JPH0377427B2 - - Google Patents

Info

Publication number
JPH0377427B2
JPH0377427B2 JP4299384A JP4299384A JPH0377427B2 JP H0377427 B2 JPH0377427 B2 JP H0377427B2 JP 4299384 A JP4299384 A JP 4299384A JP 4299384 A JP4299384 A JP 4299384A JP H0377427 B2 JPH0377427 B2 JP H0377427B2
Authority
JP
Japan
Prior art keywords
solution
temperature
temperature generator
path
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4299384A
Other languages
Japanese (ja)
Other versions
JPS60188770A (en
Inventor
Takashi Yasuda
Hajime Yatsuhashi
Masakazu Fujimoto
Tetsuo Sugimoto
Koji Ootani
Takayuki Yokoyama
Noritoshi Yamashita
Mikio Masumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP4299384A priority Critical patent/JPS60188770A/en
Publication of JPS60188770A publication Critical patent/JPS60188770A/en
Publication of JPH0377427B2 publication Critical patent/JPH0377427B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は二重効用吸収冷凍装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a dual-effect absorption refrigeration system.

「従来技術」 従来の二重効用吸収冷凍機では、高温発生器に
溶液液面検出機構を設けて、当該検出機構の信号
により、高温発生器へ稀溶液を送る溶液ポンプを
発停させて高温発生器の液面制御を行なつてい
た。
``Prior art'' In conventional dual-effect absorption refrigerators, the high temperature generator is equipped with a solution level detection mechanism, and a signal from the detection mechanism is used to start and stop the solution pump that sends the diluted solution to the high temperature generator. The generator's liquid level was controlled.

第1図に従来のものの一例を示す。 FIG. 1 shows an example of a conventional device.

第1図において、1は吸収器、2は蒸発器、3
は高温発生器、4は低温発生器、5は凝縮器、6
は高温熱交換器、7は低温熱交換器、8は溶液ポ
ンプ、9は冷媒ポンプ、10は溶液流量制御弁、
11は高温発生器3の液面検知器、12は制御装
置、13は絞り機構であり、これらの機器を溶液
経路、冷媒経路で接続している。
In Figure 1, 1 is an absorber, 2 is an evaporator, and 3
is a high temperature generator, 4 is a low temperature generator, 5 is a condenser, 6
is a high temperature heat exchanger, 7 is a low temperature heat exchanger, 8 is a solution pump, 9 is a refrigerant pump, 10 is a solution flow rate control valve,
11 is a liquid level detector of the high temperature generator 3, 12 is a control device, and 13 is a throttle mechanism, and these devices are connected by a solution path and a refrigerant path.

運転中に万一溶液流量制御弁10にて稀溶液流
入量が絞りきれずに高温発生器3内の溶液液面が
異常上昇した場合、高温発生器3の液面検知器1
1からの信号により制御装置12が溶液ポンプ8
を停止させ、高温発生器3への稀溶液の供給を止
め、液面上昇を抑え、当該液面が正常復帰した後
に溶液ポンプ8を運転して稀溶液を高温発生器3
に供給する。
If the solution level in the high temperature generator 3 rises abnormally due to the solution flow rate control valve 10 not being able to throttle the inflow of the dilute solution during operation, the liquid level detector 1 of the high temperature generator 3
1 causes the control device 12 to control the solution pump 8.
, the supply of the dilute solution to the high temperature generator 3 is stopped, the rise in the liquid level is suppressed, and after the liquid level returns to normal, the solution pump 8 is operated to supply the dilute solution to the high temperature generator 3.
supply to.

しかしながら、この場合には、溶液ポンプ8を
停止すると冷凍性能の低下をきたし、また発停を
繰り返すと溶液ポンプ8に悪影響を及ぼし、或い
は、発停のデイフアレンシヤルが大きい場合は、
トータルの溶液送り量が減少し、高温発生器3の
過濃縮から結晶事故に至らしめる。更に高温発生
器3液面の異常上昇の原因が、高温熱交換器6内
の溶液経路中に生じた結晶である場合には、溶液
ポンプ8が停止すると解晶動作の遅れをきたす、
などという欠点があつた。
However, in this case, if the solution pump 8 is stopped, the refrigeration performance will deteriorate, and if the solution pump 8 is repeatedly started and stopped, it will have an adverse effect on the solution pump 8, or if the differential between starting and stopping is large,
The total amount of solution fed decreases, leading to overconcentration in the high temperature generator 3 and a crystallization accident. Furthermore, if the cause of the abnormal rise in the liquid level of the high temperature generator 3 is crystals generated in the solution path in the high temperature heat exchanger 6, stopping the solution pump 8 will cause a delay in the crystallization operation.
There were drawbacks such as:

また、この改善例として高温発生器に溶液液面
検出機構を設けて、当該検出機構の信号により高
温発生器溶液液出口と低温発生器の間に設けた溶
液バイパス管中のバイパス弁を開閉する方式も提
案されている。
In addition, as an example of this improvement, a solution level detection mechanism is provided in the high temperature generator, and a signal from the detection mechanism opens and closes a bypass valve in a solution bypass pipe provided between the solution outlet of the high temperature generator and the low temperature generator. A method has also been proposed.

第2図のその一例を示す。14はバイパス弁で
ある。
An example of this is shown in FIG. 14 is a bypass valve.

第2図において、運転中万一溶液流量制御弁1
0にて稀溶液流入量が絞りきれずに高温発生器3
内の溶液液面が異常上昇した場合、高温発生器液
面検知器11からの信号により制御装置12がバ
イパス弁14を開き低温発生器4へ溶液を逃が
し、液面上昇を抑え、当該液面が正常復帰した後
にバイパス弁14を閉じる。
In Fig. 2, if during operation, the solution flow control valve 1
At 0, the inflow of dilute solution could not be fully throttled and the high temperature generator 3
When the level of the solution inside rises abnormally, the control device 12 opens the bypass valve 14 in response to a signal from the high temperature generator liquid level detector 11 to release the solution to the low temperature generator 4, suppressing the rise in the liquid level, and reducing the level of the liquid. After returning to normal, the bypass valve 14 is closed.

この方式においては、バイパスした溶液の熱が
エネルギ損失となるため、バイパス弁14は閉止
時の締め切り性能が高く、また耐真空気密性の高
いものが要求される。その上高温部の仕切弁のた
め、耐温、耐蝕性の高い高価な弁が必要となる。
また、液面検知器11、制御機構12及びバイパ
ス弁14を備えるという複雑な構造となり、高価
となる欠点がある。
In this system, the heat of the bypassed solution results in energy loss, so the bypass valve 14 is required to have high shutoff performance when closed and to be highly vacuum-tight. Furthermore, since the gate valve is located in a high temperature section, an expensive valve with high temperature resistance and corrosion resistance is required.
Moreover, it has a complicated structure including a liquid level detector 11, a control mechanism 12, and a bypass valve 14, and has the disadvantage of being expensive.

また、この改善例として高温発生器に液面検出
箱を設け、当該液面検出箱の液面により、高温発
生器と低圧側溶液経路との間に設けたオーバーフ
ロー管中のフロート弁を開閉作動する方式も提案
されている。
In addition, as an example of this improvement, a liquid level detection box is installed in the high temperature generator, and the float valve in the overflow pipe installed between the high temperature generator and the low pressure side solution path is opened and closed depending on the liquid level in the liquid level detection box. A method has also been proposed.

第3図にその一例を示す。15はフロート弁、
16は液面検出箱、17はオーバーフロー管であ
る。
An example is shown in FIG. 15 is a float valve;
16 is a liquid level detection box, and 17 is an overflow pipe.

運転中万一溶液流量制御弁10にて溶液流量が
調節しきれず、高温発生器3内の溶液面が異常上
昇した場合、液面検出箱16内の液面によりフロ
ート弁15が開動作を行ない、オーバーフロー管
17により低圧側溶液経路へ溶液を逃がし、液面
上昇を抑え、当該液面が正常復帰するとフロート
弁15が閉動作を行なう。
During operation, if the solution flow rate cannot be fully adjusted by the solution flow rate control valve 10 and the solution level in the high temperature generator 3 rises abnormally, the float valve 15 will perform an opening operation depending on the liquid level in the liquid level detection box 16. The solution is released to the low-pressure side solution path through the overflow pipe 17 to suppress the rise in the liquid level, and when the liquid level returns to normal, the float valve 15 performs a closing operation.

通常定格運転時高温発生器内圧は700mmHg、
低温発生器内圧は55mmHg程度である。即ち、そ
の圧力差は645mmHgとなり、吸収液にLiBr液を
用いた場合溶液柱換算で約5mもの大きな圧力差
となる。そのためにフロート弁15として、全閉
時にシール性の高い高精度の弁座をもち、更に圧
力差に打ち勝ち弁を開けるために作動トルクの大
きなフロート弁が必要なる故、装置が大きくなる
他高価になる欠点があつた。
The internal pressure of the high temperature generator during normal rated operation is 700mmHg.
The internal pressure of the low temperature generator is approximately 55 mmHg. That is, the pressure difference is 645 mmHg, which is a large pressure difference of about 5 m in terms of a solution column when LiBr liquid is used as the absorption liquid. For this purpose, the float valve 15 requires a high-precision valve seat with high sealing performance when fully closed, and a float valve with large operating torque to overcome the pressure difference and open the valve, which increases the size and cost of the device. There was a drawback.

「発明の目的」 本発明は、従来のものの上記の欠点を除き、高
性能の弁を必要とせず、構造が簡単で信頼性の高
い二重効用吸収冷凍装置を提供することを目的と
するものである。
``Object of the Invention'' The present invention aims to provide a dual-effect absorption refrigeration system that does not require high-performance valves, has a simple structure, and is highly reliable, except for the above-mentioned drawbacks of the conventional ones. It is.

「発明の構成」 本発明は、蒸発器、吸収器、高温及び低温発生
器、凝縮器、高温及び低温熱交換器並びにこれら
の機器を接続する溶液経路、冷媒経路を有する二
重効用吸収冷凍装置において、前記高温発生器か
ら、前記低温発生器に至る溶液経路、又は前記高
温発生器から前記吸収器に至る溶液経路に、前記
高温発生器の内圧を高圧に保持するための高圧保
持機構を設け、前記高温発生器に溶液オーバーフ
ロー管を設け、該オーバーフロー管のオーバーフ
ロー経路にはシール機構を備え、該オーバーフロ
ー経路を前記高温熱交換器出口側から前記高圧保
持機構までの間の濃溶液経路に接続したことを特
徴とする二重効用吸収冷凍装置である。
"Structure of the Invention" The present invention provides a dual-effect absorption refrigeration system having an evaporator, an absorber, a high-temperature and low-temperature generator, a condenser, a high-temperature and low-temperature heat exchanger, and a solution path and a refrigerant path connecting these devices. A high-pressure holding mechanism for maintaining the internal pressure of the high-temperature generator at a high pressure is provided in a solution path from the high-temperature generator to the low-temperature generator, or in a solution path from the high-temperature generator to the absorber. , a solution overflow pipe is provided in the high temperature generator, an overflow path of the overflow pipe is provided with a sealing mechanism, and the overflow path is connected to a concentrated solution path between the outlet side of the high temperature heat exchanger and the high pressure holding mechanism. This is a dual-effect absorption refrigeration system that is characterized by:

「実施例」 本発明の実施例を図面を用いて説明する。"Example" Embodiments of the present invention will be described using the drawings.

第4図において、第1〜3図と同一符号の部分
は同様な構成、作用を有する。
In FIG. 4, parts having the same reference numerals as in FIGS. 1 to 3 have similar structures and functions.

溶液流量制御弁10は、高温発生器3から低温
発生器4に至る溶液経路に設けられ、高温発生器
3の内圧を高圧に保持するための高圧保持機構と
して作用する。
The solution flow rate control valve 10 is provided in the solution path from the high temperature generator 3 to the low temperature generator 4, and acts as a high pressure holding mechanism for maintaining the internal pressure of the high temperature generator 3 at a high pressure.

オーバーフロー管17のオーバーフロー経路の
入口にはシール機構としてフロート弁15が設け
られている。このオーバーフロー経路は、高温熱
交換器6の出口側から高圧保持機構としての溶液
流量制御弁10までの間の濃溶液経路中の戻り口
18に接続されている。
A float valve 15 is provided as a sealing mechanism at the inlet of the overflow path of the overflow pipe 17. This overflow path is connected to a return port 18 in the concentrated solution path from the outlet side of the high temperature heat exchanger 6 to the solution flow rate control valve 10 as a high pressure holding mechanism.

運転中、万一溶液流量制御弁10にて溶液流量
が調節しきれず高温発生器3の溶液液面が異常上
昇した場合、液面検出箱16内の液面により通常
運転中の液面で閉止しているフロート弁15など
の仕切弁が開動作を行ない、オーバーフロー管1
7により高温熱交換器6の出口部に設けた戻り口
18に溶液が戻され液面上昇を抑え、当該液面が
正常復帰機するとフロート弁15が閉動作を行な
う。
During operation, if the solution flow rate is not fully adjusted by the solution flow rate control valve 10 and the solution level in the high temperature generator 3 rises abnormally, the liquid level in the liquid level detection box 16 will close at the liquid level during normal operation. Gate valves such as the float valve 15 that are open perform an opening operation, and the overflow pipe 1
7, the solution is returned to the return port 18 provided at the outlet of the high temperature heat exchanger 6 to suppress the rise in the liquid level, and when the liquid level returns to normal, the float valve 15 performs a closing operation.

フロート弁15が閉状態のとき、通常運転中は
高温発生器3内とオーバーフロー管戻り口18と
の圧力差H18は、高温熱交換器流動損失をHHEX
m、この間の配管流動損失を、HLOSSmとすると、 H18=HHEX+HLOSS となり、通常1m以下に設定することは容易であ
り、前述の第3図の従来例の低温発生器4へバイ
パスさせる場合の圧力差である5mに比較して非
常に小さいため、シール圧も低くて済み、フロー
ト弁15を開くために必要な浮力が小さくて済
み、小さな径のフロート球で満足する故フロート
弁15が簡単な構造となり、安価になる利点があ
る。
When the float valve 15 is closed, the pressure difference H18 between the high temperature generator 3 and the overflow pipe return port 18 during normal operation reduces the flow loss of the high temperature heat exchanger HEX
m, and if the piping flow loss during this period is H LOSS m, then H 18 = H HEX + H LOSS , and it is usually easy to set it to 1 m or less. Since it is very small compared to the pressure difference of 5 m when bypassing, the sealing pressure is also low, and the buoyancy required to open the float valve 15 is small, making it possible to achieve a float that is satisfied with a small diameter float ball. This has the advantage that the valve 15 has a simple structure and is inexpensive.

第5図は本発明の他の実施例を示す。 FIG. 5 shows another embodiment of the invention.

第5図において第1〜4図と同一付号の部分は
同様な構造、作用を有す。絞り機構13は高圧保
持機構として作用する。
In FIG. 5, parts with the same numbers as in FIGS. 1 to 4 have the same structure and function. The throttle mechanism 13 acts as a high pressure holding mechanism.

オーバーフロー管17が非作動時に必要なシー
ラ能力は第4図に示す例にて述べたように1m溶
液柱程度である。それ故オーバーフロー経路にシ
ール機構としてU字管19を設けて系内溶液によ
る液シール機構にてバイパスを防止することが実
用上可能になる。即ち、簡単で安価でかつ可動部
分がないため信頼性の高い高温発生器の溶液制御
機構を提供できる利点がある。
The sealer capacity required when the overflow pipe 17 is not in operation is approximately 1 m solution column as described in the example shown in FIG. Therefore, it is practically possible to provide the U-shaped tube 19 as a sealing mechanism in the overflow path to prevent bypass by the liquid sealing mechanism using the solution in the system. That is, it has the advantage of providing a solution control mechanism for a high temperature generator that is simple, inexpensive, and has no moving parts and is therefore highly reliable.

第6図は、本発明の他の実施例を示す。 FIG. 6 shows another embodiment of the invention.

第6図において第1〜5図と同一の符号の部分
は同様な構成、作用を示す。オーバーフロー管1
7とU字管19との間に溶液ポンプ8の吐出側か
らの分岐管20を接続し、U字管19内に高温発
生器3に至る前の稀溶液を流入させることにより
高温発生器3から戻つた濃溶液がオーバーフロー
管17が非作動時にU字管19内に滞留し、結晶
に到ることを防ぎ、オーバーフロー管17の作動
を確実なものとすることができる。
In FIG. 6, parts with the same reference numerals as in FIGS. 1 to 5 indicate the same structure and operation. Overflow pipe 1
A branch pipe 20 from the discharge side of the solution pump 8 is connected between 7 and the U-shaped pipe 19, and the dilute solution before reaching the high-temperature generator 3 flows into the U-shaped pipe 19. The concentrated solution returned from the U-shaped tube 19 stays in the U-shaped tube 19 when the overflow tube 17 is not in operation, and is prevented from reaching the crystals, thereby making it possible to ensure the operation of the overflow tube 17.

分岐管20は、溶液ポンプ8から低温発生器4
に至る前の稀溶液を導くようにしてもよい。
A branch pipe 20 connects the solution pump 8 to the low temperature generator 4.
It is also possible to introduce a dilute solution before reaching .

第7図は本発明の他の実施例を示す。 FIG. 7 shows another embodiment of the invention.

第7図において第1〜6図と同一符号の部分は
同様な構造、作用を有する。
In FIG. 7, parts having the same reference numerals as in FIGS. 1 to 6 have similar structures and functions.

21はシール機構としての液シールボツクスで
あり、オーバーフロー管17が非作動時にバイパ
ス防止のシール機構を備えている。液シールボツ
クス21の内部には溶液ポンプ8の吐出側から高
温熱交換器6入口に至る稀溶液経路を通し、オー
バーフロー管17作動時に高温発生器3の高温の
戻り溶液にて高温熱交換器6に送られる稀溶液を
加熱する。これによりオーバーフロー管17の作
動原因が高温熱交換器6内の結晶である場合に、
解晶作業を速やかに促進することができる。
Reference numeral 21 denotes a liquid seal box as a sealing mechanism, which is provided with a sealing mechanism to prevent bypass when the overflow pipe 17 is not in operation. Inside the liquid seal box 21, a dilute solution path is passed from the discharge side of the solution pump 8 to the inlet of the high temperature heat exchanger 6, and when the overflow pipe 17 is activated, the high temperature heat exchanger 6 is filled with the high temperature return solution of the high temperature generator 3. Heat the dilute solution sent to. As a result, when the cause of the operation of the overflow pipe 17 is crystals in the high temperature heat exchanger 6,
Crystallization work can be quickly promoted.

液シールボツクス21内は稀溶液分岐管20に
より稀溶液が混合されるため高温熱交換器6内に
比較し、結晶しにくい。
Since the dilute solution is mixed in the liquid seal box 21 by the dilute solution branch pipe 20, it is less likely to crystallize than in the high temperature heat exchanger 6.

「発明の効果」 本発明により、高温発生器に、正常液面時には
小さなシール能力にてバイパスを防止できるオー
バーフロー管を設けることができ、高性能の弁を
必要とせず、複雑な制御機構を要しない、簡単で
小型で安価な信頼性の高い高温発生器の液面制御
機構を有する二重効用吸収冷凍装置を提供するこ
とができ、実用上極めて大なる効果を奏する。
"Effects of the Invention" According to the present invention, an overflow pipe that can prevent bypass with a small sealing capacity when the liquid level is normal can be provided in the high temperature generator, and a high-performance valve is not required and a complicated control mechanism is not required. It is possible to provide a dual-effect absorption refrigeration system having a liquid level control mechanism for a high-temperature generator that is simple, compact, inexpensive, and has high reliability, and has extremely great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図はそれぞれ従来例のフロー図、第4
〜7図はそれぞれ本発明の実施例のフロー図であ
る。 1…吸収器、2…蒸発器、3…高温発生器、4
…低温発生器、5…凝縮器、6…高温熱交換器、
7…低温熱交換器、8…溶液ポンプ、9…冷媒ポ
ンプ、10…溶液流量制御弁、11…高温発生器
3の液面検知器、12…制御装置、13…絞り機
構、14…バイパス弁、15…フロート弁、16
…液面検出箱、17…オーバーフロー管、18…
戻り口、19…U字管、20…分岐管、21…液
シールボツクス。
Figures 1 to 3 are flow diagrams of the conventional example, and Figure 4 is a flow diagram of the conventional example.
7 are flow diagrams of embodiments of the present invention. 1...Absorber, 2...Evaporator, 3...High temperature generator, 4
...low temperature generator, 5...condenser, 6...high temperature heat exchanger,
7... Low temperature heat exchanger, 8... Solution pump, 9... Refrigerant pump, 10... Solution flow rate control valve, 11... Liquid level detector of high temperature generator 3, 12... Control device, 13... Throttle mechanism, 14... Bypass valve , 15...Float valve, 16
...Liquid level detection box, 17...Overflow pipe, 18...
Return port, 19...U-shaped pipe, 20...branch pipe, 21...liquid seal box.

Claims (1)

【特許請求の範囲】 1 蒸発器、吸収器、高温及び低温発生器、凝縮
器、高温及び低温熱交換器並びにこれらの機器を
接続する溶液経路、冷媒経路を有する二重効用吸
収冷凍装置において、 前記高温発生器から、前記低温発生器に至る溶
液経路、又は前記高温発生器から前記吸収器に至
る溶液経路に、前記高温発生器の内圧を高圧に保
持するための高圧保持機構を設け、 前記高温発生器に溶液オーバーフロー管を設
け、 該オーバーフロー管のオーバーフロー経路には
シール機構を備え、該オーバーフロー経路を前記
高温熱交換器出口側から前記高圧保持機構までの
間の濃溶液経路に接続した ことを特徴とする二重効用吸収冷凍装置。 2 前記シール機構が仕切弁である特許請求の範
囲第1項記載の二重効用吸収冷凍装置。 3 前記シール機構が、溶液による液シール機構
である特許請求の範囲第1項記載の二重効用吸収
冷凍装置。 4 蒸発器、吸収器、高温及び低温発生器、凝縮
器、高温及び低温熱交換器並びにこれらの機器を
接続する溶液経路、冷媒経路を有する二重効用吸
収冷凍装置において、 前記高温発生器から、前記低温発生器に至る溶
液経路、又は前記高温発生器から前記吸収器に至
る溶液経路に、前記高温発生器の内圧を高圧に保
持するための高圧保持機構を設け、 前記高温発生器に溶液オーバーフロー管を設
け、 該オーバーフロー管のオーバーフロー経路には
シール機構を備え、該オーバーフロー経路を前記
高温熱交換器出口側から前記高圧保持機構までの
間の濃溶液経路に接続し、 前記シール機構が、溶液による液シール機構で
あり、 前記シール機構に、前記高温又は低温発生器に
至る前の稀溶液を導入するようにしたことを特徴
とする二重効用吸収冷凍装置。 5 蒸発器、吸収器、高温及び低温発生器、凝縮
器、高温及び低温熱交換器並びにこれらの機器を
接続する溶液経路、冷媒経路を有する二重効用吸
収冷凍装置において、 前記高温発生器から、前記低温発生器に至る溶
液経路、又は前記高温発生器から前記吸収器に至
る溶液経路に、前記高温発生器の内圧を高圧に保
持するための高圧保持機構を設け、 前記高温発生器に溶液オーバーフロー管を設
け、 該オーバーフロー管のオーバーフロー経路には
シール機構を備え、該オーバーフロー経路を前記
高温熱交換器出口側から前記高圧保持機構までの
間の濃溶液経路に接続し、 前記シール機構が、溶液による液シール機構で
あり、 前記シール機構に、前記高温発生器から戻る高
温溶液と、溶液ポンプから該高温熱交換器に至る
までの稀溶液とを熱交換せしめるようにしたこと
を特徴とする二重効用吸収冷凍装置。
[Claims] 1. A dual-effect absorption refrigeration system having an evaporator, an absorber, a high-temperature and low-temperature generator, a condenser, a high-temperature and low-temperature heat exchanger, and a solution path and a refrigerant path connecting these devices, A high pressure holding mechanism for maintaining the internal pressure of the high temperature generator at a high pressure is provided in the solution path from the high temperature generator to the low temperature generator, or in the solution path from the high temperature generator to the absorber, A solution overflow pipe is provided in the high temperature generator, an overflow path of the overflow pipe is provided with a sealing mechanism, and the overflow path is connected to a concentrated solution path between the outlet side of the high temperature heat exchanger and the high pressure holding mechanism. A dual-effect absorption refrigeration device featuring: 2. The dual-effect absorption refrigeration apparatus according to claim 1, wherein the sealing mechanism is a gate valve. 3. The dual-effect absorption refrigeration apparatus according to claim 1, wherein the sealing mechanism is a liquid sealing mechanism using a solution. 4. In a dual-effect absorption refrigeration system having an evaporator, an absorber, a high-temperature and low-temperature generator, a condenser, a high-temperature and low-temperature heat exchanger, and a solution path and a refrigerant path connecting these devices, from the high-temperature generator, A high-pressure holding mechanism for maintaining the internal pressure of the high-temperature generator at a high pressure is provided in the solution path leading to the low-temperature generator or in the solution path leading from the high-temperature generator to the absorber, and a high-pressure holding mechanism is provided for maintaining the internal pressure of the high-temperature generator at a high pressure, and a solution overflow to the high-temperature generator is provided. a pipe is provided, and an overflow path of the overflow pipe is provided with a sealing mechanism, and the overflow path is connected to a concentrated solution path between the outlet side of the high temperature heat exchanger and the high pressure holding mechanism, and the sealing mechanism A dual-effect absorption refrigeration apparatus, characterized in that the dilute solution is introduced into the sealing mechanism before reaching the high-temperature or low-temperature generator. 5. In a dual-effect absorption refrigeration system having an evaporator, an absorber, a high-temperature and low-temperature generator, a condenser, a high-temperature and low-temperature heat exchanger, and a solution path and a refrigerant path connecting these devices, from the high-temperature generator, A high-pressure holding mechanism for maintaining the internal pressure of the high-temperature generator at a high pressure is provided in the solution path leading to the low-temperature generator or in the solution path leading from the high-temperature generator to the absorber, and a high-pressure holding mechanism is provided for maintaining the internal pressure of the high-temperature generator at a high pressure, and a solution overflow to the high-temperature generator is provided. a pipe is provided, and an overflow path of the overflow pipe is provided with a sealing mechanism, and the overflow path is connected to a concentrated solution path between the outlet side of the high temperature heat exchanger and the high pressure holding mechanism, and the sealing mechanism A liquid sealing mechanism according to the present invention, characterized in that the sealing mechanism is configured to exchange heat between the high temperature solution returning from the high temperature generator and the dilute solution flowing from the solution pump to the high temperature heat exchanger. Heavy-duty absorption refrigeration equipment.
JP4299384A 1984-03-08 1984-03-08 Double effect absorption refrigerator Granted JPS60188770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4299384A JPS60188770A (en) 1984-03-08 1984-03-08 Double effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4299384A JPS60188770A (en) 1984-03-08 1984-03-08 Double effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS60188770A JPS60188770A (en) 1985-09-26
JPH0377427B2 true JPH0377427B2 (en) 1991-12-10

Family

ID=12651547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4299384A Granted JPS60188770A (en) 1984-03-08 1984-03-08 Double effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS60188770A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5456368B2 (en) * 2009-05-21 2014-03-26 三洋電機株式会社 Absorption refrigerator

Also Published As

Publication number Publication date
JPS60188770A (en) 1985-09-26

Similar Documents

Publication Publication Date Title
JPH0377427B2 (en)
CN1326082A (en) Absorbent refrigeration system with improved dilution control
JPS62186178A (en) Absorption refrigerator
JP2538280B2 (en) Absorption refrigerator
JP2538278B2 (en) Absorption refrigerator
JPH0447226B2 (en)
JPH0436245B2 (en)
JPH0240948B2 (en)
JP2645828B2 (en) Double effect absorption refrigerator
JP3416289B2 (en) Pressure difference sealing device for absorption refrigerators and water heaters
JP3167491B2 (en) Absorption refrigerator
JPH0419406Y2 (en)
JPS5818139Y2 (en) Double effect absorption chiller
JPH0444177B2 (en)
JP3036755B2 (en) Absorption refrigerator
JPS627979Y2 (en)
JPS5986876A (en) Controller for double effect absorption refrigerator
JPS60251363A (en) Double effect absorption refrigerator
JPH01234767A (en) Bleeding device for absorbing refrigerating machine
JPH0317474A (en) Absorption refrigerator
JPS60162163A (en) Absorption refrigerator
JPH0357392B2 (en)
JPS63282459A (en) Absorption refrigerator
JPS60111855A (en) Double effect absorption refrigerator
JPS59173666A (en) Controller for absoprtion refrigerator