JPH0377549B2 - - Google Patents

Info

Publication number
JPH0377549B2
JPH0377549B2 JP17708584A JP17708584A JPH0377549B2 JP H0377549 B2 JPH0377549 B2 JP H0377549B2 JP 17708584 A JP17708584 A JP 17708584A JP 17708584 A JP17708584 A JP 17708584A JP H0377549 B2 JPH0377549 B2 JP H0377549B2
Authority
JP
Japan
Prior art keywords
contour
point
feature
points
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17708584A
Other languages
Japanese (ja)
Other versions
JPS6154577A (en
Inventor
Masao Nito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP17708584A priority Critical patent/JPS6154577A/en
Publication of JPS6154577A publication Critical patent/JPS6154577A/en
Publication of JPH0377549B2 publication Critical patent/JPH0377549B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は例えば組立ロボツトや半導体の自動ボ
ンデイング装置等、に設けられ2次元の撮像手段
を用いて操作あるいは加工の対象となる部品(対
象部品という)等の対象物を撮像し、その輪郭形
状中の特徴点としてのハンドリング点やボンデン
グ点などを検出する装置に関する。
[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] The present invention is directed to a part to be manipulated or processed (target part) by using a two-dimensional imaging means installed in, for example, an assembly robot or an automatic bonding device for semiconductors. The present invention relates to a device that captures an image of a target object, such as an object, and detects handling points, bonding points, etc. as feature points in the contour shape of the object.

〔従来技術とその問題点〕[Prior art and its problems]

以下各図の説明において同一の符号は同一又は
相当部分を示す。
In the following description of each figure, the same reference numerals indicate the same or corresponding parts.

従来、前記対象部品としての被撮像物体を撮像
し、該部品中の操作あるいは加工の対象点とな
る、その画像の輪郭特徴点を検出する技術として
は、本出願人による特開昭59−201180号(特公平
1−30183号)「輪郭特徴検出方式」(以下文献(1)
と呼ぶ)がある。
Conventionally, a technique for capturing an image of an object to be imaged as the target part and detecting contour feature points of the image, which are target points for manipulation or processing in the part, is disclosed in Japanese Patent Application Laid-Open No. 59-201180 by the present applicant. No. (Special Publication No. 1-30183) “Contour Feature Detection Method” (Reference (1)
).

第3図はこの方式によつて求められた特徴点の
例を示す。すなわち同図においてFは対象部品2
00の2次元形状を示す2値化画像、Pはこの2
値化画像Fの輪郭上の特徴点としての突起(以下
角点という)、Nは同じく特徴点としてのくぼみ
(以下谷点という)である。なおGは画像Fの重
心(図心)、X,Yは画像走査の軸を示す。
FIG. 3 shows an example of feature points determined by this method. In other words, in the same figure, F is the target part 2.
A binarized image showing the two-dimensional shape of 00, P is this 2
N is a protrusion (hereinafter referred to as a corner point) as a feature point on the contour of the value image F, and N is a depression (hereinafter referred to as a valley point) also as a feature point. Note that G indicates the center of gravity (centroid) of the image F, and X and Y indicate the axes of image scanning.

このように前記方式では、特徴点の角点P、谷
点Nなどの種類、X,Y軸上の位置、数は検出し
ているが、対象部品200従つて2値化画像Fの
重心Gの移動や重心Gを中心とする回転(以下こ
のような部品200又は画像Fの変位を単に“配
置”又は“移動や回転”という)によつて、特徴
点の検出順が変つた場合にも、輪郭上の特定の特
徴点を同定していない。従つてこの従来技術では
種々の配置で作業台上に置かれる対象部品200
上の特定の操作あるいは加工対象点の位置を検出
することができないという問題点がある。
In this way, the above method detects the types of feature points such as corner points P and valley points N, their positions on the X and Y axes, and their numbers; Even if the detection order of the feature points changes due to movement or rotation around the center of gravity G (hereinafter such displacement of the component 200 or image F will be simply referred to as "placement" or "movement or rotation"). , specific feature points on the contour are not identified. Therefore, in this prior art, the target parts 200 are placed on the workbench in various arrangements.
There is a problem in that the above specific operation or the position of the point to be processed cannot be detected.

〔発明の目的〕[Purpose of the invention]

本発明の目的は前記の問題点を除去し、対象部
品の配置に拘わらず、その特定の操作あるいは加
工対象点、従つてその画像の輪郭上の所定の特徴
点の位置を特定できる輪郭特徴点の番号付(ラベ
リングともいう)装置を提供することを目的とす
る。
An object of the present invention is to eliminate the above-mentioned problems, and to provide a contour feature point that can specify the position of a specific operation or processing target point, that is, a predetermined feature point on the contour of the image, regardless of the arrangement of the target part. The purpose of this invention is to provide a numbering (also called labeling) device.

〔発明の要点〕[Key points of the invention]

この発明の要点は、対象部品の2次元画像中の
対象形状の輪郭を一定方向に全周にわたり追跡
し、このとき得られる輪郭情報により輪郭部にお
ける形状特徴点を検出し、前記対象形状を前記特
徴点により多角形に近似し、前記特徴点のうちの
1つを基点として、前記多角形の周上を所定方向
にたどりつつ、出現する各特徴点に対し順次番号
付けを行う点にある。
The gist of this invention is to trace the outline of the target shape in a two-dimensional image of the target part over the entire circumference in a fixed direction, detect shape feature points in the contour part using the contour information obtained at this time, and A polygon is approximated by feature points, and each feature point that appears is sequentially numbered while tracing the circumference of the polygon in a predetermined direction using one of the feature points as a base point.

また前記基点としては、例えば前記多角形の辺
のうち、最大辺長を持つ1辺の一端を用いたり、
あるいは前記対象形状の重心と各特徴点との距離
のうち、最大距離にある点を用いたりする点にあ
る、 換言すれば本発明の要点は、(対象部品等を2
次元撮像装置等で撮像しこの画像信号をA/D変
換器等を介し2値化して得た)対象となる2値化
画像の輪郭画素を、(輪郭追跡回路等を介し)順
次該2値化画像を所定方向(例えば反時計方向、
なおこの方向を以下輪郭追跡方向と呼ぶ)に1周
するように追跡し、このとき得られる各輪郭画素
の座標値と、隣接する輪郭画素への追跡方向を示
す追跡方向コードとから、(特徴検出回路等を介
し)輪郭上の突起又はくぼみ等、所定の特徴部分
を代表する(角点又は谷点などの)輪郭画素(以
下特徴点と呼ぶ)の位置を、前記輪郭を所定方向
(例えば反時計方向)に1周する順に検出し、そ
の順序で記憶する装置において、 前記特徴点をその全てからなる第1の群(例え
ば角点及び谷点の全てを含む群)又はそれが共有
する性質で群別された複数の第2の群(例えば角
点のみ又は谷点のみからなる群)に区分すると
き、 前記第1もしくは第2の群ごとに、前記輪郭を
1周するように前記の同一の群内の各特徴点を順
次結んで得られる多角形の各辺長を算出する辺長
算出手段、又は重心算出回路などを介して得た前
記2値化画像の重心と前記の同一の群内の各特徴
点との距離(以下重心距離と呼ぶ)を算出する重
心距離算出手段と、 算出された前記の各辺長又は各重心距離に基づ
いて当該群内の特徴点を代表する点(以下基点と
呼ぶ)を決定する基点決定手段と、 前記基点を出発点とし、前記の順序に基づい
て、前記輪郭を所定方向(例えば反時計方向)に
1周するように、当該群内の各特徴点に順次番号
付を行う特徴点ラベリング手段と、(の各手段)
を(特徴点番号付回路内などに)備えた点、もし
くはさらに前記基点決定手段は前記各辺長のうち
最大値を持つ辺の両側中前記輪郭追跡方向に対し
所定の側(例えば時計方向の側)にある特徴点を
前記基点とする手段を含むようにした点、もしく
はさらに前記基点決定手段は前記各重心距離のう
ち最大のものに対応する特徴点を前記基点とする
手段を含むようにした点、もしくはさらに前記基
点決定手段は、前記の同一の群に属する基点が複
数となつたときは、該複数の各基点を前記の所定
側(例えば時計方向側)とする最大辺長の各辺に
対し、前記輪郭追跡方向を基準とする所定の側
(例えば反時計方向側)に、隣接する前記多角形
の辺長を比較する手段を設けるとともに、前記隣
接辺長のうち最大値を持つ辺の両側中、前記輪郭
追跡方向に対し所定の側(例えば時計方向側)に
ある特徴点を新たな基点として決定する手段を含
むようにした点、又はさらに前記基点決定手段
は、前記の同一の群に属する基点が負数となつた
ときは、該複数の各基点を前記輪郭追跡方向に対
し所定の側(例えば時計方向側)とする前記多角
形の辺が、前記重心に対して張る角度(辺対向角
など)を比較する手段を設けるとともに、前記角
度のうち最大のものに対応する基点を新たな基点
として決定する手段を含むようにした点にある。
Further, as the base point, for example, one end of one side having the maximum side length among the sides of the polygon may be used,
Alternatively, among the distances between the center of gravity of the target shape and each feature point, the point at the maximum distance is used. In other words, the gist of the present invention is to
Contour pixels of a target binary image (obtained by capturing an image with a dimensional imaging device, etc., and converting this image signal into a binary image via an A/D converter, etc.) are sequentially converted into the binary values (via a contour tracking circuit, etc.). rotate the converted image in a predetermined direction (e.g. counterclockwise,
Note that this direction is hereinafter referred to as the contour tracking direction), and from the coordinate value of each contour pixel obtained at this time and the tracking direction code indicating the tracking direction to the adjacent contour pixel, (feature The positions of contour pixels (hereinafter referred to as feature points) (such as corner points or valley points) representing a predetermined characteristic portion such as a protrusion or depression on the contour (via a detection circuit, etc.) are determined by moving the contour in a predetermined direction (e.g. In a device that detects feature points in the order of one round (counterclockwise) and stores them in that order, When dividing into a plurality of second groups based on properties (for example, a group consisting only of corner points or only valley points), for each of the first or second groups, the The center of gravity of the binarized image obtained through a side length calculation means that calculates the length of each side of a polygon obtained by sequentially connecting each feature point in the same group, or a center of gravity calculation circuit, etc. a center of gravity distance calculating means for calculating the distance to each feature point in the group (hereinafter referred to as center of gravity distance); and representing the feature points in the group based on the calculated side length or each center of gravity distance. a base point determining means for determining a point (hereinafter referred to as a base point); and a base point determining means for determining a point (hereinafter referred to as base point); a feature point labeling means for sequentially numbering each feature point of (each means of);
(in a feature point numbered circuit, etc.), or furthermore, the base point determining means is located on a predetermined side (for example, clockwise) with respect to the contour tracing direction on both sides of the side having the maximum value among the respective side lengths. (side)), or further, the base point determining means includes means for determining a feature point corresponding to the largest one of the center of gravity distances as the base point. When there are multiple base points belonging to the same group, the base point determination means determines each point of maximum side length with each of the multiple base points on the predetermined side (for example, clockwise side). Means for comparing the side lengths of the adjacent polygons is provided on a predetermined side (for example, counterclockwise side) with respect to the contour tracing direction as a reference, and the polygon has the maximum value among the adjacent side lengths. A point including means for determining a feature point located on a predetermined side (for example, clockwise side) with respect to the contour tracing direction on both sides of the edge as a new base point, or further, the base point determining means may include the same feature point as described above. When the base points belonging to the group are negative numbers, the angle that the side of the polygon that makes each of the plurality of base points on a predetermined side (for example, clockwise side) with respect to the contour tracing direction makes with respect to the center of gravity. The present invention is characterized in that it includes a means for comparing angles (side facing angles, etc.) and a means for determining a base point corresponding to the largest one of the angles as a new base point.

〔発明の実施例〕[Embodiments of the invention]

以下第1図、第2図を用いて本発明の実施例を
説明する。第1図は本発明の実施例の構成を示す
ブロツク図、第2図は第1図に基づき、検出番号
付された対象部品の2値化画像の輪郭上の特徴点
の例を示す図である。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a diagram showing an example of feature points on the outline of a binarized image of a target part to which detection numbers are assigned, based on FIG. 1. be.

第1図において、200は対象部品であり、2
01はこれを2次元的に撮像し、その画像を前記
X,Y軸方向に走査して画像信号に変換する2次
元撮像装置である。202はA/D変換器で、対
象部品200の表面における明るさや、色相によ
つて変化する、2次元撮像装置201から出力さ
れるアナログの映像信号を適当なS/N比を得る
レベル、または対象部品200に応じたレベルで
デジタル化(2値化)し、背景と対象部品200
の領域とを区分し、対象部品の2値化画像Fを得
る回路である。203は輪郭追跡回路で、A/D
変換器202から得た2値化画像Fのデータ中の
対象形状のデータをもとに、対象形状の輪郭画素
(輪郭点ともいう)を一定方向(例えば反時計方
向)に追跡し、各輪郭点の座標値と各輪郭点に隣
接する次輪郭点への方向コードをもとめる回路で
ある。この回路の詳細は本出願人による特開昭59
−135579(特公平1−30180)「パターンの輪郭追
跡方法」にその例が説明されている。204は特
徴検出回路で、輪郭追跡回路203から得られる
情報をもとに前記対象形状における輪郭部の特徴
点(角点P、谷点N等)の位置を検出し、その検
出順に記憶する回路である。この回路の詳細は前
記文献(1)にその例が説明されている。205は特
徴点番号付回路で、特徴検出回路204で検出さ
れた各特徴点に対し、画面中の画像Fの移動や回
転に無関係となるような、一定の番号付を行う回
路であり、本発明の核心となるものである。20
6は重心算出回路で、特徴点番号付回路205の
機能を補強するために対象形状の重心を算出す
る。
In FIG. 1, 200 is the target part, 2
01 is a two-dimensional imaging device that images this two-dimensionally, scans the image in the X and Y axis directions, and converts it into an image signal. 202 is an A/D converter that converts the analog video signal output from the two-dimensional imaging device 201, which changes depending on the brightness and hue on the surface of the target component 200, to a level that obtains an appropriate S/N ratio; Digitize (binarize) at a level corresponding to the target part 200, and convert the background and target part 200.
This is a circuit that separates the area from the target part and obtains a binarized image F of the target part. 203 is a contour tracking circuit, A/D
Based on the data of the target shape in the data of the binarized image F obtained from the converter 202, contour pixels (also referred to as contour points) of the target shape are tracked in a fixed direction (for example, counterclockwise), and each contour is This circuit obtains the coordinate value of a point and the direction code to the next contour point adjacent to each contour point. The details of this circuit are published in Japanese Unexamined Patent Publication No. 59, published by the present applicant.
An example is described in ``Pattern contour tracing method'' (Japanese Patent Publication No. 1-30180). 204 is a feature detection circuit that detects the positions of feature points (corner points P, valley points N, etc.) of the contour in the target shape based on the information obtained from the contour tracking circuit 203, and stores them in the order of detection. It is. An example of the details of this circuit is explained in the above-mentioned document (1). Reference numeral 205 denotes a feature point numbering circuit, which assigns a constant number to each feature point detected by the feature detection circuit 204 so as to be unrelated to the movement or rotation of the image F on the screen. This is the core of the invention. 20
Reference numeral 6 denotes a center of gravity calculation circuit which calculates the center of gravity of the target shape in order to reinforce the function of the feature point numbering circuit 205.

次に第2図を用いて1図の構成装置による各特
徴点に対する番号付の動作を説明する。第2図で
は検出された特徴点としての角点PをP1〜P4
で、同じく谷点NをN1〜N8で表わしてある。
なおこの例では角点P(P1〜P4)と谷点N(N
1〜N8)とは、特徴点番号付回路205内の
別々の手段により番号付を行つている。
Next, referring to FIG. 2, the operation of numbering each feature point by the component device shown in FIG. 1 will be explained. In Fig. 2, corner points P as detected feature points are P1 to P4.
Similarly, the valley points N are represented by N1 to N8.
Note that in this example, corner points P (P1 to P4) and valley points N (N
1 to N8) are numbered by separate means within the feature point numbering circuit 205.

まず谷点Nの番号付けについて説明する。対象
形状(2値化画像Fの外形の輪郭)から検出され
た谷点N1〜N8を輪郭点の追跡方向(反時計方
向)Aの順に結び多角形近似を行い、同時にこの
多角形の各辺長を調べ、最大の辺長をもとめ、こ
の最大辺長となる辺の所定方向(この方向は前記
追跡方向Aを基準として定められる。ここでは例
えば時計方向)の側の一端を基点として、所定方
向(例えば反時計方向A)に順次番号付を行う。
First, the numbering of valley points N will be explained. Polygonal approximation is performed by connecting the valley points N1 to N8 detected from the target shape (the outline of the external shape of the binarized image F) in the order of contour point tracking direction (counterclockwise direction) A, and at the same time, each side of this polygon is The length of the side is determined, the maximum side length is determined, and one end of the side having the maximum side length in a predetermined direction (this direction is determined based on the tracking direction A, here, for example, clockwise) is used as a base point, and Numbering is performed sequentially in the direction (for example, counterclockwise direction A).

ただし第2図の例では最大辺長の辺aと、2番
目の長さを持つ辺cとの長さがほぼ等しく有意差
をもつて両者を区別できないので、このような場
合には例えば次の規則を適用する。すなわち辺
a,cに対しそれぞれ所定方向(例えば反時計方
向A)の側に隣接する辺b,dの辺長を比較し長
い方の辺(この場合d)を前記最大辺長に置換え
て、前記の基点N1の決定及びこれに次ぐ各点N
2〜N8の前記順次番号付を行うものである。こ
のように各特徴点に番号付を行うことにより、画
面中の画像Fの前記移動や回転に関係なく、一義
的に番号付を行うことができる。
However, in the example in Figure 2, the lengths of side a, which is the longest side, and side c, which is the second longest side, are almost the same and there is no significant difference between them, so it is impossible to distinguish between the two, so in such a case, for example, the following The rules apply. That is, compare the side lengths of sides b and d adjacent to sides a and c in a predetermined direction (for example, counterclockwise direction A), and replace the longer side (d in this case) with the maximum side length, Determination of the base point N1 and each subsequent point N
The sequential numbering from 2 to N8 is performed. By assigning numbers to each feature point in this way, the numbering can be done uniquely regardless of the movement or rotation of the image F on the screen.

次に角点Pについては、谷点Nと同様の方法で
番号付を行つてもよいし、また谷点N及び角点P
のすべての特徴点を前記追跡方向Aにおける出現
の順に結んで、谷、角点を共に含む多角形近似を
行い、この新たな多角形について前記と同様な方
法により基点を求め、この基点が谷点であればN
1、角点であればP1と定め、以後新たな多角形
の各辺を反時計方向(追跡方向A)にたどりつ
つ、谷点、角点の種類別にそれぞれ順番の番号付
を行うこととしてもよい。
Next, the corner points P may be numbered in the same manner as the valley points N, or the valley points N and the corner points P
Connect all the feature points in the order of appearance in the tracking direction A, perform polygonal approximation that includes both valleys and corner points, find the base point of this new polygon by the same method as above, and if this base point is a valley. If it is a point, N
1. If it is a corner point, it is set as P1, and from now on, while tracing each side of the new polygon in a counterclockwise direction (tracking direction A), numbering is done in order according to the type of valley point and corner point. good.

ただし第2図の角点Pについては以下に述べる
ように、さらに異なつた方法で番号付を行う例を
示す。つまり画像Fの重心Gと各角点P(P1〜
P4)とを距離(重心距離ともいう)のうち、最
大距離にあるものを求めて基点とし、以下前記と
同様(反時計方向A)に順次番号付を行う。ただ
し第2図の場合重心距離e(角点P4に対応)、と
f(角点P1に対応)がほぼ等しく最大距離であ
るため、さらに次のような規則を適用して基点を
決定する。
However, regarding the corner point P in FIG. 2, an example will be shown in which numbering is done in a different way, as described below. In other words, the center of gravity G of the image F and each corner point P (P1~
P4) is the maximum distance among the distances (also referred to as center of gravity distances) and is used as the base point, and the numbers are sequentially numbered in the same manner as above (counterclockwise direction A). However, in the case of FIG. 2, since the center of gravity distances e (corresponding to corner point P4) and f (corresponding to corner point P1) are approximately equal and the maximum distances, the following rules are further applied to determine the base point.

すなわち前記最大距離にある各角点P4,P1
と各角点P4,P1のそれぞれに追跡方向Aに隣
接する角点P1,P2とを結ぶ辺4,1、
1,P2が重心Gに対して作る角(辺対向角とも
いう)α,βを比較し、大きい方の角βに対応す
る角点をP1として、以下前記と同様に角点P2
〜P4の番号付を行うものである。
That is, each corner point P4, P1 located at the maximum distance
and sides 4,1 connecting corner points P1, P2 adjacent to each corner point P4, P1 in the tracking direction A,
1. Compare the angles α and β (also referred to as opposite side angles) that P2 makes with respect to the center of gravity G, and set the corner point corresponding to the larger angle β as P1.
-P4 are numbered.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、この発明によ
れば、対象形状の輪郭上に検出された各特徴点の
うち基点となるものを、各特徴点を前記輪郭に沿
つて結んだ多角形の辺長、あるいは各特徴点と対
象形状の重心との距離など、画面中の対象形状の
配置と無関係となる量に基づいて決定したうえ、
他の特徴点を前記基点を出発点として前記輪郭に
沿つて所定方向に順次番号付を行うこととしたの
で、全ての特徴点の番号が対象形状の移動や回転
に拘わりなく決定でき、従つて前記特徴点を操作
もしくは加工の対象点としたときも対象部品の配
置と無関係に対象部品に必要な操作、加工を施す
ことが可能となる。
As is clear from the above description, according to the present invention, a base point among the feature points detected on the contour of the target shape is connected to a side of a polygon connecting each feature point along the contour. It is determined based on quantities that are unrelated to the arrangement of the target shape on the screen, such as the length or the distance between each feature point and the center of gravity of the target shape, and
Since the other feature points are sequentially numbered in a predetermined direction along the contour using the base point as a starting point, the numbers of all feature points can be determined regardless of movement or rotation of the target shape. Even when the feature point is used as a target point for operation or processing, it becomes possible to perform necessary operations and processing on the target part regardless of the arrangement of the target part.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成を示すブロツク
図、第2図は第1図の動作を説明するための対象
部品の2値化画像の例を示す図、第3図は従来技
術に基づき検出された2値化画像の輪郭上の特徴
点の例を示す図である。 200……対象部品、201……2次元撮像装
置、202……A/D変換器、203……輪郭追
跡回路、204……特徴検出回路、205……特
徴点番号付回路、206……重心算出回路、P
(P1〜P4)……角点、N(N1〜N8)……谷
点、G……重心、a〜d……辺、e〜g……重心
距離、α,β……辺対向角。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a diagram showing an example of a binarized image of the target part to explain the operation of FIG. 1, and FIG. 3 is a diagram showing the conventional technology. FIG. 2 is a diagram illustrating an example of feature points on the contour of a binarized image detected based on FIG. 200... Target part, 201... Two-dimensional imaging device, 202... A/D converter, 203... Contour tracking circuit, 204... Feature detection circuit, 205... Feature point numbering circuit, 206... Center of gravity Calculation circuit, P
(P1-P4)...corner point, N(N1-N8)...valley point, G...center of gravity, a-d...side, e-g...center-of-gravity distance, α, β...side opposite angle.

Claims (1)

【特許請求の範囲】 1 対象となる2値化画像の輪郭画素を順次該2
値化画像を所定方向(以下輪郭追跡方向と呼ぶ)
に1周するように追跡し、このとき得られる各輪
郭画素の座標値と、隣接する輪郭画素への追跡方
向を示す追跡方向コードとから、輪郭上の突起又
はくぼみ等、所定の特徴部分を代表する輪郭画素
(以下特徴点と呼ぶ)の位置を、前記輪郭を所定
方向に1周する順に検出し、その順序で記憶する
装置において、 前記特徴点をその全てからなる第1の群又はそ
れが共有する性質で群別された複数の第2の群に
区分するとき、 前記第1もしくは第2の群ごとに、前記輪郭を
1周するように前記の同一の群内の各特徴点を順
次結んで得られる多角形の各辺長を算出する辺長
算出手段、又は前記2値化画像の重心と前記の同
一の群内の各特徴点との距離(以下重心距離と呼
ぶ)を算出する重心距離算出手段と、 算出された前記の各辺長又は各重心距離に基づ
いて当該群内の特徴点を代表する点(以下基点と
呼ぶ)を決定する基点決定手段と、 前記基点を出発点とし、前記の順序に基づい
て、前記輪郭を所定方向に1周するように、当該
群内の各特徴点に順次番号付を行う特徴点ラベリ
ング手段と、を備えたことを特徴とする輪郭特徴
点のラベリング装置。 2 特許請求範囲第1項に記載の装置において、
前記基点決定手段は前記各辺長のうち最大値を持
つ辺の両側中前記輪郭追跡方向に対し所定の側に
ある特徴点を前記基点とする手段を含むことを特
徴とする輪郭特徴点のラベリング装置。 3 特許請求範囲第1項に記載の装置において、
前記基点決定手段は前記各重心距離のうち最大の
ものに対応する特徴点を前記基点とする手段を含
むことを特徴とする輪郭特徴点のラベリング装
置。 4 特許請求範囲第2項に記載の装置において、
前記基点決定手段は、前記の同一の群に属する規
点が複数となつたときは、該複数の各基点を前記
の所定側とする最大辺長の各辺に対し、前記輪郭
追跡方向を基準とする所定の側に、隣接する前記
多角形の辺長を比較する手段を設けるとともに、
前記隣接辺長のうち最大値を持つ辺の両側中、前
記輪郭追跡方向に対し所定の側にある特徴点を新
たな基点として決定する手段を含むことを特徴と
する輪郭特徴点のラベリング装置。 5 特許請求範囲第3項に記載の装置において、
前記基点決定手段は、前記の同一の群に属する規
点が複数となつたときは、該複数の各基点を前記
輪郭追跡方向に対し所定の側とする前記多角形の
辺が、前記重心に対して張る角度を比較する手段
を設けるとともに、前記角度のうち最大のものに
対応する基点を新たな基点として決定する手段を
含むことを特徴とする輪郭特徴点のラベリング装
置。
[Claims] 1. Contour pixels of the target binarized image are sequentially
The digitized image is moved in a predetermined direction (hereinafter referred to as the contour tracking direction).
A predetermined characteristic portion, such as a protrusion or depression, on the contour is detected from the coordinate value of each contour pixel obtained at this time and the tracking direction code indicating the tracking direction to the adjacent contour pixel. In a device that detects the positions of representative contour pixels (hereinafter referred to as feature points) in the order of one round of the contour in a predetermined direction and stores them in that order, the feature points are stored in a first group consisting of all the feature points or a first group consisting of all of the feature points. When classifying into a plurality of second groups based on shared properties, for each first or second group, each feature point in the same group is placed around the contour once. Side length calculating means for calculating the length of each side of a polygon obtained by sequentially connecting the polygons, or calculating the distance between the center of gravity of the binarized image and each feature point in the same group (hereinafter referred to as center of gravity distance) a center of gravity distance calculation means for determining a point representing the feature points in the group (hereinafter referred to as a base point) based on the calculated side lengths or center of gravity distances; point, and feature point labeling means for sequentially numbering each feature point in the group so as to go around the contour once in a predetermined direction based on the above order. Feature point labeling device. 2. In the device according to claim 1,
Labeling of contour feature points, wherein the base point determining means includes means for determining, as the base point, a feature point located on a predetermined side with respect to the contour tracing direction on both sides of the side having the maximum value among the respective side lengths. Device. 3. In the device according to claim 1,
The apparatus for labeling contour feature points, wherein the base point determining means includes means for setting the feature point corresponding to the largest one among the respective center-of-gravity distances as the base point. 4. In the device according to claim 2,
When there are a plurality of reference points belonging to the same group, the reference point determining means determines the contour tracing direction as a reference for each side of the maximum side length with each of the plurality of reference points as the predetermined side. A means for comparing the side lengths of the adjacent polygons is provided on a predetermined side of the polygon, and
A labeling device for contour feature points, comprising means for determining, as a new base point, a feature point located on a predetermined side with respect to the contour tracing direction on both sides of the side having the maximum value among the adjacent side lengths. 5. In the device according to claim 3,
When there are a plurality of reference points belonging to the same group, the reference point determining means determines that a side of the polygon having each of the plurality of reference points on a predetermined side with respect to the contour tracing direction is located at the center of gravity. 1. A labeling device for contour feature points, characterized in that the device includes means for comparing the angles extended to the other angles, and means for determining a base point corresponding to the largest one of the angles as a new base point.
JP17708584A 1984-08-25 1984-08-25 Labeling device for contour feature point Granted JPS6154577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17708584A JPS6154577A (en) 1984-08-25 1984-08-25 Labeling device for contour feature point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17708584A JPS6154577A (en) 1984-08-25 1984-08-25 Labeling device for contour feature point

Publications (2)

Publication Number Publication Date
JPS6154577A JPS6154577A (en) 1986-03-18
JPH0377549B2 true JPH0377549B2 (en) 1991-12-10

Family

ID=16024861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17708584A Granted JPS6154577A (en) 1984-08-25 1984-08-25 Labeling device for contour feature point

Country Status (1)

Country Link
JP (1) JPS6154577A (en)

Also Published As

Publication number Publication date
JPS6154577A (en) 1986-03-18

Similar Documents

Publication Publication Date Title
US6047893A (en) Method of locating an object-applied optical code
JPH0377549B2 (en)
JP3627249B2 (en) Image processing device
JPH08161508A (en) Pattern detecting method
JPH02242382A (en) Defect checking method
WO2020031980A1 (en) Method for correcting lens marker image, correcting device, program, and recording medium
JP2912070B2 (en) Object position recognition method
JPH06160295A (en) Flaw inspection method using image processing
JP2710685B2 (en) Defect detection method by visual inspection
JPH08171627A (en) Centroid detecting method for calibration pattern
JPH05113315A (en) Detecting method for center position of circular image data
JPS6261340A (en) Detecting device for necessary positioning angle of wafer
JPH0612249B2 (en) Pattern inspection device
JP2897612B2 (en) Work detection method
JP3864524B2 (en) Circle detection method and detection apparatus
JPH0352015B2 (en)
JP2949628B2 (en) Image area separation method
JP2681087B2 (en) Horizontal line detector
JPS6186879A (en) Label attachment device to hole
JPH0645845Y2 (en) Automatic surface smoothness inspection device
JP2787851B2 (en) Pattern feature extraction device
JPH0624028B2 (en) Position measurement method of feature point corners for pattern recognition
JPH0785263B2 (en) Pattern scratch detector
JPH05118819A (en) Visual recognition apparatus
JPH05266200A (en) Shape deciding method using chain code