JPH0377455B2 - - Google Patents

Info

Publication number
JPH0377455B2
JPH0377455B2 JP13165082A JP13165082A JPH0377455B2 JP H0377455 B2 JPH0377455 B2 JP H0377455B2 JP 13165082 A JP13165082 A JP 13165082A JP 13165082 A JP13165082 A JP 13165082A JP H0377455 B2 JPH0377455 B2 JP H0377455B2
Authority
JP
Japan
Prior art keywords
filament
sample holder
temperature
sample
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13165082A
Other languages
Japanese (ja)
Other versions
JPS5920843A (en
Inventor
Akio Hori
Isao Kato
Seiji Sumitomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP13165082A priority Critical patent/JPS5920843A/en
Publication of JPS5920843A publication Critical patent/JPS5920843A/en
Publication of JPH0377455B2 publication Critical patent/JPH0377455B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • G01N25/4806Details not adapted to a particular type of sample
    • G01N25/4826Details not adapted to a particular type of sample concerning the heating or cooling arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 本発明は真空中で試料の分析或は観察を行う場
合における試料の加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sample heating device for analyzing or observing a sample in vacuum.

従来の真空中における試料加熱装置は試料を
800℃〜1000℃程度まで加熱するのがやつとであ
り、また室温から高温まで連続的に温度制御をす
ることができなかつた。即ち、従来の真空中試料
加熱装置は第1図A又はBに示すように試料ホル
ダ2を熱源によつて加熱されている加熱炉8によ
つて加熱すると云う方式を採つていたので、試料
が到達できる温度は加熱炉8と試料ホルダ2との
間の熱の伝達効率によつて制約され、真空中にあ
つては加熱炉と試料ホルダとの間の熱の伝達は主
として熱輻射によつて行われるため、加熱炉は試
料よりかなり高温であることを要し、加熱炉の耐
熱性が試料温度の上限を押えていた。更に詳しく
説明すると第1図で5はフイラメントであり、加
熱炉8とフイラメント5との間にはフイラメント
5から放出された電子を加速する電圧が印加して
あり、加熱炉8はフイラメント5からの輻射熱と
フイラメント5から放射される電子の衝撃によつ
て加熱されるようになつている。試料ホルダ2は
加熱炉8に嵌合されるが、交換可能とするため嵌
合はゆるい嵌合であり試料ホルダ2と加熱炉8と
の間の接触面はわずかな凹凸のため全面的に接触
すると云うことは不可能で実際には小数の点で接
触しているに過ぎず、両者間には隙間がある。し
かも真空中であるから、この隙間における熱の伝
達は熱輻射による他なく、熱伝導による伝熱はわ
づかである。試料ホルダの到達温度は自身の熱輻
射による放熱量と上述した熱輻射による加熱炉か
らの伝熱量とのバランスによつて定まり、試料ホ
ルダの全面積と加熱炉との間の伝熱面積との比を
10:1程度と仮定し、ステフアンボルツマンの法
則によつて計算してみると、試料ホルダ2を1000
〓に保つためには加熱炉8は1550〓位にする必要
があり、加熱炉8の耐熱度によつて試料の高温限
界が決まり、その温度は加熱炉の耐熱限界温度よ
りかなり低くなる。また従来は加熱炉の温度制御
はフイラメント5と加熱炉8との間に印加してい
る電子加速電圧を変えることによつて行つてい
た。このため電子加速電圧を0にしても、フイラ
メント5は通電されたまゝであり、フイラメント
5の発熱だけで試料ホルダ2は100℃以上に保た
れるので、100℃以下の温度での分析,測定はで
きなかつた。
Conventional sample heating equipment in vacuum
It was difficult to heat it to around 800℃ to 1000℃, and it was not possible to continuously control the temperature from room temperature to high temperature. In other words, the conventional vacuum sample heating apparatus employs a method in which the sample holder 2 is heated by a heating furnace 8 heated by a heat source, as shown in FIG. 1A or B. The temperature that can be reached is limited by the heat transfer efficiency between the heating furnace 8 and the sample holder 2, and in a vacuum, the heat transfer between the heating furnace and the sample holder is mainly due to thermal radiation. Since the heating process is carried out using a heating furnace, the temperature of the heating furnace must be considerably higher than that of the sample, and the heat resistance of the heating furnace has limited the upper limit of the sample temperature. To explain in more detail, 5 in FIG. 1 is a filament, and a voltage is applied between the heating furnace 8 and the filament 5 to accelerate the electrons emitted from the filament 5. It is heated by radiant heat and the impact of electrons emitted from the filament 5. The sample holder 2 is fitted into the heating furnace 8, but in order to make it replaceable, the fitting is loose, and the contact surface between the sample holder 2 and the heating furnace 8 is slightly uneven, so they are in full contact. Then, it is impossible to say that, in reality, they only touch at a decimal point, and there is a gap between them. Moreover, since it is in a vacuum, the only way for heat to be transferred in this gap is through thermal radiation, and the amount of heat transferred by conduction is very small. The temperature reached by the sample holder is determined by the balance between the amount of heat dissipated by its own thermal radiation and the amount of heat transferred from the heating furnace by the above-mentioned thermal radiation, and is determined by the balance between the total area of the sample holder and the heat transfer area between the heating furnace. ratio
Assuming a ratio of about 10:1 and calculating it using Stephan-Boltzmann's law, the ratio of sample holder 2 to 1000
In order to maintain the temperature at 1,550 °C, the temperature of the heating furnace 8 must be set at about 1550 °C, and the high temperature limit of the sample is determined by the heat resistance of the heating furnace 8, and that temperature is considerably lower than the heat resistance limit temperature of the heating furnace. Conventionally, the temperature of the heating furnace was controlled by changing the electron acceleration voltage applied between the filament 5 and the heating furnace 8. Therefore, even if the electron accelerating voltage is set to 0, the filament 5 remains energized, and the sample holder 2 is kept at 100°C or higher just by the heat generated by the filament 5. Therefore, analysis and measurement at temperatures below 100°C are possible. I couldn't.

本発明は上述したような従来例における2つの
問題点即ち高温限界が低い所で押えられている点
と室温程度の領域での分析,測定に用いることが
できないと云う点を解消することを目的とするも
のである。
The purpose of the present invention is to solve the above-mentioned two problems in the conventional example, namely, that the high temperature limit is limited at a low temperature and that it cannot be used for analysis and measurement in a region around room temperature. That is.

本発明試料加熱装置は試料ホルダを直接フイラ
メントと対向させ、フイラメントと試料ホルダと
の間に電子加速用電圧を印加すると共にフイラメ
ント電流を調節することにより試料ホルダの温度
を制御するようにしたことを特徴とするもので、
試料ホルダが直接加熱されるため、試料ホルダを
上述した従来の加熱炉の温度まで加熱でき、また
フイラメント電流が調節できるので、フイラメン
ト電流を下げれば熱電子放射は減少し、電子衝撃
による加熱が低下してフイラメントの温度低下と
の相加作用で試料ホルダの温度が下り、温度調節
の下方延長としてフイラメント電流を0にすれば
電子放射がなくなるので、電子加速電圧を印加し
たまゝであつても試料ホルダの加熱は停止し、試
料は最高温から室温まで連続的に試料温度の制御
を行うことができる。更に加熱炉が不要だから構
造簡単であり安価に試料加熱装置を提供すること
ができる。
In the sample heating device of the present invention, the sample holder is directly opposed to the filament, and the temperature of the sample holder is controlled by applying an electron acceleration voltage between the filament and the sample holder and adjusting the filament current. It is characterized by
Since the sample holder is heated directly, the sample holder can be heated to the temperatures of the conventional furnaces mentioned above, and the filament current can be adjusted, so lowering the filament current reduces thermionic emission and reduces heating due to electron bombardment. The temperature of the sample holder decreases due to the additive effect of lowering the temperature of the filament, and if the filament current is reduced to 0 as a downward extension of temperature control, electron emission disappears, even if the electron acceleration voltage remains applied. Heating of the sample holder is stopped, and the sample temperature can be continuously controlled from the maximum temperature to room temperature. Furthermore, since no heating furnace is required, the structure is simple and the sample heating device can be provided at low cost.

以下実施例によつて本発明を説明する。第2図
に本発明の一実施例を示す。1は試料で試料ホル
ダ2上に載置される。試料ホルダ2は例えばステ
ンレス鋼で作られており、円柱形で中心部には下
方から穴22が穿つてある。4は試料支え台でス
テンレス鋼などで作られており、中央の貫通孔に
セラミツクの筒3が嵌着固定してある。この筒3
の外径は試料ホルダ2の穴22にゆるく嵌合でき
るようになつており、試料ホルダ2を台4に載置
したときの試料ホルダ2の位置決めと、試料ホル
ダ2とフイラメント5との間の電気的絶縁を行う
ものである。フイラメント5は筒3の中に挿入さ
れており、6はフイラメント加熱用の電圧可変電
源である。7はフイラメント5と試料支え台4と
の間に接続されたフイラメント5から放出される
電子を加熱する電圧の電圧源である。試料温度は
電源6を調節することによつて制御される。
The present invention will be explained below with reference to Examples. FIG. 2 shows an embodiment of the present invention. A sample 1 is placed on a sample holder 2 . The sample holder 2 is made of stainless steel, for example, and has a cylindrical shape with a hole 22 bored in the center from below. Reference numeral 4 denotes a sample support stand made of stainless steel or the like, and a ceramic tube 3 is fitted and fixed in a through hole in the center. This tube 3
The outer diameter of the sample holder 2 is such that it can be loosely fitted into the hole 22 of the sample holder 2, and is suitable for positioning the sample holder 2 when it is placed on the stand 4 and for adjusting the position between the sample holder 2 and the filament 5. It provides electrical insulation. The filament 5 is inserted into the tube 3, and 6 is a variable voltage power source for heating the filament. Reference numeral 7 denotes a voltage source that heats electrons emitted from the filament 5, which is connected between the filament 5 and the sample support stand 4. The sample temperature is controlled by adjusting the power supply 6.

上述した試料加熱装置では試料温度の調節にフ
イラメント電流の調節と共に電子加速電圧電源7
の電圧を変えてもよいが、変えなくても充分温度
調節ができる。まず300℃位までの低温域ではフ
イラメント電流が低くフイラメントは比較的低温
で熱電子の放出はきわめて少く、電子加速電圧が
印加されたまゝであつても電子衝撃による試料ホ
ルダ2の加熱は殆んど行われず、フイラメント5
からの輻射熱だけで試料ホルダの加熱が行われ
る。高温域ではフイラメント電流の増加によりフ
イラメント温度が上つて熱電子放出が盛になり電
子衝撃による加熱が旺盛となり更にフイラメント
の熱輻射が加熱を助け、非常に広い範囲で温度調
節が可能である。
In the above-mentioned sample heating device, the electron accelerating voltage power supply 7 is used to adjust the sample temperature as well as the filament current adjustment.
You may change the voltage, but the temperature can be adjusted sufficiently without changing the voltage. First, in the low-temperature range up to about 300°C, the filament current is low and the filament is relatively low temperature, so there is very little emission of thermionic electrons, and even if the electron accelerating voltage remains applied, there is almost no heating of the sample holder 2 due to electron impact. Filament 5
The sample holder is heated only by radiant heat from the sample holder. In a high temperature range, the filament temperature rises due to an increase in the filament current, thermionic emission increases, and heating due to electron bombardment becomes active.Furthermore, the thermal radiation of the filament aids in heating, making it possible to control the temperature over a very wide range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の縦断側面図、第2図は本発明
の一実施例装置の縦断側面図である。 1…試料、2…試料ホルダ、4…試料支え台、
5…フイラメント、6…フイラメント加熱用電
源、7…電子加速用電圧電源。
FIG. 1 is a longitudinal side view of a conventional example, and FIG. 2 is a longitudinal side view of an apparatus according to an embodiment of the present invention. 1...sample, 2...sample holder, 4...sample support stand,
5... Filament, 6... Power source for heating the filament, 7... Voltage power source for electron acceleration.

Claims (1)

【特許請求の範囲】[Claims] 1 試料ホルダとフイラメントとを対向させ、フ
イラメントにフイラメント電流用可変電源を接続
し、試料ホルダとフイラメントとの間にフイラメ
ントから放出された電子を加速する電子加速電圧
用電源を接続して、電子衝撃の加熱作用およびフ
イラメントからの輻射熱によつて試料ホルダを直
接加熱するようにし、フイラメント電流を変える
ことにより、フイラメントからの輻射熱および電
子放出量を変えて温度調節を行うようにした真空
中試料加熱装置。
1 Place the sample holder and filament facing each other, connect a variable power source for filament current to the filament, and connect a power source for electron acceleration voltage that accelerates electrons emitted from the filament between the sample holder and filament to generate electron impact. A vacuum sample heating device that directly heats the sample holder using the heating action of the filament and radiant heat from the filament, and adjusts the temperature by changing the filament current and the amount of radiant heat and electron emission from the filament. .
JP13165082A 1982-07-27 1982-07-27 Device for heating sample in vacuum Granted JPS5920843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13165082A JPS5920843A (en) 1982-07-27 1982-07-27 Device for heating sample in vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13165082A JPS5920843A (en) 1982-07-27 1982-07-27 Device for heating sample in vacuum

Publications (2)

Publication Number Publication Date
JPS5920843A JPS5920843A (en) 1984-02-02
JPH0377455B2 true JPH0377455B2 (en) 1991-12-10

Family

ID=15063012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13165082A Granted JPS5920843A (en) 1982-07-27 1982-07-27 Device for heating sample in vacuum

Country Status (1)

Country Link
JP (1) JPS5920843A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320733B2 (en) * 2003-05-09 2008-01-22 Sukegawa Electric Co., Ltd. Electron bombardment heating apparatus and temperature controlling apparatus and control method thereof
JP4866681B2 (en) * 2006-08-24 2012-02-01 助川電気工業株式会社 Backside electron impact heating method and apparatus

Also Published As

Publication number Publication date
JPS5920843A (en) 1984-02-02

Similar Documents

Publication Publication Date Title
JP3485104B2 (en) Oven for ion source
Williams et al. Field-emitted current necessary for cathode-initiated vacuum breakdown
JP2001325910A (en) Electron gun and its method of use
JPH0377455B2 (en)
GB1535224A (en) Vacuum electron device having directly-heated matrix-cathode-heater assembly
US3633062A (en) Direct-heated cathode electrodes with cathode shield for electron guns
US4308008A (en) Method for differential thermal analysis
JPS5963651A (en) Ionizing device for material
JPS6084744A (en) Hot cathode
JP2005056582A (en) Temperature control device and temperature control method of electron-bombardment-heating device
JP2000512438A (en) Process and apparatus for forming a conductive path in a semiconductor component
JP3404608B2 (en) Sample temperature adjusting device such as charged beam drawing device and sample holder used in this device
JPH051895Y2 (en)
JPS634503Y2 (en)
JPS64603Y2 (en)
JPS5533719A (en) Electron gun
JPH0612972A (en) Thermoelectric field radiating electron gun
JPS6228041Y2 (en)
DE3866076D1 (en) RADIANT GENERATING SYSTEM FOR ELECTRON BEAM MEASURING DEVICES.
SU321875A1 (en) Electron gun
Wales et al. The heating in vacuum of silicon substrates to temperatures greater than 800° C
JPH0228221B2 (en)
JPH0218837A (en) Liquid metal ion source
JPH06231708A (en) Lengthy electron beam generating device
Ulrich Thermionic Energy Conversion Diode Using a Film Boiling Liquid Metal Anode