JPH0376711B2 - - Google Patents

Info

Publication number
JPH0376711B2
JPH0376711B2 JP58168008A JP16800883A JPH0376711B2 JP H0376711 B2 JPH0376711 B2 JP H0376711B2 JP 58168008 A JP58168008 A JP 58168008A JP 16800883 A JP16800883 A JP 16800883A JP H0376711 B2 JPH0376711 B2 JP H0376711B2
Authority
JP
Japan
Prior art keywords
reaction tube
reaction
tube holder
holder
transfer path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58168008A
Other languages
Japanese (ja)
Other versions
JPS6058556A (en
Inventor
Tokio Kozono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittec KK
Original Assignee
Nittec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittec KK filed Critical Nittec KK
Priority to JP16800883A priority Critical patent/JPS6058556A/en
Publication of JPS6058556A publication Critical patent/JPS6058556A/en
Publication of JPH0376711B2 publication Critical patent/JPH0376711B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、臨床血液検査を行う自動分析装置
に係り、特に、各検体の反応のタイムコースを全
く新規な手段によつて求めることができる自動分
析装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an automatic analyzer for performing clinical blood tests, and in particular, it is capable of determining the reaction time course of each specimen by a completely new means. Regarding automatic analysis equipment.

〔従来技術とその課題〕 従来の生化学分析や免疫分析を行う自動分析装
置としては、血清に測定項目に対応する試薬を所
要量分注して呈色反応させた後、この呈色状態を
光学装置によつて比色測定することで、臨床血液
検査を行なうように構成されているものが殆どで
ある。
[Prior art and its issues] Conventional automatic analyzers for biochemical analysis and immunoassays dispense the required amount of reagent corresponding to the measurement item into serum, cause a color reaction, and then check the color state. Most of them are designed to perform clinical blood tests by performing colorimetric measurements using optical devices.

ところで、この種の分析を行なう自動分析装置
にあつては、分析精度が、その機械精度や試薬精
度等によつて大きく影響されるため、これらの精
度を容易に確認する手段として、各検体のタイム
コースを求めることができるように自動分析装置
を構成することが重要とされている。
By the way, in the case of automatic analyzers that perform this type of analysis, the analytical accuracy is greatly affected by the machine accuracy, reagent accuracy, etc., so as a means to easily check the accuracy of each sample, It is considered important to configure automatic analyzers so that the time course can be determined.

そして、このようなタイムコースを得ることが
できる自動分析装置としては、例えば、特開昭56
−168553号公報に開示されたような、血清検体を
収容する複数本の反応管を、円板状に形成された
反応管ホルダの円周方向に沿つて直列状に保持さ
せ、該反応管ホルダを駆動装置によつて所定タイ
ミング毎に360度+1ピツチ以上回転させること
で、各検体のタイムコースを求めるものが公知で
ある。
For example, as an automatic analyzer that can obtain such a time course, there is
A plurality of reaction tubes containing a serum sample, as disclosed in Publication No. 168553, are held in series along the circumferential direction of a reaction tube holder formed in a disc shape, and the reaction tube holder is It is known that the time course of each specimen is determined by rotating the specimen by 360 degrees + 1 pitch or more at predetermined timings using a driving device.

しかしながら、上記従来の方式によつてタイム
コースを得ることができる従来の自動分析装置に
あつては、検体の数が増えるにつれて反応管の数
を増やさなければならず、これでは、反応管ホル
ダの平面面積が拡大して装置が大型化する、とい
う問題を有していた。
However, in conventional automatic analyzers that can obtain time courses using the conventional method described above, the number of reaction tubes must be increased as the number of samples increases, and in this case, the number of reaction tubes must be increased. There was a problem in that the plane area increased and the device became larger.

この発明はかかる現状に鑑み創案されたもので
あつて、その目的とするところは、検体数が増加
しても、この種の自動分析装置の平面占有面積が
増やすことなく各検体のタイムコースを得ること
ができる全く新規な自動分析装置を提供しようと
するものである。
This invention was devised in view of the current situation, and its purpose is to maintain the time course of each specimen without increasing the surface area occupied by this type of automatic analyzer even when the number of specimens increases. The aim is to provide a completely new automatic analyzer that can be obtained.

〔課題を解決するための手段〕[Means to solve the problem]

かかる目的を達成するため、この発明にあつて
は、検体が収容された反応管を所要本数保持した
ホルダをサンプリング位置から試薬分注位置へ移
送して呈色反応させた後、この反応状態を光学測
定装置によつて測定するように構成されてなる自
動分析装置を技術的前提とし、上記反応管ホルダ
の移送路には、縦型筒状の測定移送路を配設する
と共に、上記検体を収容する反応管ホルダを平面
略C字状に形成し、かつ、その外周にギアを刻設
し、該反応管ホルダは、上記測定移送路の軸線と
交叉する方向へ排出されるように構成されている
と共に、上記測定移送内には、その軸線に沿つて
複数段の独立した光学測定装置を夫々配設し、こ
れらの各段の光学測定装置では、該反応管ホルダ
を、上記各光学測定位置に配設された回転駆動ギ
ア装置によつて少なくとも一回転させることで、
各反応管内に収容された検体の反応のタイムコー
スを、少なくとも光学測定装置の配設段数分求め
ることを特徴とするものである。
In order to achieve this object, in the present invention, a holder holding a required number of reaction tubes containing a specimen is transferred from a sampling position to a reagent dispensing position to cause a color reaction, and then the reaction state is The technical premise is an automatic analyzer configured to perform measurements using an optical measuring device, and a vertical cylindrical measurement transfer path is provided in the transfer path of the reaction tube holder, and the sample is A reaction tube holder for accommodating the reaction tube holder is formed into a substantially C-shaped plane, and a gear is carved on its outer periphery, and the reaction tube holder is configured to be discharged in a direction intersecting the axis of the measurement transfer path. In addition, a plurality of stages of independent optical measurement devices are arranged along the axis of the measurement transfer, and each stage of the optical measurement devices connects the reaction tube holder to each of the optical measurement devices. by making at least one revolution by means of a rotary drive gear arrangement disposed at the position;
This method is characterized in that the time course of the reaction of the specimen contained in each reaction tube is determined at least as many times as the number of stages of the optical measurement device.

〔作用〕[Effect]

それ故、この発明に係る自動分析装置にあつて
は、血清検体が複数本収容された反応管ホルダ
を、縦型筒状に形成された複数段の光学測定位置
の各段において、反応管ホルダに保持された全て
の反応状態を光学測定でき、従つて、各反応管内
の検体に対する測定は、各段における反応管ホル
ダの回転回数プラス段数分行なわれる。
Therefore, in the automatic analyzer according to the present invention, the reaction tube holder containing a plurality of serum samples is placed between the reaction tube holders at each stage of the plurality of optical measurement positions formed in a vertical cylindrical shape. It is possible to optically measure all the reaction states held in the reaction tube. Therefore, the measurement of the sample in each reaction tube is performed for the number of rotations of the reaction tube holder in each stage plus the number of stages.

〔実施例〕〔Example〕

以下、添付図面に示す一実施例に基づきこの発
明を詳細に説明する。
Hereinafter, the present invention will be described in detail based on an embodiment shown in the accompanying drawings.

図面は、この発明が適用された自動分析装置の
概略的な構成を示しており、第1図中符号10
は、平面略C字状に形成された反応管ホルダを示
しており、該反応管ホルダ10には、所要間隔毎
に所要数の小孔11が開設され、該各小孔11に
は、第2図に示すように、複数本の反応管12が
挿脱自在に保持されている。尚、これらの各反応
管12は、上記反応管ホルダ10の上面及び下面
から突出しない状態で保持される高さ寸法を有し
て構成されているのが望ましい。
The drawing shows a schematic configuration of an automatic analyzer to which the present invention is applied, and the reference numeral 10 in FIG.
1 shows a reaction tube holder formed into a substantially C-shape in plan, and the reaction tube holder 10 has a required number of small holes 11 at required intervals, and each of the small holes 11 has a number of holes. As shown in FIG. 2, a plurality of reaction tubes 12 are held in a removable manner. It is preferable that each of these reaction tubes 12 has a height dimension that allows the reaction tubes 12 to be held without protruding from the upper and lower surfaces of the reaction tube holder 10.

また、上記反応管ホルダ10の各小孔11に
は、各孔11の軸方向と直交する方向に光軸孔1
3が貫通して開設されており、後記する光源Kか
らの測定光が光軸孔13から反応管12内の血清
検体を透過した後再び光軸孔13を経て受光素子
44(第6図参照)へと入射されるように構成さ
れている。
In addition, each small hole 11 of the reaction tube holder 10 has an optical axis hole 1 in a direction perpendicular to the axial direction of each hole 11.
3 is opened through the light receiving element 44 (see Fig. 6), and the measurement light from the light source K (described later) passes through the optical axis hole 13 and passes through the serum sample in the reaction tube 12, and then passes through the optical axis hole 13 again to the light receiving element 44 (see Fig. 6). ).

このように構成されてなる反応管ホルダ10の
外周面には、その周方向に沿つてギヤ14が刻設
されており、ギヤ14は、後記する光学測定位置
において、後記する駆動ギヤ45,45′と噛合
して反応管ホルダ10を少なくとも一回転させる
ように構成されている。
A gear 14 is carved along the circumferential direction on the outer peripheral surface of the reaction tube holder 10 configured in this way, and the gear 14 is connected to drive gears 45, 45 (described later) at an optical measurement position (described later). ' is configured to rotate the reaction tube holder 10 at least once.

このように構成された反応管ホルダ10は、先
ず、サンプリング位置に配設された縦断員面口状
のホルダ保持体15に嵌装保持される。
The reaction tube holder 10 configured as described above is first fitted and held in a holder holder 15 having a vertical section and a face opening, which is disposed at a sampling position.

このホルダ保持体15は、モータ等の回転手段
16で回転制御される。この制御は制御装置
(CPU)を介して行われる。
This holder holder 15 is rotationally controlled by a rotating means 16 such as a motor. This control is performed via a control device (CPU).

このようにホルダ保持体15が回転制御され、
反応管ホルダ10に保持された各反応管12がサ
ンプリング位置に停止すると、該ホルダ保持体1
5に隣接されたサンプラ20のサンプルカツプ2
1内に収容された血清検体(以下、単に検体とい
う)。が、ピペツト装置Pを介して所要量ずつ分
注される。
In this way, the rotation of the holder holder 15 is controlled,
When each reaction tube 12 held by the reaction tube holder 10 stops at the sampling position, the holder holder 1
Sample cup 2 of sampler 20 adjacent to 5
Serum specimen contained in 1 (hereinafter simply referred to as specimen). is dispensed in the required amount via the pipette P.

このピペツト装置Pは、サンプルカツプ21の
開口径に対応する所要本数のピペツトP1,P2
…Poから構成されている。
This pipette device P has a required number of pipettes P 1 , P 2 , . . . corresponding to the opening diameter of the sample cup 21.
...consists of P o .

これらの各ピペツトP1、P2、……Poは、サン
プルカツプ21の上部、つまり検体吸引位置では
束ねられた状態に集合されて昇降案内され、サン
プルカツプ21内の検体を所要量ずつ夫々吸引し
た後、水平方向へ回動して検体分注位置まで移送
され、該検体分注位置で所要間隔毎に展開された
後下降して、吸引された各検体を所要量ずつ対応
する反応管12内に分注する。この時、各ピペツ
トP1、P2……Poからは、分析項目に対応する第
1試薬又は希釈液R1が所要量ずつ対応反応管1
2内に分注される。
These pipettes P 1 , P 2 , . . . P o are collected in a bundle at the upper part of the sample cup 21, that is, at the sample suction position, and are guided up and down to collect the required amount of the sample in the sample cup 21, respectively. After aspirating, the reaction tube is rotated horizontally and transferred to the sample dispensing position, where it is expanded at required intervals and then lowered to receive the required amount of each aspirated sample into the corresponding reaction tube. Dispense within 12 minutes. At this time, from each pipette P 1 , P 2 .
It is dispensed within 2 minutes.

尚、この実施例において、ピペツトP1、P2
…Poの本数が反応管ホルダ10に保持された反
応管12の数より少ない場合、例えば、ピペツト
の本数が8本で反応管12の数が32本である場合
には、前記ホルダ保持体15は、8本のピペツト
による検体の吸引・分注作業が終了する毎に所要
角度ずつ4回回動するよう制御装置(CPU)で
駆動制御される。勿論、この分注作業時間を短縮
する場合には、上記8本のピペツトを有する4基
PA、PB、PC、PDのピペツト装置Pを配設し、こ
れらを同時に駆動制御することで可能である。こ
の場合、検体aはピペツト装置PAを介して第3
図θ1の範囲にある8本の反応管12内に、検体b
はピペツト装置PBを介して第3図θ2の範囲にある
8本の反応管12内に、検体cはピペツト装置
PCを介して第3図θ3の範囲にある8本の反応管1
2内に、検体dはピペツト装置PDを介して第3
図θ4の範囲にある8本の反応管12内に分注され
る。
In this example, pipettes P 1 , P 2 . . .
...If the number of P o is smaller than the number of reaction tubes 12 held in the reaction tube holder 10, for example, if the number of pipettes is 8 and the number of reaction tubes 12 is 32, the holder holder 15 is driven and controlled by a control device (CPU) so that it rotates four times by the required angle each time the sample suction/dispensing work using the eight pipettes is completed. Of course, if you want to shorten this dispensing work time, you can use the 4 pipettes with the 8 pipettes mentioned above.
This is possible by arranging pipetting devices P, P A , P B , P C , and PD , and driving and controlling them simultaneously. In this case, sample a is transferred to the third
Sample b is placed in eight reaction tubes 12 within the range of θ 1 in the figure.
The sample c is transferred to the eight reaction tubes 12 in the range of θ 2 in Fig. 3 through the pipette device P B.
Eight reaction tubes 1 in the range of θ 3 in Figure 3 through P C
2, the sample d is transferred to the third pipette via the pipette device P D.
It is dispensed into eight reaction tubes 12 within the range of θ 4 in the figure.

尚、各分注作業が終了したピペツトP1、P2
…Poは、勿論図示しないピペツト洗浄装置で洗
浄される。
In addition, pipettes P 1 , P 2 after each dispensing work have been completed...
... Po is, of course, washed with a pipette washing device (not shown).

このようにして検体及び測定項目に対応する第
1試薬等が分注された反応管12を保持してなる
反応管ホルダ10は、縦型筒状の反応移送路30
へと移送される。この差し換え作業手段として
は、手作業又は公知の機械手段、例えば所要タイ
ミングで作動するベルトコンベアと把持装置との
組合せよりなる移送機構等種々の公知機構を適用
することができる。
The reaction tube holder 10 that holds the reaction tubes 12 into which the sample and the first reagent corresponding to the measurement item are dispensed in this way has a vertical cylindrical reaction transfer path 30.
be transferred to. As this replacement operation means, various known mechanisms such as manual or known mechanical means, such as a transfer mechanism consisting of a combination of a belt conveyor and a gripping device that operate at a required timing, can be applied.

反応移送路30は、恒温槽としての機能を有し
ており、その内径は、反応管ホルダ10の外径よ
りも若干大径に形成されており、前記検出及び試
薬等の分注が終了した反応管ホルダ10は、該反
応移送路30は最下部に開設された開口32から
反応移送路30内へと挿入される。
The reaction transfer path 30 has a function as a constant temperature bath, and its inner diameter is formed to be slightly larger than the outer diameter of the reaction tube holder 10, and the reaction transfer path 30 has a function as a constant temperature bath. The reaction tube holder 10 is inserted into the reaction transfer path 30 through an opening 32 provided at the bottom of the reaction transfer path 30 .

このように反応移送路30内に移送された反応
管ホルダ10は、反応移送路30内の底部付近に
配設された押し上げ機構31によつて順次上方へ
押し上げられる。この押し上げ動作は、次の反応
管ホルダ10の反応移送路30内への移送作業が
妨げられないタイミングで、かつ、少なくとも反
応管ホルダ10の高さ寸法より大きな上昇距離で
行なわれる。
The reaction tube holder 10 thus transferred into the reaction transfer path 30 is successively pushed upward by the push-up mechanism 31 disposed near the bottom of the reaction transfer path 30. This lifting operation is performed at a timing that does not prevent the next transfer operation of the reaction tube holder 10 into the reaction transfer path 30, and at a lifting distance that is at least larger than the height dimension of the reaction tube holder 10.

このようにして上方へ押し上げられた反応管ホ
ルダ10は、反応移送路30の側面開口32の上
部位置に内設された爪体33により保持される。
The reaction tube holder 10 pushed upward in this manner is held by a claw body 33 provided inside at an upper position of the side opening 32 of the reaction transfer path 30.

この爪体33は、スプリングによつて、反応管
ホルダ10の上昇を許容し、かつ、下降は阻止す
るように取り付けられている。これにより上記反
応管ホルダ10は、反応移送路30内の上下方向
に沿つて密に積層された状態で収納され、かつ、
所定タイミングで上昇移送される。
This claw body 33 is attached by a spring so as to allow the reaction tube holder 10 to rise and prevent it from falling. As a result, the reaction tube holders 10 are housed in a densely stacked state along the vertical direction within the reaction transfer path 30, and
It is transported upward at a predetermined timing.

こうして順次押し上げ移送される過程で各反応
管ホルダ10に保持された血液等は生体温度に保
温される。
In this way, the blood and the like held in each reaction tube holder 10 are kept at the body temperature during the process of being sequentially pushed up and transferred.

即ち、上記反応移送路30には、電熱ヒータや
温水循環等による加熱手段34が付設されてお
り、該加熱手段34によつて反応移送路30内の
反応管ホルダ10に保持された反応管12内の血
液等の生体温度に加熱保持される。
That is, the reaction transfer path 30 is provided with a heating means 34 such as an electric heater or hot water circulation, and the reaction tube 12 held in the reaction tube holder 10 in the reaction transfer path 30 is heated by the heating means 34. It is heated and maintained at the temperature of the body's blood, etc.

そして、反応管ホルダ10が反応移送路30の
最上部まで移送されると、該反応管ホルダ10は
反応移送路30に隣接された縦型筒状の測定移送
路40に移しかえられる。この移しかえ作業は、
手作業若しくは公知の水平押し出し機構等の機械
機構で行うことができる。
When the reaction tube holder 10 is transferred to the top of the reaction transfer path 30, the reaction tube holder 10 is transferred to the vertical cylindrical measurement transfer path 40 adjacent to the reaction transfer path 30. This transfer work is
This can be done manually or by a mechanical mechanism such as a known horizontal extrusion mechanism.

このようにして測定移送路40に移し換えられ
た反応管ホルダ10の各反応管12内には、第5
図に示すように、その最上部において、前記ピペ
ツト装置Pと同様に構成されてなるピペツト装置
P′を介して分析項目に対応する第2試薬又は第2
希釈液R2が所要量づつ分注される。
In each reaction tube 12 of the reaction tube holder 10 transferred to the measurement transfer path 40 in this way, a fifth
As shown in the figure, at the top, there is a pipetting device configured similarly to the pipetting device P.
A second reagent corresponding to the analysis item or a second
Diluent R 2 is dispensed in the required amount.

そして、この第2試薬等が分注された反応管1
2を保持する反応管ホルダ10は、この後、測定
移送路40に沿つて順次間欠的に下方へ所要タイ
ミングで一段階(つまり反応管ホルダ10の高さ
寸法分)づつ移送される。この移送は、同所要タ
イミングで上記移送路40の最下部から反応管ホ
ルダ10が1個ずつ抜き取られることで行われ
る。勿論、この場合には、抜き取られる反応管ホ
ルダ10によつて、この反応管ホルダ10より上
方に位置する反応管ホルダ10が振動したりしな
いように、例えば、公知のストツパーを配設し、
最下部の反応管ホルダ10が抜き取られるまでの
間、原高さ位置を保持するように構成するのが望
ましい。
Then, the reaction tube 1 into which this second reagent etc. was dispensed
Thereafter, the reaction tube holder 10 holding the reaction tube holder 2 is sequentially and intermittently transferred downward along the measurement transfer path 40 one step at a time (that is, by the height of the reaction tube holder 10) at a required timing. This transfer is performed by pulling out the reaction tube holders 10 one by one from the lowest part of the transfer path 40 at the same required timing. Of course, in this case, for example, a known stopper is provided to prevent the reaction tube holder 10 positioned above the reaction tube holder 10 from vibrating due to the reaction tube holder 10 being pulled out.
It is desirable to maintain the original height position until the reaction tube holder 10 at the bottom is removed.

また、上記反応管ホルダ10は、測定移送路4
0に移しかえられる際に、反応管ホルダ10の切
欠部10′が上記移送路40の最上部に設けられ
た突起41に嵌装され位置決められる。この位置
決め手段としては、例えば、適宜の回転手段によ
つて行なうことができる。
Further, the reaction tube holder 10 is connected to the measurement transfer path 4.
0, the notch 10' of the reaction tube holder 10 is fitted into the projection 41 provided at the top of the transfer path 40 and positioned. As this positioning means, for example, suitable rotation means can be used.

このように構成されてなる測定移送路40の中
途には、光学測定部41が所要段数(図示の実施
例では4段)配設されている。
A required number of optical measurement units 41 (four stages in the illustrated embodiment) are disposed midway through the measurement transfer path 40 configured as described above.

この光学測定部41の各段部に配設される光学
測定装置Kは、正面L字状の光源保持体42と、
この光源保持体42の垂直部分であつて各段部に
対応する部位に配設された光源43と、から構成
されてなり、各光源43から水平方向に照射され
る測定光lは、各段部に位置する反応管ホルダ1
0の光軸孔13から反応管12内の検体を透過し
て受光素子44へと入射され、測定項目に対応す
る波長部分の吸光度が演算測定される。そして、
その分析結果は、必要に応じてCRT等のデイス
プレイに表示され、或は、プリントアウトされ
る。
The optical measuring device K disposed at each step of the optical measuring section 41 includes a light source holder 42 having an L-shaped front surface,
A light source 43 is disposed at a vertical portion of the light source holder 42 corresponding to each step, and measurement light l emitted horizontally from each light source 43 is transmitted to each step. Reaction tube holder 1 located in
The light passes through the sample in the reaction tube 12 from the optical axis hole 13 of 0 and enters the light receiving element 44, and the absorbance of the wavelength portion corresponding to the measurement item is calculated and measured. and,
The analysis results are displayed on a display such as a CRT or printed out as necessary.

このように各段部に配設された光学測定部41
の位置に反応管ホルダ10が移送されると、該位
置に配設された各駆動ギヤ45,45′が反応管
ホルダ10のギヤ14と夫々噛合し、該反応管ホ
ルダ10を少なくとも一回転させる。この駆動ギ
ヤ45,45′は、モータMを介して反応管ホル
ダ10が正確に原位置へと復帰するように回転制
御される。
The optical measuring section 41 disposed at each step in this way
When the reaction tube holder 10 is transferred to the position, the drive gears 45 and 45' disposed at the position mesh with the gears 14 of the reaction tube holder 10, respectively, and rotate the reaction tube holder 10 at least once. . The drive gears 45, 45' are rotationally controlled by the motor M so that the reaction tube holder 10 accurately returns to its original position.

それ故、該反応管ホルダ10に保持された各反
応管12内の各検体は、各段部に配設された光学
測定部41において、反応管ホルダ10が一回転
する毎に光学測定され、かつ、この作業は各段毎
に連続して行なわれるため、より精度の高い各検
体の反応のタイムコースを容易に得ることができ
る。
Therefore, each sample in each reaction tube 12 held in the reaction tube holder 10 is optically measured in the optical measurement section 41 disposed at each step every time the reaction tube holder 10 rotates once. Moreover, since this operation is performed continuously for each stage, it is possible to easily obtain a more accurate reaction time course for each sample.

このようにして各段における光学測定が終了
し、かつ、測定移送路40の最下部に到来した反
応管ホルダ10は、アクチユエータ等を利用した
公知の機構からなる押し出し装置50を介して同
移送路40外へと送出され、洗浄位置Wへと移送
される。この時、上記反応管ホルダ10の中心部
位には光源保持体42が立設されているが、同光
源保持体42の胴部直径fは反応管ホルダ10の
切欠部10′の開口寸法Fより小径に形成されて
いるので、該反応管ホルダ10が光源保持体42
に引掛かつて抜けなくなることはなくスムーズに
測定移送路40外へと送出することができる。
In this way, the optical measurement at each stage has been completed, and the reaction tube holder 10, which has reached the lowest part of the measurement transfer path 40, is moved through the same transfer path via a pushing device 50 consisting of a known mechanism using an actuator or the like. 40 and transferred to the cleaning position W. At this time, a light source holder 42 is erected at the center of the reaction tube holder 10, and the diameter f of the body of the light source holder 42 is larger than the opening dimension F of the notch 10' of the reaction tube holder 10. Since the reaction tube holder 10 is formed to have a small diameter, the light source holder 42
It can be smoothly sent out to the outside of the measurement transfer path 40 without getting caught and becoming stuck.

洗浄位置Wでは、反応管ホルダ10の各反応管
12内に収容されていた検体等は全て吸引されて
捨てられた後、公知の超音波洗浄装置等により洗
浄され、再使用に供与される。尚、洗浄精度を高
めようとする場合には、洗浄装置を、第7図に示
すように複数台配設することにより可能である。
At the cleaning position W, all the specimens and the like contained in each reaction tube 12 of the reaction tube holder 10 are sucked out and discarded, and then cleaned by a known ultrasonic cleaning device or the like and provided for reuse. In addition, if it is desired to improve the cleaning accuracy, it is possible to do so by arranging a plurality of cleaning apparatuses as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上説明したように、血清検体が
複数本収容された反応管ホルダを、縦型筒状に形
成された複数段の光学測定位置の各段において、
反応管ホルダに保持された全ての反応状態を光学
測定できるように構成すると共に、各反応管内の
検体に対する測定を、各段における反応管ホルダ
の回転回数プラス段数の回数だけ行なうように構
成したので、全く新規な方式によつてより精度の
高い反応のタイムコースが得られ、機械精度や試
薬精度等のチエツクを容易に行なうことができ、
分析精度に対する信頼性が高い自動分析装置を提
供することができる。
As explained above, the present invention allows a reaction tube holder containing a plurality of serum samples to be placed at each stage of a plurality of optical measurement positions formed in a vertical cylindrical shape.
It is constructed so that all the reaction states held in the reaction tube holder can be optically measured, and the measurement of the sample in each reaction tube is performed as many times as the number of rotations of the reaction tube holder at each stage plus the number of stages. Using a completely new method, a more accurate reaction time course can be obtained, and machine accuracy, reagent accuracy, etc. can be easily checked.
An automatic analyzer with high reliability in analysis accuracy can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る自動分析装
置に用いられる反応管ホルダの平面図、第2図は
同反応管ホルダとサンプラーとの構成を概略的に
示す断面説明図、第3図はサンプルカツプ内の血
液を反応管ホルダの反応管に分注する際の分配態
様の一例を示す平面説明図、第4図は自動分析装
置の全体機構を示す概略説明図、第5図は測定移
送路の構成説明図、第6図は第5図−線断面
図、第7図は装置全体の平面配置図である。 〔符号の説明〕、10……反応管ホルダ、1
0′……切欠部、12……反応管、14……ギア、
40……測定移送路、42……光源保持体、4
5,45′……駆動ギア、K……光学測定装置。
FIG. 1 is a plan view of a reaction tube holder used in an automatic analyzer according to an embodiment of the present invention, FIG. 2 is a cross-sectional explanatory view schematically showing the configuration of the reaction tube holder and a sampler, and FIG. 3 is an explanatory plan view showing an example of the distribution mode when blood in a sample cup is dispensed into the reaction tube of the reaction tube holder, Fig. 4 is a schematic explanatory view showing the overall mechanism of the automatic analyzer, and Fig. 5 is a measurement diagram. FIG. 6 is a sectional view taken along the line of FIG. 5, and FIG. 7 is a plan view of the entire apparatus. [Explanation of symbols], 10...Reaction tube holder, 1
0'... Notch, 12... Reaction tube, 14... Gear,
40...Measurement transfer path, 42...Light source holder, 4
5,45'...Drive gear, K...Optical measuring device.

Claims (1)

【特許請求の範囲】[Claims] 1 検体が収容された反応管を所要本数保持した
ホルダをサンプリング位置から試薬分注位置へ移
送して呈色反応させた後、この反応状態を光学測
定装置によつて測定するように構成されてなる自
動分析装置において、上記反応管ホルダの移送路
には、縦型筒状の測定移送路を配設すると共に、
上記検体を収容する反応管ホルダを平面略C字状
に形成し、かつ、その外周にギアを刻設し、該反
応管ホルダは、上記測定移送路の軸線と交叉する
方向へ排出されるように構成されていると共に、
上記測定移送内には、その軸線に沿つて複数段の
独立した光学測定装置を夫々配設し、これら各段
の光学測定装置では、該反応管ホルダを、上記各
光学測定位置に配設された回転駆動ギア装置によ
つて少なくとも一回転させることで、各反応管内
に収容された検体の反応のタイムコースを、少な
くとも光学測定装置の配設段数分求めることを特
徴とする自動分析装置。
1. A holder holding a required number of reaction tubes containing a specimen is transferred from a sampling position to a reagent dispensing position to cause a color reaction, and then the reaction state is measured by an optical measuring device. In this automatic analyzer, a vertical cylindrical measurement transfer path is provided in the transfer path of the reaction tube holder, and
The reaction tube holder for accommodating the specimen is formed into a substantially C-shape in plan, and a gear is carved on its outer periphery, so that the reaction tube holder is discharged in a direction intersecting the axis of the measurement transfer path. It is composed of
A plurality of stages of independent optical measuring devices are arranged along the axis of the measurement transport, and in each stage of the optical measuring devices, the reaction tube holder is arranged at each of the optical measurement positions. An automatic analyzer characterized in that the reaction time course of a sample contained in each reaction tube is determined by at least the number of stages of the optical measurement device by making at least one rotation using a rotary drive gear device.
JP16800883A 1983-09-12 1983-09-12 Automatic analytical method and apparatus for blood Granted JPS6058556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16800883A JPS6058556A (en) 1983-09-12 1983-09-12 Automatic analytical method and apparatus for blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16800883A JPS6058556A (en) 1983-09-12 1983-09-12 Automatic analytical method and apparatus for blood

Publications (2)

Publication Number Publication Date
JPS6058556A JPS6058556A (en) 1985-04-04
JPH0376711B2 true JPH0376711B2 (en) 1991-12-06

Family

ID=15860088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16800883A Granted JPS6058556A (en) 1983-09-12 1983-09-12 Automatic analytical method and apparatus for blood

Country Status (1)

Country Link
JP (1) JPS6058556A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770223B2 (en) * 1988-03-28 1995-07-31 日本電気株式会社 Random access memory

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045689A (en) * 1973-08-27 1975-04-23
JPS5589753A (en) * 1978-12-28 1980-07-07 Nippon Kogaku Kk <Nikon> Intermittent carrier
JPS5621098A (en) * 1979-07-24 1981-02-27 Commissariat Energie Atomique Atomic power boiler
JPS5653328U (en) * 1979-09-29 1981-05-11
JPS58102161A (en) * 1981-12-15 1983-06-17 Olympus Optical Co Ltd Automatic blood inspective device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339651Y2 (en) * 1981-03-20 1988-10-18
JPS5896254U (en) * 1981-12-23 1983-06-30 株式会社日立製作所 stackable turntable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045689A (en) * 1973-08-27 1975-04-23
JPS5589753A (en) * 1978-12-28 1980-07-07 Nippon Kogaku Kk <Nikon> Intermittent carrier
JPS5621098A (en) * 1979-07-24 1981-02-27 Commissariat Energie Atomique Atomic power boiler
JPS5653328U (en) * 1979-09-29 1981-05-11
JPS58102161A (en) * 1981-12-15 1983-06-17 Olympus Optical Co Ltd Automatic blood inspective device

Also Published As

Publication number Publication date
JPS6058556A (en) 1985-04-04

Similar Documents

Publication Publication Date Title
EP0355849B1 (en) Method and apparatus for automatic measurement of fluorescence
US5415840A (en) Liquid sample automatic analyzer
JPS5848836A (en) Optical type automatic analyzing and measuring device
JPH0480338B2 (en)
JP2003322656A (en) Method for calibrating clinical analyzer and method for automatically aligning dispenser of the same
JPH0565825B2 (en)
JPH04106472A (en) Automatic chemical analyzer
EP0336309A2 (en) A selective or sequential access analyzer for clinico-chemical analyses and for immunological tests
JPH0371072B2 (en)
JPH0275959A (en) Automatic analysis apparatus
JPH0376711B2 (en)
JPS6327661B2 (en)
JPH05172828A (en) Automatic analyser
JPH0360066B2 (en)
JPH0420145B2 (en)
JP2774052B2 (en) Liquid sample automatic analyzer
JPH03175361A (en) Automatic immunoassay apparatus
JPH0835969A (en) Automatic analyzer for feces occult blood
JPH0468589B2 (en)
JPH05302926A (en) Automatic analyzer
JPS6314904Y2 (en)
JPH02307060A (en) Method and apparatus for automatic analysis
JPS6069560A (en) Method for transferring vessel of automatic analyzing device
JPH0421140B2 (en)
JPH0575977B2 (en)