着した前
記一の気体を前記吸着剤よりl12Wする脱着工程とを
くり返えすことにより前記吸着槽から前記一の気体の濃
度が前記吸着[[程を行なう前の前記混合気体中に占め
る前記一の基体の濃度とは異なる濃度の混合基体を得る
気体生成装置において、前記吸着槽から得た気体の一部
を前記吸着槽に還流するlI!流丁段を設け、前記一の
気体の濃度を所定の濃度から他の濃度に変更する際、前
記脱着工程時にだけ前記還流手段により前記吸@槽より
得た気体を前記吸着槽に還流する。
Means for Solving the Problems The present invention provides an adsorption system in which a mixed gas containing one gas is supplied to an adsorption tank filled with an adsorbent into which one gas is deposited, and one gas is deposited on the adsorbent. By repeating the step of desorption of the first gas adsorbed on the adsorbent from the adsorbent, the concentration of the first gas from the adsorption tank is reduced to the same level as before the adsorption process. In the gas generating device for obtaining a mixed substrate having a concentration different from the concentration of the one substrate in the mixed gas, a portion of the gas obtained from the adsorption tank is returned to the adsorption tank. A flow stage is provided, and when the concentration of the one gas is changed from a predetermined concentration to another concentration, the gas obtained from the suction tank is refluxed to the adsorption tank by the reflux means only during the desorption step.

■用 混合気体中に占める〜の気体の濃度を所定の濃度から他
の濃度とする際、吸着槽より得た気体を吸着槽に還流す
ることにより吸着剤からの一の気体の脱着がより効率よ
く行なわれる。
■ When changing the concentration of the gas in the mixed gas from a predetermined concentration to another concentration, the gas obtained from the adsorption tank can be refluxed to the adsorption tank to make the desorption of the gas from the adsorbent more efficient. It is often done.

実施例 第1図に本発明になる気体生成装置の一実施例を示す。Example FIG. 1 shows an embodiment of the gas generating device according to the present invention.

同図中、2.3は第1.第2の吸着槽で、各吸着槽2,
3内にはそれぞれ分子ふるいカーボン2A、3Aが充填
されている。
In the figure, 2.3 is the first. In the second adsorption tank, each adsorption tank 2,
3 is filled with molecular sieve carbons 2A and 3A, respectively.

1は圧縮空気供給源となるコンプレッサで、コンプレッ
サ1からの圧縮空気は空気吐出配管4及び配管7.8を
介して吸着槽2.3にそれぞれ突耳に供給されるように
なっており、このため該配管7,8の途中にはそれぞれ
電磁弁からなる空気供給用弁5,6が設けられている。
1 is a compressor serving as a compressed air supply source, and the compressed air from the compressor 1 is supplied to an adsorption tank 2.3 via an air discharge pipe 4 and a pipe 7.8, respectively. Therefore, air supply valves 5 and 6 made of electromagnetic valves are provided in the middle of the pipes 7 and 8, respectively.

10.11は12着時に吸着槽2.3からの気体は配管
7.8より、共通排出配管25に接続されており、前記
配管io、1iの途中にはそれぞれ吸着槽2.3内のE
!?排ガスを半サイクル毎に交互に排出する電磁弁から
なる気体排出用弁9゜10が設けられている。
10.11 is connected to the common exhaust pipe 25 from the pipe 7.8 when the gas from the adsorption tank 2.3 arrives on the 12th, and the E in the adsorption tank 2.3 is connected to the pipes io and 1i, respectively.
! ? Gas exhaust valves 9 and 10 are provided which are electromagnetic valves that alternately exhaust exhaust gas every half cycle.

13.14は吸着槽2.3の出口信に接続され吸着槽2
.3内で生成された低濃度酸素をそれぞれ取出す取出配
管、17は各配管13.14と連結した取出配管で、配
管13.14の途中には半サイクルの悶だけ後°述のl
1llの下に交互に開弁する電磁弁からなる取出用弁1
5,16がそれぞれ設けられている。また前記取出配管
17はバッファタンク19に接続されている。
13.14 is connected to the outlet signal of adsorption tank 2.3 and
.. 3, 17 is an extraction pipe connected to each pipe 13.14, and in the middle of pipe 13.14 there is a half cycle of 1, which will be described later.
Take-out valve 1 consisting of a solenoid valve that opens alternately under 1 liter
5 and 16 are provided, respectively. Further, the extraction pipe 17 is connected to a buffer tank 19.

また、取出用弁15.16は吸着fI2.3による半サ
イクルの終了時に所定の短時間だけ同時に開弁し、各吸
着槽2,3間を均圧にする。
Further, the take-out valves 15 and 16 are simultaneously opened for a predetermined short time at the end of the half cycle due to the adsorption fI2.3 to equalize the pressure between the adsorption tanks 2 and 3.

24はバッフ7タンク19に接続された取出配管で、そ
の途中には電磁弁からなる取出用弁20が設けられてい
る。
24 is a take-out pipe connected to the buff 7 tank 19, and a take-out valve 20 made of a solenoid valve is provided in the middle thereof.

26はm素センリで、バッファタンク19に貯溜された
気体の酸sm度(組成値)を検出する。
Reference numeral 26 is an m element sensor that detects the acid degree (composition value) of the gas stored in the buffer tank 19.

又、酸素センサ26からの酸素濃度検出信号は後述する
酸素濃度計27を介して111111回路28に入力さ
れる。
Further, the oxygen concentration detection signal from the oxygen sensor 26 is input to the 111111 circuit 28 via an oxygen concentration meter 27, which will be described later.

なお、酸素センサ26としては酸素分子の常磁性を利用
した磁気式酸素センサ、酸素が透過膜を介して電界液に
入ると電極で鹸化還元反応が起きg&流が流れるのを利
用したガルバニ電池式#!2糸センサ、ジルコニア磁器
の内外面に電極を設け、酸素濃度によって起電力が発生
するのを利用したジルコニア式酸素センサ等が用いられ
る。
The oxygen sensor 26 is a magnetic type oxygen sensor that utilizes the paramagnetism of oxygen molecules, and a galvanic cell type that utilizes the fact that when oxygen enters the electrolyte through a permeable membrane, a saponification-reduction reaction occurs at the electrodes and G& current flows. #! A two-thread sensor, a zirconia oxygen sensor, etc. that utilizes the fact that electrodes are provided on the inner and outer surfaces of zirconia porcelain and electromotive force is generated depending on the oxygen concentration are used.

29は取出配管24から取出される[濃度を設定する濃
度設定スイッチで、バッフ7タンク19から取出すべぎ
酸素ガス濃度に応じて適宜に設定されるものである。
Reference numeral 29 is a concentration setting switch for setting the concentration of oxygen gas taken out from the take-out pipe 24, and is set appropriately according to the concentration of oxygen gas to be taken out from the buffer 7 tank 19.

23は還流用配管で、上記取出配管13.14に逆止弁
11.12を介して接続されている。
Reference numeral 23 denotes a reflux pipe, which is connected to the above-mentioned take-out pipe 13.14 via a check valve 11.12.

還流用配管23には絞り弁21と還流用弁22とが配設
されている。還流用弁22は後述するように11度の換
時に開弁され、バッファタンク19内のガス(低濃度酸
素ガス)を吸着槽2.3へ還流させる。又、絞り弁21
はガスが圧縮されているので、還流されるガスの流量を
調整している。
The reflux pipe 23 is provided with a throttle valve 21 and a reflux valve 22 . As will be described later, the reflux valve 22 is opened at the 11th exchange, and the gas (low concentration oxygen gas) in the buffer tank 19 is refluxed to the adsorption tank 2.3. Also, the throttle valve 21
Since the gas is compressed, the flow rate of the gas being refluxed is adjusted.

また、制tll101路28は例えば?イクロコンビ1
−夕等によって構成される弁ti制御手段で、入力側に
は酸素+1度計27.濃度設定スイッチ29が接続され
ている。
Also, for example, what is the control tll101 road 28? Ikro combination 1
- Valve ti control means consisting of an oxygen +1 degree meter 27. A concentration setting switch 29 is connected.

IJtl11回路28は予め人力されたプログラムに従
い、空気供給用弁5.6.気体掴出用弁9.10゜取出
用弁15.16.18.還流用弁22を開閉制御する。
The IJtl11 circuit 28 operates according to a preprogrammed program to supply air to the air supply valves 5, 6, . Gas grabbing valve 9.10° extraction valve 15.16.18. Controls the opening and closing of the reflux valve 22.

尚、上記f、lJt[1回路28により開閉制御される
各電磁弁は、開弁信号の供給により励磁されたとき開弁
じ、励磁されないときにはバネ力で閉弁するようになっ
ている。
The solenoid valves whose opening and closing are controlled by the f, lJt[1 circuit 28 are opened when excited by the supply of a valve opening signal, and closed by spring force when not excited.

次に装置の動nについて説明する。まず、酸素!111
設定スイッチ29で酸素濃度を5%とするように設定し
て装置の運転を開始すると、tilllo回路28は以
下に述べるステップで低濃度酸素ガスを得る。
Next, the operation of the device will be explained. First, oxygen! 111
When the oxygen concentration is set to 5% using the setting switch 29 and the operation of the apparatus is started, the tillo circuit 28 obtains low concentration oxygen gas through the steps described below.

空気供給弁6.排気弁9.取出用弁16.共通取出用弁
18を開弁、他の弁を閉弁する。したがって、コンプレ
ッサ1からの圧縮空気は空気吐出配管4.空気供給用弁
6.空気供給配管8を通って吸着槽3に供給される。吸
着槽3では分子ふるいカーボン3Aが圧縮空気中よりI
I素を吸着する。
Air supply valve6. Exhaust valve9. Take-out valve 16. The common take-out valve 18 is opened and the other valves are closed. Therefore, the compressed air from the compressor 1 is transferred to the air discharge pipe 4. Air supply valve6. The air is supplied to the adsorption tank 3 through an air supply pipe 8. In adsorption tank 3, molecular sieve carbon 3A is absorbed by I from compressed air.
Adsorbs I element.

したがって、吸着槽3からは低S累濃度のガスが摺出さ
れ、この低酸素濃度のガスは取出用配管14、取出用弁
16.共通取出用配管17.共通取出弁18を通ってバ
ッフ7タンク19に供給される。低酸素濃度ガスはバッ
フ7タンク19で経過時間によらず略均−な濃度とされ
、バッフタンク19より取出用絞り弁20.最終取出用
配管24を通って製品ガスとして取り出される。
Therefore, gas with a low cumulative S concentration is slid out from the adsorption tank 3, and this gas with a low oxygen concentration is removed from the extraction pipe 14, the extraction valve 16. Common extraction piping 17. It is supplied to the buffer 7 tank 19 through the common take-out valve 18. The low oxygen concentration gas is brought to a substantially uniform concentration regardless of the elapsed time in the buff tank 19, and is taken out from the buff tank 19 by a throttle valve 20. It passes through the final extraction piping 24 and is extracted as a product gas.

一方、このとき、吸着槽2は再生中で排気用弁9が開、
空気供給弁5及び取出用弁15が閏であるため、その内
部の分子ふるいカーボン2Aは大気圧にさらされ、吸着
していた酸素を吐き出す。
On the other hand, at this time, the adsorption tank 2 is being regenerated and the exhaust valve 9 is opened.
Since the air supply valve 5 and the take-out valve 15 are screws, the molecular sieve carbon 2A inside them is exposed to atmospheric pressure, and the adsorbed oxygen is discharged.

吐き出された酸素は排気用弁9.排気用配管を通って外
部に排気される。
The exhaled oxygen is discharged through the exhaust valve 9. It is exhausted to the outside through exhaust piping.

次に取出用弁15.16を開弁とし、空気供給用弁6.
祷気用弁9.共通取出用弁18を閉弁とし、吸着槽2と
3との圧力を均一にして@着槽3のガスの一部を吸着槽
2に回収し収率を上げる。
Next, take-out valves 15 and 16 are opened, and air supply valves 6 and 6 are opened.
Prayer valve 9. The common extraction valve 18 is closed to equalize the pressures in the adsorption tanks 2 and 3, and a part of the gas in the adsorption tank 3 is recovered to the adsorption tank 2 to increase the yield.

次に空気供給用弁5.排気用弁10.取出用弁15、共
通取出用弁18を開弁し、他の弁を閉弁する。圧縮空気
は空気供給用弁5.空気供給配管7を通り、吸着槽2に
供給される。吸着槽2では分子ふるいカーボン2Aに酸
素が吸着され、低酸素濃度ガスが取り出される。低酸素
濃度ガスは吸着槽2より取出用配管13.取出用弁15
.共通取出用配管17を通すバッフ?タンク19に貯溜
される。
Next, air supply valve 5. Exhaust valve 10. The take-out valve 15 and the common take-out valve 18 are opened, and the other valves are closed. Compressed air is supplied through the air supply valve 5. It passes through the air supply pipe 7 and is supplied to the adsorption tank 2. In the adsorption tank 2, oxygen is adsorbed by the molecular sieve carbon 2A, and a low oxygen concentration gas is taken out. The low oxygen concentration gas is taken out from the adsorption tank 2 through piping 13. Take-out valve 15
.. Buffer for passing common extraction piping 17? It is stored in the tank 19.

また、一方、吸着槽3は排気用弁1oが開弁されている
ため、大気圧となり、分子ふるいカーボン3Aに吸着さ
れていた′V素が脱着され、排気用弁10.排気用配管
25を通って外部に排気される。
On the other hand, since the exhaust valve 1o of the adsorption tank 3 is open, the pressure becomes atmospheric, and the 'V element adsorbed on the molecular sieve carbon 3A is desorbed, and the exhaust valve 10. The air is exhausted to the outside through the exhaust pipe 25.

次に取出用弁15.16の両方を開弁し、他の弁を閉じ
、吸着槽2と吸着槽3とを取出用配管13.14を介し
て接続する。したがって、吸着槽2と@着槽3とが均圧
な状態となり、@@ltl 2から吸着槽3にガスが回
収され、吸着槽3の収率を向上させている。
Next, both the take-out valves 15 and 16 are opened, the other valves are closed, and the adsorption tank 2 and the adsorption tank 3 are connected via the take-out pipes 13 and 14. Therefore, the adsorption tank 2 and the adsorption tank 3 are in a pressure-equalized state, and gas is recovered from the @ltl 2 to the adsorption tank 3, thereby improving the yield of the adsorption tank 3.

以上の4ステツプを1サイクルとして繰り返すことによ
り低酸素濃度ガスをIIR的に取り出すことができる。
By repeating the above four steps as one cycle, low oxygen concentration gas can be extracted in an IIR manner.

なお、lX濃度はサイクル時間により制御されていて、
IIl蟲濃度5%の低酸素濃度ガスを得るときにはサイ
クル時間を600 (3)とし、!本濃度1%の低1県
濃度ガスを得るときにはサイクル時間を180(S)と
する。これは、時はが長くなるほど分子ふるいカーボン
2A、3Aがちつ素を吸着するため、サイクル時間が長
いほど相対的にIll素arfIは高くなるためである
Note that the lX concentration is controlled by the cycle time,
IIl To obtain a low oxygen concentration gas with an insect concentration of 5%, the cycle time is set to 600 (3), and! When obtaining the low 1 prefecture concentration gas with the main concentration of 1%, the cycle time is set to 180 (S). This is because the molecular sieve carbons 2A and 3A adsorb the element as the cycle time becomes longer, so that the longer the cycle time, the higher the Ill element arfI becomes.

ここで、酸素濃度5%運転時から酸素濃度1%で運転し
ようとする場合には、まず、濃度設定スイッチ29をI
ll索濃度1%側に設定する。tsm回路28は濃度設
定スイッチ29の切替動作に応じてサイクルl?周を6
00 (S )から180 (S )とすると共に還流
用弁22を開弁する。
Here, if you want to operate at an oxygen concentration of 1% from when operating at an oxygen concentration of 5%, first turn the concentration setting switch 29 to I.
Set the concentration to 1%. The tsm circuit 28 performs a cycle l? according to the switching operation of the concentration setting switch 29. 6 laps
00 (S) to 180 (S), and the reflux valve 22 is opened.

還流用弁22が開弁するとバッフ戸タンク19内の低酸
素濃度ガスは逆止弁11又は12を介して@看槽2又は
3に供給される。低酸X1度ガスの還流圧は絞り弁21
により調整され、コンプレッサ1からの圧縮空気圧より
小さく大気圧より大きい鎗とされている。このため、低
酸素濃度ガスは逆止弁11.12の働きにより還流圧よ
り低い気圧となる再生中の吸着槽2又は3のどちらかに
還流される。
When the reflux valve 22 is opened, the low oxygen concentration gas in the buff tank 19 is supplied to the @tank 2 or 3 via the check valve 11 or 12. The reflux pressure of low acid X1 degree gas is controlled by the throttle valve 21.
The compressed air pressure from the compressor 1 is lower than the atmospheric pressure and the pressure is higher than the atmospheric pressure. Therefore, the low oxygen concentration gas is refluxed to either the adsorption tank 2 or 3 during regeneration, where the pressure is lower than the reflux pressure by the action of the check valves 11, 12.

低11i11度ガスが還流された吸着槽2又は3では低
酸X1度ガスにより分子ふるいカーボン2A又は3Aに
吸着されていた酸素の脱着が効率よく行なわれる。還流
用弁22は酸素セン+J26及び酸素濃度計27により
計測された酸素濃度が1%になると制御回路28により
閉じられ1通常の運転が行なわれる。したがって、再生
時間が短くなっても十分な酸素の脱着を行なうことがで
き、設定されたlXl1度である1%に到達するまでの
時間が第2図1.ffに示すように本実施例の装置でパ
ージを行なわないものの35分に比し、10分と短い時
間で済む。本実施例では酸素濃度5%から1%にする場
合について説明したが、これに限ることなく要は所定の
濃度から他の濃度とする場合であればよく、例えば濃度
1%から5%など、低いS度から高い11度へ変更する
場合も考えられる。
In the adsorption tank 2 or 3 in which the low 11i11 degree gas is refluxed, the oxygen adsorbed on the molecular sieve carbon 2A or 3A is efficiently desorbed by the low acid X1 degree gas. The reflux valve 22 is closed by the control circuit 28 when the oxygen concentration measured by the oxygen sensor +J 26 and the oxygen concentration meter 27 reaches 1%, and 1 normal operation is performed. Therefore, even if the regeneration time is shortened, sufficient oxygen can be desorbed, and the time it takes to reach the set lXl1 degree, 1%, is shown in Figure 2.1. As shown in ff, it takes only 10 minutes, compared to 35 minutes when the apparatus of this embodiment does not perform purging. In this embodiment, the case where the oxygen concentration is changed from 5% to 1% has been explained, but the case is not limited to this, and the point is that the case where the oxygen concentration is changed from a predetermined concentration to another concentration may be used. For example, the concentration may be changed from 1% to 5%, etc. It is also possible to change from a low degree S to a high degree 11 degrees.

なお、本実施例では酸素濃度のυ制御をサイクルvt間
の制御により行ったが、これに限ることはなく、例えば
、圧縮空気の圧力を変更することによっても制御は可能
である。また、還流時間の設定も酸素センサ26及び酸
素濃度計27により酸素濃度を目測して、その目測結果
に応じて行っているが、予め設定しておいた時間だけ還
流を行なう構成としてもよい。さらに、本実施例では一
の気体を酸素としたが、これに限ることはなく他の気体
とすることも可能である。
In this embodiment, the oxygen concentration υ control was performed by controlling between cycles vt, but the control is not limited to this, and the control can also be performed by changing the pressure of compressed air, for example. Further, the reflux time is also set by visually measuring the oxygen concentration using the oxygen sensor 26 and the oxygen concentration meter 27, and is performed according to the result of the visual measurement, but the reflux time may be configured to be refluxed for a preset time. Further, in this embodiment, one gas is oxygen, but the present invention is not limited to this, and other gases may be used.

発明の効果 上述の如く、本発明によれば、吸着剤を用いて気体の濃
厚を変える装置で、現在得ている濃度から他のa度とす
る際に吸着剤から気体を11@する工程時に吸着槽より
得た気体を@看槽に還流することにより吸着剤の脱着を
より効率的に行なうことができるため、現る・得ている
濃度から他の濃度に素早く移行させることができる等の
特長を有する。
Effects of the Invention As described above, according to the present invention, in the device for changing the concentration of gas using an adsorbent, in the process of removing gas from the adsorbent when changing the concentration from the currently obtained concentration to another degree a. By refluxing the gas obtained from the adsorption tank to the tank, the adsorbent can be desorbed more efficiently. It has characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1@lは本発明の一実施例の概略構成図、第2図は従
来及び、本発明の・一実施例の応答特性図である。 1・・・コンプレッサ、2.3・・・吸着槽、2A。 3A−・・分子ふるいカーボン、11.12・・・逆止
弁、15.16・・・取出用弁、21・・・還流用絞り
弁、22・・・環流用弁、26・・・酸素センサ、27
・・・酸素濃度計、28・・・w419@路、29・・
・酸素濃度設定スイッチ。 第1図
1 is a schematic configuration diagram of an embodiment of the present invention, and FIG. 2 is a response characteristic diagram of a conventional system and an embodiment of the present invention. 1...Compressor, 2.3...Adsorption tank, 2A. 3A-...Molecular sieve carbon, 11.12...Check valve, 15.16...Take-out valve, 21...Recirculation throttle valve, 22...Recirculation valve, 26...Oxygen sensor, 27
...Oxygen concentration meter, 28...w419@road, 29...
・Oxygen concentration setting switch. Figure 1

Claims (1)

【特許請求の範囲】  内部に一の気体を吸着する吸着剤が充填された吸着槽
に該一の気体を含む混合気体を供給し、該一の気体を該
吸着剤に吸着する吸着工程と、前記吸着剤に吸着した前
記一の気体を前記吸着剤より脱着する脱着工程とをくり
返えすことにより前記吸着槽から前記一の気体の濃度が
前記吸着工程を行なう前の前記混合気体中に占める前記
一の気体の濃度と異なる一定の濃度の混合気体を得る気
体生成装置において、 前記吸着槽より得た気体を前記吸着槽に還流する還流手
段を設け、前記一の気体の濃度を所定の濃度から他の濃
度に変更する際、前記脱着工程時に前記還流手段により
前記吸着槽より得た気体の一部を前記吸着槽に還流する
ことを特徴とする気体生成装置。
[Scope of Claims] An adsorption step of supplying a mixed gas containing the one gas to an adsorption tank filled with an adsorbent that adsorbs the one gas, and adsorbing the one gas to the adsorbent; By repeating a desorption step in which the first gas adsorbed on the adsorbent is desorbed from the adsorbent, the concentration of the first gas from the adsorption tank is increased to the concentration in the mixed gas before the adsorption step. In a gas generation device for obtaining a mixed gas having a constant concentration different from the concentration of the first gas, a reflux means is provided for refluxing the gas obtained from the adsorption tank to the adsorption tank, and the concentration of the first gas is adjusted to a predetermined concentration. 1. A gas generation device characterized in that when changing the concentration from 1 to 2, a part of the gas obtained from the adsorption tank is refluxed to the adsorption tank by the reflux means during the desorption step.
JP1213159A 1989-08-18 1989-08-18 Gas generator Expired - Fee Related JPH0691927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1213159A JPH0691927B2 (en) 1989-08-18 1989-08-18 Gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1213159A JPH0691927B2 (en) 1989-08-18 1989-08-18 Gas generator

Publications (2)

Publication Number Publication Date
JPH0377617A true JPH0377617A (en) 1991-04-03
JPH0691927B2 JPH0691927B2 (en) 1994-11-16

Family

ID=16634545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1213159A Expired - Fee Related JPH0691927B2 (en) 1989-08-18 1989-08-18 Gas generator

Country Status (1)

Country Link
JP (1) JPH0691927B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003873A1 (en) * 1993-07-27 1995-02-09 Sumitomo Seika Chemicals Co., Ltd. Method and apparatus for separating nitrogen-rich gas
US6314161B1 (en) 1999-08-10 2001-11-06 Kabushiki Kaisha Toshiba Rotary anode type x-ray tube and x-ray tube apparatus provided with x-ray tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189022A (en) * 1982-04-19 1983-11-04 カルゴン・カ−ボン・コ−ポレ−シヨン Pressure swinging type adsorbing system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189022A (en) * 1982-04-19 1983-11-04 カルゴン・カ−ボン・コ−ポレ−シヨン Pressure swinging type adsorbing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003873A1 (en) * 1993-07-27 1995-02-09 Sumitomo Seika Chemicals Co., Ltd. Method and apparatus for separating nitrogen-rich gas
US5505765A (en) * 1993-07-27 1996-04-09 Sumitomo Seika Chemicals Co., Ltd. Method and apparatus for separating nitrogen-enriched gas
US6314161B1 (en) 1999-08-10 2001-11-06 Kabushiki Kaisha Toshiba Rotary anode type x-ray tube and x-ray tube apparatus provided with x-ray tube

Also Published As

Publication number Publication date
JPH0691927B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
JP6948804B2 (en) Gas concentrator and gas concentrator
JPH01104327A (en) Apparatus for gas separation
JPS61266302A (en) Recovering method for concentrated oxygen
JP2002126435A (en) Method of separating and purifying gas and equipment therefor
EP3185987B1 (en) Method of drying a hydrogen gas mixture produced by an electrochemical hydrogen compressor
JPH03262514A (en) Concentration of chlorine gas
CA2400354C (en) Method of recovering enriched gaseous oxygen
JPH0377617A (en) Gas generator
JP2000210525A (en) Operation control device in oxygen enriching device
JP2954955B2 (en) Gas separation device
JP2007054678A (en) Stabilization method for stabilizing concentration of gas and gas concentrator
JP2958032B2 (en) Gas separation device
JPH062731Y2 (en) Gas separation device
JPH10194708A (en) Oxygen enricher
JP3119659B2 (en) Gas separation device
JP2741889B2 (en) Gas separation device
JPH02280811A (en) Gas separator
WO2023246255A1 (en) Voltage-swing method for carbon capture using porous carbons
JP2514041B2 (en) Air separation device
WO2023067955A1 (en) Gas measuring instrument
CN217304776U (en) Adsorption and desorption performance testing device
JPH0938443A (en) Gas separator
JPH0731825A (en) Gas separator
JPH0321317A (en) Gas separation device
JPH0231813A (en) Gas separation device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees