JPH0377035A - Temperature detecting method by semiconductor pressure sensor - Google Patents

Temperature detecting method by semiconductor pressure sensor

Info

Publication number
JPH0377035A
JPH0377035A JP21395689A JP21395689A JPH0377035A JP H0377035 A JPH0377035 A JP H0377035A JP 21395689 A JP21395689 A JP 21395689A JP 21395689 A JP21395689 A JP 21395689A JP H0377035 A JPH0377035 A JP H0377035A
Authority
JP
Japan
Prior art keywords
sensor
temperature
voltage
input terminals
semiconductor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21395689A
Other languages
Japanese (ja)
Inventor
Hiroshi Minagawa
皆川 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21395689A priority Critical patent/JPH0377035A/en
Publication of JPH0377035A publication Critical patent/JPH0377035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To detect the temperature of the sensor form the variation in the voltage between both input terminals by using a result that the voltage between both input terminals of the sensor varies linearly in relation to the temperature of the sensor when the temperature of the sensor varies owing to the variation in the ambient temperature of the sensor. CONSTITUTION:The temperature variation characteristics of the voltage between both input terminals of a semiconductor pressure sensor 9 are found previously and inputted to a microcomputer 14, then the voltage is converted by an A/D converter 15 into digital data to derive the temperature or temperature variation of the sensor 9. Even if the voltage between both input terminals of the sensor 9 varies, the voltage between both output terminals of the sensor 9 never varies unless there is pressure variation because of a bridge of piezoelectric resistance elements gamma. Therefore, the temperature is detected from the voltage between both input terminals of the sensor 9 and pressure is detected from the voltage between both output terminals, so that one sensor 9 can be used as a temperature sensor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体ダイヤフラム上にブリッジ接続された
ピエゾ抵抗素子を設けてなる半導体圧力センサを用いて
圧力と同時に温度を検出する半導体圧力センサによる温
度検出方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is based on a semiconductor pressure sensor that detects pressure and temperature at the same time using a semiconductor pressure sensor comprising a piezoresistive element bridge-connected on a semiconductor diaphragm. Related to temperature detection method.

〔従来の技術〕[Conventional technology]

一般に、モノリシック型の半導体圧力センサは、シリコ
ン等の半導体基板の下面中央部iこ選択エツチング等に
より形成された肉薄のダイヤプラム部上fこ、不純物が
拡散されて少なくとも4個のピエゾ抵抗が形成され、各
ピエゾ抵抗がホイートストンブリッジ回路を構成するよ
うに接続されて構成されている。
Generally, in a monolithic semiconductor pressure sensor, at least four piezoresistors are formed by diffusing impurities on a thin diaphragm portion formed by selective etching in the center of the lower surface of a semiconductor substrate such as silicon. The piezoresistors are connected to form a Wheatstone bridge circuit.

そして、ブリッジ回路における入力端子としての相対す
る2個の接続点間に定電流が通流され、圧力が加わるこ
とによりダイヤフラム部fこ歪みが生じて各ピエゾ抵抗
の抵抗値が変化し、この抵抗値の変化によりブリッジ回
路における出力端子としての残りの2個の接続点間に生
じる電圧が読み取られ、圧力の検出が行われる。
Then, a constant current is passed between two opposing connection points as input terminals in the bridge circuit, and pressure is applied, causing distortion in the diaphragm part and changing the resistance value of each piezoresistor. Due to the change in value, the voltage generated between the two remaining connection points as output terminals in the bridge circuit is read out, and pressure detection takes place.

ところで、このような半導体圧力センサを用いた機器は
種々あり、例えば雑誌「センサ技術」(1988年12
月号) VoL、8.No、 18 、60〜64頁に
記載のように、電子血圧計、自動車の油圧系統やエンジ
ン系、掃除機、ダイパーウォッチ、天気予報器、電子楽
器など、その応用範囲は広い。
By the way, there are various devices using such semiconductor pressure sensors, for example, in the magazine "Sensor Technology" (December 1988).
Monthly issue) VoL, 8. As described in No. 18, pages 60 to 64, the range of applications is wide, including electronic blood pressure monitors, automobile hydraulic systems and engine systems, vacuum cleaners, dial watches, weather forecasters, and electronic musical instruments.

そのうち掃除機を例1ことると、床の状態に応じて吸引
力をコントロールするために、大気圧と吸入ホース内の
圧力との差を半導体圧力センサfこより検出し、センサ
出力の小、大それぞれ1ζ1志じてモータのパワーを大
、小に、フ゛、/トロールし、即ち床が板や畳の場合に
はセン叶出ノ1が友きくなるプこめ、モータのパワー%
落とIi −(フラノの吸着を防ll二し、逆qζ、し
ゆうたん山場合には七)→出力が小さくなるため、モー
タθ)パワ′−ヲ七げて部分な吸塵を行えるようにし、
更にフィルタの目詰まりによる吸引力の低下時1こモー
タパワーのL昇でカバーし、フィルタ交換の指示の目安
としても圧力検出の結果を利和するらとが考えられてい
る。
Taking vacuum cleaners as an example, in order to control the suction power according to the floor condition, the difference between atmospheric pressure and the pressure inside the suction hose is detected by a semiconductor pressure sensor f, and the sensor output is adjusted to be small or large. The power of the motor is increased or decreased by 1ζ1, respectively. In other words, if the floor is made of wood or tatami, the power of the motor becomes %.
Dropping Ii - (preventing flannel adsorption, inverse qζ, 7 in the case of a falling mountain) → Since the output becomes smaller, the motor θ) power is increased to allow partial dust suction,
Furthermore, it is considered that when the suction force decreases due to filter clogging, it can be compensated for by increasing the motor power by one L, and the result of pressure detection can be used as a guideline for instructing filter replacement.

最近では、この種掃除機1こ殺ダニ機能を備えるに占も
提案されており、これは集塵しrコ容器内1こ50〜6
0°C程度の熱風を循環させるものであり、仁のような
機能を有する掃除機の主要な部分のブロック構成は例え
ば第4図に示すよう(こなる。
Recently, this type of vacuum cleaner has been proposed to be equipped with a dust mite killing function, which collects dust and removes 50 to 6 dust mites per container.
The block structure of the main parts of a vacuum cleaner, which circulates hot air at about 0°C and has a function similar to a vacuum cleaner, is shown in FIG. 4, for example.

第4図(ζおいて、(1)はマイクロ’Jンピ、−タ。Fig. 4 (in ζ, (1) is the micro'

ヒータ及びその他各部の電源回路、(2)は電源スィッ
チ、ヒータスイ・ソチ等からなるスイ・ソチ部、(3)
はヒータ(4)の通電を制御するヒータ制御回路、(5
)はモータ(6〉の出力を制御するモータ制御回路、(
7)はごみ詰まり赦の表示用レベルメータ(8)を駆動
−f”るlノベルメータ四路、(9)は吸入ホース内に
設けられた半導体圧カセ゛ノサ、00は匝7.1→・ン
サ(9)σ)出りを填唱する増婦回路、(11]は殺ダ
ニ用の熱風□温鳴“を検出するサーミスタ等からなる温
度センサ5、(1′りは温度センサ(1,1の出力?増
福回路、a4はクロック発振回路、圓は各部の制御用の
マイクロニ」ンl:r i−タ(以下マイ−J]という
)である、2このとき、前記したよう1こ掃除時には圧
、fJセンサ(9)の出2Jから゛−/4フン0舶によ
って吸入ホ λ内ωFモカが検出さ11.、検出された
圧力に基きギ・・、ソ(6)の出力パワーが制御され、
殺ダニ時(ζは、温、1更セ:/すODの出力からマイ
コンα伺こよって熱風の温度が検出され、この温度が、
殺ダニ効果を有する所定温度(50〜60°C)になる
ようにヒータ(4)の連成が制御される。
The power supply circuit for the heater and other parts, (2) is the power switch, the switch section consisting of the heater switch, etc., (3)
is a heater control circuit that controls the energization of the heater (4);
) is a motor control circuit that controls the output of the motor (6〉), (
7) is a 4-way level meter that drives the level meter (8) for indicating whether there is a clog, (9) is a semiconductor pressure capacitor installed in the suction hose, and 00 is a 7.1-inch sensor. (9) σ) A multiplication circuit that charges the output; The output of the multiplication circuit, a4 is the clock oscillation circuit, and the circle is the microcontroller (hereinafter referred to as "Mi-J") for controlling each part.2 At this time, as mentioned above, clean the Occasionally, the pressure, fJ sensor (9) output 2J to the suction ho λ ωF mocha is detected by the output 2J, and based on the detected pressure, the output power of g..., so (6) is controlled,
When killing mites (ζ is temperature, 1st cycle: /S The temperature of the hot air is detected by the microcomputer α from the output of the OD, and this temperature is
The coupling of the heater (4) is controlled so as to maintain a predetermined temperature (50 to 60°C) that has a miticidal effect.

ところで、この種の殺ダニ機能付掃除機では、ブラシを
取り外した吸入ホースの先端を殺ダニ用の熱風口に接続
し、この熱風口付近に配設したヒータ(4)Eこよる熱
風を、ホースと掃除機本体内との間で循環させ、効率よ
く熱風を集塵容器に送り込んで殺ダニ効果を高めている
By the way, in this type of vacuum cleaner with a mite-killing function, the tip of the suction hose from which the brush has been removed is connected to the hot-air port for killing mites, and the hot air generated by the heater (4) E installed near the hot-air port is The hot air is circulated between the hose and the inside of the vacuum cleaner to efficiently send hot air into the dust collection container, increasing the mite killing effect.

従って、通常の掃除時及び殺ダニ時では、共◆こ吸入ホ
ー・スから掃除機本体にかけて空気若しくは熱風が流れ
るため、圧力センサ(9)及び温度センサ(11)は、
例えば掃除機本体の吸入日刊”近等はぼ同じ位置に設け
られる。
Therefore, during normal cleaning and mite killing, air or hot air flows from the vacuum suction hose to the vacuum cleaner body, so the pressure sensor (9) and temperature sensor (11)
For example, the suction daily "near" etc. of the main body of the vacuum cleaner are provided at approximately the same position.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記の場合、半導体圧力センサ(9)と温度センサ0υ
の2個のセンサを必要とし、しかも温度センサO1)と
してサーミスタなどの非直線素子を用いた場合には、出
力の直線性を得るためのりニアライズ回路が必要上なり
、部品点数が多く、構成が複雑になるという問題点があ
る。
In the above case, the semiconductor pressure sensor (9) and the temperature sensor 0υ
In addition, if a nonlinear element such as a thermistor is used as the temperature sensor O1), a linearization circuit is required to obtain output linearity, resulting in a large number of parts and a complicated configuration. The problem is that it becomes complicated.

これは、前記したような掃除機tごけの問題ではなく、
体温測定機能付の電子血圧計や、その他の圧力センサを
用いた機器であって温度検出の必要のあるものにおいて
も共通する問題である。
This is not a vacuum cleaner problem as mentioned above, but
This problem is also common in electronic blood pressure monitors with a body temperature measurement function and other devices using pressure sensors that require temperature detection.

そこで、危ンサの数を減らし、センサの周辺回路を削減
するこ己が望まれるが、従来圧力センサとして兼用でき
る温度センサはなく、また半導体圧力センサ(9)を温
度老ンサとして兼用するここも提案されていない。
Therefore, it is desired to reduce the number of sensors and the peripheral circuits of the sensor, but there is no conventional temperature sensor that can be used as a pressure sensor, and there is also no option to use the semiconductor pressure sensor (9) as a temperature sensor. Not proposed.

ところで、実公昭68−29219号公報(GOILl
 3106 )には、半導体圧力センサにおける半導体
ダイヤフラムの静圧のみの女心領域fこ、差圧検出用ピ
エゾ抵抗素子とは別に静圧及び温度補正用のピエゾ抵抗
素子を設け、この補正用ピエゾ抵抗素子の抵抗値に基い
て静圧誤差及び温度誤差を補正することが開示されてい
るが、補正用ピエゾ抵抗素子を作り込む工程が必要であ
り、しかも半導体圧力センサを温度センサとして兼用す
るものではない。
By the way, Utility Model Publication No. 68-29219 (GOILl)
3106), a piezoresistive element for static pressure and temperature correction is provided in addition to the piezoresistive element for differential pressure detection in the female center region f of the semiconductor diaphragm of the semiconductor pressure sensor for static pressure only, and this correction piezoresistive element Although it has been disclosed that static pressure errors and temperature errors are corrected based on the resistance value of .

本発明は、前記の点に留意してなされ、半導体圧力セン
サを用いた機器であって温度検出の必要のあるものにお
いて、半導体圧力センサを温度センサとして兼用できる
ようにすることを目的とする。
The present invention has been made with the above points in mind, and an object of the present invention is to enable a semiconductor pressure sensor to be used also as a temperature sensor in a device that uses a semiconductor pressure sensor and requires temperature detection.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明では、半導体圧力セ
ンサを定電流駆動し、前記センサの入力インピーダンス
の温度変化による前記センサの面入力端子間の電圧の変
化を検出し、前記電圧の変化から前記センサの温度を検
出することを特徴としている。
In order to achieve the above object, the present invention drives a semiconductor pressure sensor with a constant current, detects a change in the voltage between the surface input terminals of the sensor due to a temperature change in the input impedance of the sensor, and detects a change in the voltage between the surface input terminals of the sensor due to a temperature change in the input impedance of the sensor. It is characterized in that the temperature of the sensor is detected.

〔作用〕[Effect]

以上の゛ような構成において、半導体圧力センサ(以下
単(こセンサという)を定電流駆動し、圧力を検出して
いる状態で、圧力変化がなく、センサの周囲温度の変化
によってセンサの温度が変化すると、センサの入力イン
ピーダンスが一定の温度係数を有し、センサの面入力端
子間の電圧が温度に対して直線的に変化するため、セン
サの面入力端子間の電圧の変化からセンサの温度が検出
される。
In the configuration described above, when the semiconductor pressure sensor (hereinafter referred to as "sensor") is driven with a constant current to detect pressure, there is no change in pressure and the temperature of the sensor changes due to changes in the ambient temperature of the sensor. When the sensor's input impedance has a constant temperature coefficient, and the voltage between the sensor's surface input terminals changes linearly with temperature, the sensor's temperature changes from the change in the voltage between the sensor's surface input terminals. is detected.

〔実施例〕〔Example〕

実施例fこついて第1図ないし第3図を参照して説明す
る。
Embodiment F will now be described with reference to FIGS. 1 to 3.

まず、前記した第4図と同様に殺ダニ機能付掃除機Iこ
適用した実施例りこついて第り図及び第2図を参照して
説明する。
First, an embodiment in which a vacuum cleaner with a mite killing function is applied will be described with reference to FIG. 4 and FIG. 2, similar to FIG. 4 described above.

それらの図面において、第4図と同一記号は同一もしく
は相当するものを示し、@4図と異なる点は、温度セン
サ0υ及び増幅回路(2)を削除し、半導体圧力センサ
(9)の入力端子をマイコンQ4))こ内蔵のA/Dコ
ンバータに接続した点である。
In those drawings, the same symbols as in Fig. 4 indicate the same or equivalent parts, and the difference from Fig. 4 is that the temperature sensor 0υ and the amplifier circuit (2) are deleted, and the input terminal of the semiconductor pressure sensor (9) is removed. is connected to the built-in A/D converter of the microcomputer Q4)).

詳述すると、第1図に示すように、半導体圧力センサ(
9)のブリッジ接続された4個のピエゾ抵抗(r)の各
接続点のうち、一方の入力端子に相当する接続点(a)
をA/Dコンバータ(至)に接続し、他方の入力端子に
相当する接続点(b)をアースし、両出力端子に相当す
る接続点(φ、(d)は従来と同様に増幅回路αQに接
続し、接続点(&)に定電流源の出力端子uQ常一定の
温度係数を有し、シリコンの場合にはその温度係数は0
.23%/℃となるため、センサ(9)の面入力端子間
の電圧は温度に対して直線的に変化する。
To explain in detail, as shown in Fig. 1, a semiconductor pressure sensor (
Among the connection points of the four bridge-connected piezoresistors (r) in 9), the connection point (a) corresponds to one input terminal.
is connected to the A/D converter (to), the connection point (b) corresponding to the other input terminal is grounded, and the connection point (φ, (d) corresponding to both output terminals is connected to the amplifier circuit αQ as before). The output terminal uQ of the constant current source has a constant temperature coefficient at the connection point (&), and in the case of silicon, the temperature coefficient is 0.
.. 23%/°C, so the voltage between the surface input terminals of the sensor (9) changes linearly with temperature.

即ち、例えばセンサ(9)の25°C1こおける入力イ
ンピーダンスを4.5にΩとすると、1mAで駆動する
場合には、面入力端子間の電圧は4・5■となり、温度
が25°Cから50°Cに変化すると、つまり温度が2
5℃上昇すると、電圧変化JVは JV=4.5(KΩ)Xo、2B(%/C)X 25(
”C)X I (mA)=0.25875(V)   
        ・・・■となり、センサ(9)の面入
力端子間電圧は4.75875Vとなる。
That is, for example, if the input impedance of the sensor (9) at 25°C is 4.5Ω, when driven at 1mA, the voltage between the surface input terminals will be 4.5Ω, and if the temperature is 25°C. to 50°C, that is, the temperature changes to 2
When the temperature rises by 5℃, the voltage change JV is JV = 4.5 (KΩ) Xo, 2B (%/C) x 25 (
”C)X I (mA)=0.25875(V)
...■, and the voltage between the surface input terminals of the sensor (9) is 4.75875V.

逆に、1mA駆動時1こ温度が25°Cからo’cまで
25°C低下すると、センサ(9)の面入力端子間電圧
は、前記した■式による。dVだけ減少して4.241
25Vとなる。
Conversely, when the temperature drops by 25°C from 25°C to o'c when driven at 1 mA, the voltage between the surface input terminals of the sensor (9) will be according to the equation (2) described above. decreased by dV to 4.241
It becomes 25V.

従って、センサ(9)の面入力端子間の電圧の温度変化
特性を予め求めておき、マイコンαωに入力しておけば
、センサ(9)の面入力端子間電圧をA/Dコンバータ
0によりデジタルデータに変換し、このデータを使った
の式の逆算の如き演算番こよってセンサ(9)の温度も
しくは温度変化を導出することができる。
Therefore, by determining the temperature change characteristics of the voltage between the surface input terminals of the sensor (9) in advance and inputting it to the microcomputer αω, the voltage between the surface input terminals of the sensor (9) can be digitalized by the A/D converter 0. The temperature or temperature change of the sensor (9) can be derived by converting it into data and performing calculations such as inverse calculation of the equation using this data.

一方、センサ(9)の面入力端子間の電圧変化があって
も、ピエゾ抵抗素子(r)のブリッジゆえ、圧力変化が
ない限りセンサ(9)の両出力端子間の電圧が変化する
ことはなく、センサ(9)の面入力端子間の電圧から温
度を9両出力端子間の電圧から圧力をそれぞれ検出する
ことが可能となり、1個の半導体圧力センサ(9)を温
度センサとして兼用することができる。
On the other hand, even if there is a voltage change between the surface input terminals of the sensor (9), the voltage between both output terminals of the sensor (9) will not change as long as there is no pressure change due to the bridge of the piezoresistive element (r). It is now possible to detect temperature from the voltage between the surface input terminals of the sensor (9) and pressure from the voltage between the nine output terminals, allowing one semiconductor pressure sensor (9) to also be used as a temperature sensor. I can do it.

つぎに、実施例2について第3図を参照して説明する。Next, Example 2 will be explained with reference to FIG. 3.

第3図は、実施例1のようにA/Dコンバータα5を内
蔵したマイコンα4を用いない機器に適用した場合、或
いはセンサ(9)の電圧変化が非常に小さい場合に、図
示のような周知の高入力インピーダンスの差動増幅回路
(DA)によってセンサ(9)の面入力端子間電圧を増
幅するようにしたものである。
FIG. 3 shows that when applied to a device that does not use a microcomputer α4 with a built-in A/D converter α5 as in Example 1, or when the voltage change of the sensor (9) is very small, the well-known The voltage between the surface input terminals of the sensor (9) is amplified by a high input impedance differential amplifier circuit (DA).

即ち、第8図fこおいて、(OPI )、 (OF2)
 、(OF2)はオペアンプ、(R)は抵抗、(十B)
は定電圧電源端子、(VRI)は基準となる電圧設定用
の可変抵抗、(VR2)は増幅度調整用の可変抵抗であ
る。
That is, in Figure 8 f, (OPI), (OF2)
, (OF2) is an operational amplifier, (R) is a resistor, (10B)
is a constant voltage power supply terminal, (VRI) is a variable resistor for setting the reference voltage, and (VR2) is a variable resistor for adjusting the amplification degree.

コノトキ、オペアンプ(OF2)の非反転入力端子(+
)の電圧、即ち可変抵抗(VRI)の一端(1)の電圧
が、例えばO″Cのときの半導体圧力センサ(9)の画
入力端子間電圧fこ等しくなるように可変抵抗(VRI
)を調整しておけば、O′Cが基準温度となり、0°C
からの温度変化に相当する電圧がオペアンプ(OF2)
から出力される。
Konotoki, operational amplifier (OF2) non-inverting input terminal (+
), that is, the voltage at one end (1) of the variable resistor (VRI), is adjusted so that the voltage at one end (1) of the variable resistor (VRI) becomes equal to the voltage f between the image input terminals of the semiconductor pressure sensor (9) when the temperature is O''C, for example.
), O'C becomes the reference temperature and 0°C.
The voltage corresponding to the temperature change from the operational amplifier (OF2)
is output from.

なお、本発明は、実施例1の如き殺ダニ機能付の摺除機
だけでなく、体温測定機能付の電子血圧計や、その他の
半導体圧力センサを用いtこ機器であって温度検出の必
要のあるものに適用するらとができる。
Note that the present invention is not only a scrubber with a mite killing function as in Example 1, but also an electronic blood pressure monitor with a body temperature measurement function and other devices that use semiconductor pressure sensors to eliminate the need for temperature detection. You can apply rato to something.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので、以
下に記載する効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

半導体圧力センサの入力インピーダンスが一定の温度係
数を有し、半導体圧力センサの両入力端子闇の電圧が温
度に対して直線的に変化するたぬ、半導体圧力センサの
人力インど一9ン2.f、\−変化しヱ半導体圧カセン
サ両入力端子間電圧が変化しこの電圧変化から逆に半導
体圧力センサの温度を検出することができ、半導体圧力
センサの両入力端子間の電圧から温度を1両出力端子間
の電圧から圧力をそれぞれ検出することができ、1個の
半導体圧力センサを温度センサとして兼用することがで
き、従来のように温度センサを別に設ける必要がなく、
温度センサfζ伴うリニアライズ回路等が不要となり、
構成の簡素化を図ることができる。
2. The input impedance of the semiconductor pressure sensor has a constant temperature coefficient, and the voltage across both input terminals of the semiconductor pressure sensor varies linearly with temperature. When f, \- changes, the voltage between both input terminals of the semiconductor pressure sensor changes, and from this voltage change, the temperature of the semiconductor pressure sensor can be detected conversely. The pressure can be detected from the voltage between both output terminals, and one semiconductor pressure sensor can also be used as a temperature sensor, eliminating the need to provide a separate temperature sensor as in the past.
The linearization circuit etc. associated with the temperature sensor fζ is no longer required.
The configuration can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の半導体圧力センサによる
温度検出方法の実施例を示し、第1図及び第2図は実施
例1の一部の詳細な結線図及び全体のブロック図、第3
図は実施例2の一部の結線図、第4図は従来例のブロッ
ク図である。 (9)・・・半導体圧力センサ、0つ・・・A/Dコン
バータ、(DA)・・・差動増幅回路。
1 to 3 show an embodiment of the temperature detection method using a semiconductor pressure sensor of the present invention, and FIGS. 1 and 2 are a detailed wiring diagram of a part of Embodiment 1, an overall block diagram, and 3
The figure is a partial wiring diagram of the second embodiment, and FIG. 4 is a block diagram of the conventional example. (9)...Semiconductor pressure sensor, 0...A/D converter, (DA)...Differential amplifier circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)圧力を検出する半導体圧力センサにおいて、前記
センサを定電流駆動し、前記センサの入力インピーダン
スの温度変化による前記センサの両入力端子間の電圧の
変化を検出し、前記電圧の変化から前記センサの温度を
検出することを特徴とする半導体圧力センサによる温度
検出方法。
(1) In a semiconductor pressure sensor that detects pressure, the sensor is driven with a constant current, a change in the voltage between both input terminals of the sensor due to a temperature change in the input impedance of the sensor is detected, and from the change in the voltage, the A temperature detection method using a semiconductor pressure sensor, characterized in that the temperature of the sensor is detected.
JP21395689A 1989-08-19 1989-08-19 Temperature detecting method by semiconductor pressure sensor Pending JPH0377035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21395689A JPH0377035A (en) 1989-08-19 1989-08-19 Temperature detecting method by semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21395689A JPH0377035A (en) 1989-08-19 1989-08-19 Temperature detecting method by semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPH0377035A true JPH0377035A (en) 1991-04-02

Family

ID=16647841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21395689A Pending JPH0377035A (en) 1989-08-19 1989-08-19 Temperature detecting method by semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH0377035A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485829B2 (en) 2003-08-26 2009-02-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method of producing solid wire for welding
JP2010281254A (en) * 2009-06-04 2010-12-16 Honda Motor Co Ltd Purge control valve mounting structure
US9643284B2 (en) 2005-06-10 2017-05-09 National Institute For Materials Science Welding wire and welding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485829B2 (en) 2003-08-26 2009-02-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method of producing solid wire for welding
US9643284B2 (en) 2005-06-10 2017-05-09 National Institute For Materials Science Welding wire and welding method
JP2010281254A (en) * 2009-06-04 2010-12-16 Honda Motor Co Ltd Purge control valve mounting structure

Similar Documents

Publication Publication Date Title
US5923208A (en) Low voltage temperature-to-voltage converter
JP4233142B2 (en) Variable capacitor transducer and sensor transducer with capacitance variable voltage converter
WO1990005289A1 (en) Self-zeroing pressure signal generator
EP0533389A3 (en) Amplified pressure transducer
JPH0351733A (en) Amplifying and compensating circuit for semiconductor pressure sensor
JP4568982B2 (en) Physical quantity detection device
JPH0691265B2 (en) Semiconductor pressure sensor
JPS60176199A (en) Digital correction method and apparatus for output of process variable sensor
JPH0377035A (en) Temperature detecting method by semiconductor pressure sensor
KR100239843B1 (en) Semiconductor sensor and method for adjusting of the output
JP2898500B2 (en) Pressure sensor with temperature characteristic correction
JP3915238B2 (en) Sensor device
US4126042A (en) Error compensating network for digital display thermometer
JP3544102B2 (en) Semiconductor pressure sensor
JP2519338B2 (en) Semiconductor sensor
JPS6197543A (en) Compensation circuit for semiconductor pressure sensor
JPS6255629B2 (en)
JPH0618540A (en) Wind velocity sensor
JPH0682844B2 (en) Semiconductor strain converter
JPH07294209A (en) Position sensor
JPS6122766B2 (en)
JPS63255664A (en) Semiconductive sensor amplifying circuit
JP2792522B2 (en) Signal processing circuit for semiconductor sensor
JP3771069B2 (en) Flow measuring device
JPH023131Y2 (en)