JPH0375566A - Detecting device of fg signal and pg signal - Google Patents

Detecting device of fg signal and pg signal

Info

Publication number
JPH0375566A
JPH0375566A JP1212566A JP21256689A JPH0375566A JP H0375566 A JPH0375566 A JP H0375566A JP 1212566 A JP1212566 A JP 1212566A JP 21256689 A JP21256689 A JP 21256689A JP H0375566 A JPH0375566 A JP H0375566A
Authority
JP
Japan
Prior art keywords
signal
pole
circuit
poles
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1212566A
Other languages
Japanese (ja)
Inventor
Koji Kitagawa
浩司 北川
Yuriko Kurenuma
榑沼 由利子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1212566A priority Critical patent/JPH0375566A/en
Publication of JPH0375566A publication Critical patent/JPH0375566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rotational Drive Of Disk (AREA)

Abstract

PURPOSE:To enable detection of a PG (pulse generation) signal and an FG (frequency generation) signal by one device by a method wherein a cut part of a prescribed width which changes the duty of one FG signal is provided in a part of one pole of a multipole magnet ring and the PG signal is detected therefrom. CONSTITUTION:A magnetic sensor 6 detecting an FG signal is disposed oppositely to the peripheral surface of a magnet ring 5 of multiple pole (e.g. 30 poles) which is fixed to a rotating shaft 3, and a delay circuit 7 and an NAND circuit 10 which output a PG signal on the basis of the FG signal are provided, while a cut part 8 is provided in one pole of the ring 5. With the ring 5 rotating, the sensor 6 converts alternation of N and S poles into the FG signal. When the cut part 8 faces the sensor 6, a waveform changes by one mode. The FG signal Vc (1) outputted from the sensor 6 is compared 9 with a reference signal Vf (2) and turned into a rectangular wave (3). This rectangular wave (3) and a rectangular wave (4) delayed by a prescribed amount in the circuit 7 are inputted to the circuit 10. An output of the circuit 10 becomes an H signal (5) only at a position corresponding to the cut part 8. This signal is fetched as the PG signal (5).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はビデオの回転ヘッドドラムや、ディスクドライ
ブ装置のスピンドルモータ等の位置及び速度制御を行う
ためのPG(周波数発信)信号及びPG(パルス発信)
信号を検出するPG倍信号[発明の概要] 本発明は、回転軸に固着されN極とS極とが周方向に交
互に着磁された多極マグネットリングと、この多極マグ
ネットリングに対向して配置され前記N−S極の変化を
PG倍信号変換する磁気センサとを備え、前記1つのN
極又はS極の一部に1つのFC信号ののデューティを変
化させる切欠部を設け、前記のデューティの変化したF
G倍信号らPG倍信号取り出すPG信号検出回路を設け
た構成とすることにより、lっの装置でPG倍信号FG
倍信号検出することが可能となり部品点数・組立工数の
低下、コストダウン及び省スペース化を図るものである
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a PG (frequency oscillation) signal and a PG (pulse) signal for controlling the position and speed of a rotary head drum of a video device, a spindle motor of a disk drive device, etc. (outgoing)
PG multiplier signal for detecting signals [Summary of the invention] The present invention provides a multipolar magnet ring that is fixed to a rotating shaft and has N poles and S poles alternately magnetized in the circumferential direction, and a multipolar magnet ring that is opposed to the multipolar magnet ring. a magnetic sensor which is arranged as
A cutout part for changing the duty of one FC signal is provided in a part of the pole or S pole, and the F whose duty is changed is provided.
By using a configuration that includes a PG signal detection circuit that extracts the PG multiplied signal from the G multiplied signal, one device can extract the PG multiplied signal FG.
It is possible to detect double signals, thereby reducing the number of parts and assembly man-hours, reducing costs, and saving space.

[従来の技術] 従来のビデオテープレコーダのヘッドを回転させるブラ
シレスモータにあっては、回転ドラムに配置した2個の
ヘッドをその半周期毎に切り替える同期用のPG倍信号
出力する装置がある(実開昭61−195781号公報
)。
[Prior Art] In a brushless motor that rotates the head of a conventional video tape recorder, there is a device that outputs a PG double signal for synchronization that switches two heads arranged on a rotating drum every half cycle ( Utility Model Publication No. 61-195781).

第14図において、ブラシレスモータ1のロータ2側に
はリング状の駆動用マグネット11が設けられている。
In FIG. 14, a ring-shaped driving magnet 11 is provided on the rotor 2 side of the brushless motor 1.

第15図に示すように、この駆動マグネット11はN極
とS極が周方向に交互に着磁されている。前記駆動用マ
グネット11の上端側の対向位置には一対のV字状の切
欠部12が形成しである。ステータ13の磁芯14は放
射状に延びる突状部15を備え、それぞれ駆動用コイル
16か巻き付けられるとともに、その1つの先端部に磁
力の強さの変化を検出する誘導コイル17が前記駆動用
マグネット11に対向して設けである。この誘導コ、イ
ル17の中心にはコ字状の鉄芯18が配置されている。
As shown in FIG. 15, this drive magnet 11 has north and south poles alternately magnetized in the circumferential direction. A pair of V-shaped notches 12 are formed at opposing positions on the upper end side of the driving magnet 11. The magnetic core 14 of the stator 13 has protrusions 15 extending radially, each of which is wound with a drive coil 16, and an induction coil 17 for detecting changes in the strength of magnetic force is attached to the tip of one of the protrusions 15 that extend radially. It is provided opposite to 11. A U-shaped iron core 18 is arranged at the center of this induction coil 17.

そして、ロータ2および駆動用マグネット3が回転し、
前記誘導コイル17の前を切欠部12が通過すると第1
6図に示すように、誘起電圧が生じPG倍信号・・■が
検出される。
Then, the rotor 2 and the driving magnet 3 rotate,
When the notch 12 passes in front of the induction coil 17, the first
As shown in Fig. 6, an induced voltage is generated and a PG multiplied signal...■ is detected.

[発明が解決しようとする課1i!ft]しかし、駆動
用マグネット11と誘導コイルI7では精度の良い速度
制御のためにPG倍信号ともに必要なPG倍信号検出で
きない。このFG倍信号検出ずろためにはN・SWの多
い、例えば30極・60極等の多極マグネットとN−S
極の変化を検出できる磁気センサを別個に設けなければ
ならない。これは−膜内に駆動用マグネット+1は6極
・8極等N・S極の極数が少なくFG信号検出用に用い
ろと回転むらを生じるからである。
[Lesson 1i that the invention attempts to solve! ft] However, the drive magnet 11 and the induction coil I7 cannot detect both the PG multiplication signal and the PG multiplication signal necessary for accurate speed control. In order to detect this FG multiplied signal, it is necessary to use a multi-pole magnet with many N/SW, for example, 30 poles, 60 poles, etc.
A separate magnetic sensor must be provided that can detect changes in polarity. This is because the driving magnet +1 has a small number of N and S poles, such as 6 and 8 poles, in the - film and causes uneven rotation when used for FG signal detection.

そのため、部品点数、組立工数の増加、コストアップお
よびスペースをとってしまうという問題点がある。
Therefore, there are problems such as an increase in the number of parts, an increase in the number of assembly steps, an increase in cost, and a need for space.

本発明は、上記問題点を解決するためになされたもので
、1つの装置でPC信号とFC信号を検出することによ
り部品点数、組立工数の低下、コストダウン及び省スペ
ース化を図ることを目的とする。
The present invention has been made to solve the above problems, and aims to reduce the number of parts, reduce assembly man-hours, reduce costs, and save space by detecting PC signals and FC signals with one device. shall be.

[課題を解決するための手段] 本発明は、回転軸の周囲に固着されN極とS極とが周方
向に交互に着磁された多極マグネットリングと、この多
極マグネットリングのに対向して配置され前記N−S極
の変化をFG倍信号変換させる磁気センサと、前記PG
倍信号遅延させるデイレ−回路とを備え、前記1つのN
極又はS極の一部に!つのFG倍信号のデューティを変
化させる所定幅の切欠部を設け、前記FG倍信号、前記
遅延させたFG倍信号を比較し、PG倍信号検出するこ
とを、その構成とする。
[Means for Solving the Problems] The present invention provides a multipolar magnet ring that is fixed around a rotating shaft and has N poles and S poles alternately magnetized in the circumferential direction, and a magnet ring that is opposed to the multipolar magnet ring. a magnetic sensor configured to convert the change in the N-S pole into a FG-fold signal;
and a delay circuit for delaying the signal by a factor of two, the one N
Part of the pole or south pole! The structure is such that a notch having a predetermined width is provided to change the duty of the two FG multiplied signals, and the FG multiplied signal and the delayed FG multiplied signal are compared to detect the PG multiplied signal.

[作用] 多極マグネットが回転すると、磁気センサがN・S極の
変化をFG倍信号変換する。
[Function] When the multi-pole magnet rotates, the magnetic sensor converts the change in the north and south poles into an FG times signal.

また、1つのN極又はS極に設けた所定幅の切欠部の部
分は磁界の方向が所定角度変化するため、1つのFG倍
信号のデューティが変化する。こののデューティが変化
したFG倍信号らPG倍信号取り出すPG信号検出回路
にて前記切欠部に対応したPC信号が検出される。
Furthermore, since the direction of the magnetic field changes by a predetermined angle in the notch portion of a predetermined width provided at one N pole or S pole, the duty of one FG multiplied signal changes. A PC signal corresponding to the notch is detected by a PG signal detection circuit which extracts a PG multiplied signal from the FG multiplied signal whose duty has been changed.

[実施例] 以下、本発明の一実施例を第1図〜第11図に基づいて
説明する。
[Example] Hereinafter, an example of the present invention will be described based on FIGS. 1 to 11.

第2図において、ブラシレスモータlのステータ側には
図示を省略した磁芯およびこの磁芯に巻き付けられた駆
動用コイルが設けである。ロータ2側には図示を省略し
た駆動用マグネットが前記駆動用コイルに対向しで配置
されている。前記ブラシレスモータ1にはFG倍信号P
G信号検出装置4が設けられている。第1図および第2
図において、FG倍信号PG信号検出装置4は、回転軸
3に固着された多極マグネットリング5と、この多極マ
グネットリング5の周面に対向して配置されFG倍信号
検出する磁気センサ6と、FG倍信号らPC信号を出力
させるPG信号検出回路としてのデイレ−回路7と、N
AND回路8とを備えている。
In FIG. 2, the stator side of the brushless motor 1 is provided with a magnetic core (not shown) and a driving coil wound around the magnetic core. On the rotor 2 side, a driving magnet (not shown) is arranged opposite to the driving coil. The brushless motor 1 receives an FG multiplication signal P.
A G signal detection device 4 is provided. Figures 1 and 2
In the figure, the FG multiplier signal PG signal detection device 4 includes a multipolar magnet ring 5 fixed to the rotating shaft 3, and a magnetic sensor 6 arranged opposite to the circumferential surface of the multipolar magnet ring 5 for detecting the FG multiplier signal. , a delay circuit 7 as a PG signal detection circuit that outputs a PC signal from the FG multiplied signal, and N
AND circuit 8.

前記多極マグネットリング5は、N極とS極とが交互に
30極着磁されている。前記30極のうちの1つのN極
又はS極(この実施例にあってはS極)にはPC信号を
検出するための切欠部8を設けである。この切欠部8は
N極とS極との境界軸線方向に所定深さに形成しである
The multipolar magnet ring 5 is magnetized with 30 N poles and 30 S poles alternately. One of the 30 poles, the N pole or the S pole (the S pole in this embodiment), is provided with a notch 8 for detecting the PC signal. This notch 8 is formed to a predetermined depth in the direction of the boundary axis between the north pole and the south pole.

前記磁気センサ6は磁場の向きを検出するもので、第3
図に示す2つの抵抗の特性が異なる磁場抵抗素子RA、
RBを備えている。この磁場抵抗素子R^、Raは第4
図のグラフに示すよう(こ、磁場の向きがy軸方向の時
に磁界回転角θ=0とすると、磁界の回転に併いその抵
抗値はcos波を描くように変化する。磁場抵抗素子R
Aはy軸方向(θ=o’ 、tsoo)の時に抵抗が最
大となり、X軸方向(θ・S0” 、270°)の時最
小となる。
The magnetic sensor 6 detects the direction of the magnetic field, and the third
The two magnetic field resistance elements RA shown in the figure have different resistance characteristics,
Equipped with RB. This magnetic field resistance element R^, Ra is the fourth
As shown in the graph in the figure (here, if the magnetic field rotation angle θ = 0 when the direction of the magnetic field is in the y-axis direction, the resistance value changes as if to draw a cos wave as the magnetic field rotates.Magnetic field resistance element R
The resistance of A is maximum when it is in the y-axis direction (θ=o', tsoo), and it is the minimum when it is in the X-axis direction (θ·S0'', 270°).

磁場抵抗素子R8はy軸方向の時最小でX軸方向の時最
大となり、RAに対し90°ずれて変化する。前記磁気
センサ6はこれらの素子RA、RBで第5図に示す等荷
回路を構成しており、Vcとして第6図に示すような磁
界回転角に対応して正弦波出力が得られるようになって
いる。
The magnetic field resistance element R8 is minimum in the y-axis direction and maximum in the X-axis direction, and varies by 90° with respect to RA. The magnetic sensor 6 has these elements RA and RB forming an equal charge circuit as shown in FIG. It has become.

第1図において、前記磁気センサ6の出力Vcは比較器
9の一入力端に導かれ、この比較器9の十の入力端には
基準電圧Vfが導かれている。前記基/$電圧Vfは可
変抵抗VR,で可変可能に構成されている。前記比較器
9の出力はNAND回路10の一方の入力端に導かれ、
このNANDAND回路他方の入力端にはデイレ−回路
7を通った前記比較器9の出力が導かれる。前記デイレ
−回路7は抵抗V Rtと、可変抵抗VR,とコンデン
サC2にて構成され、前記可変抵抗VR,の抵抗値を変
えることにより遅延量△Sを制御している。
In FIG. 1, the output Vc of the magnetic sensor 6 is guided to one input terminal of a comparator 9, and the reference voltage Vf is introduced to the input terminal of the comparator 9. The base/$ voltage Vf is configured to be variable by a variable resistor VR. The output of the comparator 9 is led to one input terminal of a NAND circuit 10,
The output of the comparator 9 which has passed through the delay circuit 7 is led to the other input terminal of this NANDAND circuit. The delay circuit 7 is composed of a resistor VRt, a variable resistor VR, and a capacitor C2, and controls the delay amount ΔS by changing the resistance value of the variable resistor VR.

次に、前記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

第1図および、第2図において、図示を省略した駆動コ
イルに所定の電圧を印加すると、ロータ2が回転する。
In FIGS. 1 and 2, when a predetermined voltage is applied to a drive coil (not shown), the rotor 2 rotates.

このロータ2が回転すると、第7図に示すように、前記
磁気センサ6はN極・S極に交互に対向し、その磁界の
方向に応じて第8図に示す正弦波電圧が出力され、FG
倍信号取り出される。各モードの立ち上がり点PでFG
倍信号取り出される。
When the rotor 2 rotates, as shown in FIG. 7, the magnetic sensor 6 alternately faces the north and south poles, and a sine wave voltage shown in FIG. 8 is output depending on the direction of the magnetic field. FG
The signal is extracted twice. FG at the rising point P of each mode
The signal is extracted twice.

第9図に示すように、前記切欠部8が磁気センサ6に対
向した場合は、切欠部8の部分の磁界の方向が仮想線で
示す切欠部6がない場合と異なり△θ変化し、lモード
だけ波形が実線で示すように変化する。即ち、仮想線で
示すように切欠部6のない場合は正弦波電圧が出力され
、そののデューティL:M=1.:lとなるのに対し、
切欠部8のある場合はlモードの波形が実線で示したよ
うに+△Tたけ変化し、のデューティもQ、:m、と変
化する。この際、切欠部8はlモードののデューティf
fl:m、のみが異なる範囲の幅に設定されているので
、次の信号の立ち上がり点P!の位置はずれることがな
く、切欠部8を設けたことによりPG倍信号周波数が乱
れることが防止されている。
As shown in FIG. 9, when the notch 8 faces the magnetic sensor 6, the direction of the magnetic field at the notch 8 changes Δθ, unlike in the case where there is no notch 6, as shown by the imaginary line. The waveform changes only in the mode as shown by the solid line. That is, as shown by the virtual line, when there is no notch 6, a sine wave voltage is output, and the duty L:M=1. :l, whereas
When there is a notch 8, the l-mode waveform changes by +ΔT as shown by the solid line, and the duty also changes as Q:m. At this time, the notch 8 has a duty f of l mode.
Since only fl:m is set to a different range of width, the rising point P of the next signal! does not shift, and the provision of the notch 8 prevents the PG multiple signal frequency from being disturbed.

第1図において、前記Vcから出力したFG倍信号・・
■は比較器にて基準信号Vf・・・■と比較され矩形波
・・・■に変換される。この矩形波・・・■と、デイレ
−回路7にて△S遅延された矩形波・・・■とがNAN
D回路10に人力される。モしてNANDAND回路出
力は切欠部8に対応する位置でのみ■]倍信号・・■と
なる。このように、H信号は切欠部8に対応しているの
でPG倍信号・・■として取り出される。
In Fig. 1, the FG multiplied signal output from the Vc...
■ is compared with the reference signal Vf...■ by a comparator and converted into a rectangular wave...■. This rectangular wave...■ and the rectangular wave...■ delayed by △S in the delay circuit 7 are NAN
The D circuit 10 is manually powered. The output of the NAND AND circuit becomes the double signal . . . only at the position corresponding to the notch 8. In this way, since the H signal corresponds to the notch 8, it is extracted as a PG multiplied signal .

なお、前記実施例においてNANDAND回路D回路と
してもよい。
Note that in the embodiment described above, a NANDAND circuit D circuit may be used.

第12図は前記実施例の変形例を示すもので、切欠部8
の位置をS極の中央から図中左側のN極側にかけて所定
幅切欠いたものである。前記切欠部8の磁界は−△θそ
の方向が変化し、Vcから出力される波形は一△Tだけ
ずれ、のデューティはmt:12tと変化するので、前
記実施例と同様にFG倍信号PG倍信号取り出される。
FIG. 12 shows a modification of the above embodiment, in which the notch 8
A predetermined width is cut out from the center of the S pole to the N pole side on the left side of the figure. The direction of the magnetic field of the notch 8 changes by -Δθ, the waveform output from Vc deviates by 1ΔT, and the duty of mt:12t changes, so the FG multiplied signal PG is generated as in the previous embodiment. The signal is extracted twice.

また、前記実施例は30極の多極マグネットを用いたが
、60極としてもよい。また切欠部の幅は、磁気センサ
で検出できる一定以上の幅であって、かつ、切欠部8を
検出する信号の次のFG倍信号立ち上がり位置がずれな
い範囲であればよい。
Further, although the above embodiment used a multipolar magnet with 30 poles, it may be used with 60 poles. Further, the width of the notch may be a certain width or more that can be detected by the magnetic sensor, and within a range in which the rising position of the next FG multiplied signal of the signal for detecting the notch 8 does not deviate.

[発明の効果] 以上の説明から明らかなように本発明によれば、回転軸
に固着されN極とS極とが周方向に交互に着磁された多
極マグネットリングと、この多極マグネットリングに対
向して配置され前記N−S極の変化をFG倍信号変換さ
せる磁気センサと、前記FG倍信号遅延させるデイレ−
回路とを備え、前記1つのN極又はS極の一部に1つの
FG倍信号のデューティを変化させるの切欠部を設け、
前記のデューティの変化したFC信号からPG倍信号取
り出すPG信号検出回路を設けたので、1つの装置でP
G倍信号FG倍信号検出することが可能となり部品点数
・組立工数の低下、コストダウン及び省スペース化を図
ることができるという効果がある。
[Effects of the Invention] As is clear from the above description, the present invention provides a multipolar magnet ring that is fixed to a rotating shaft and has N poles and S poles alternately magnetized in the circumferential direction, and this multipolar magnet. a magnetic sensor arranged opposite to the ring and converting the change in the N-S pole into an FG multiplied signal; and a delay sensor arranged to delay the FG multiplied signal.
a circuit, and a cutout portion for changing the duty of one FG multiplied signal is provided in a part of the one N pole or the S pole,
Since a PG signal detection circuit is provided to extract the PG multiplied signal from the FC signal whose duty has changed, one device can detect the P
It is possible to detect a G-multiple signal and an FG-multiple signal, which has the effect of reducing the number of parts and assembly man-hours, reducing costs, and saving space.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第11図は本発明の実施例を示すもので、第1
図はFG倍信号PC信号検出装置の平面図とPC信号検
出回路図、第2図は多極マグネットと磁気センサの斜視
図、第3図は磁気センサの構造図、第4図は磁界の向き
と磁気抵抗素子の抵抗値との関係を示すグラフ、第5図
は磁気センサを構成する回路図、第6図は磁界回転角と
出力電圧との関係を示すグラフ、第7図は多極マグネッ
トとその磁界の向きを示す部分平面図、第8図は磁気セ
ンサで検出したFG倍信号示すグラフ、第9図は多極マ
グネットとその磁界の向きを示す部分平面図、第10図
は磁気センサで検出したF’G信号を示すグラフ、第1
1図は第1図の回路図における■、■、■、■、■の各
出力電圧をすめずグラフ、第12図及び第13図は前記
実施例の変形例を示すもので、第12図は多極マグネッ
トおよび磁界の向きを示す部分平面図、第13図は磁気
センサで検出したFC信号を示すグラフ、第14図〜第
16図は従来例を示すもので、第14図はブラシレスモ
ーフの断面図、第■5図は駆動用マグネットと誘導コイ
ルの斜視図、第16図は誘導コイルで検出されるPG倍
信号示すグラフである。 3・・・回転軸、4・・・FG倍信号PG信号検出装置
、5・・・多極マグネット、6・・・磁気センサ、7・
・・デイレ−回路、8・・・切欠部。 多掩マク”ネットの部会xF−面図とtの不り界の萌き
(突媚イクリ)第7図 多極マグネットと雇r覧rンサの斜視図(突脂イタ1」
)第2図 磁at!ンサ71吏出した「G4号(左施イク1)第8
図 啼植塙0力山 →i舷界団転角e(&) B1気eンサのa迭図(史#!伊り 第3図 第5図 第6図 多種7り”ネソトの寄β分千面図とそのλΔ界の向き(
欠席イ列)第9図 石豆覧“亡ンサで゛4史出t r−FGイ言号(*’方
佐登り)ブランシスデー夕のWlrIflI口(A庭釆
イ列)第14図 、lJ動動用7宇 第15図 、石龜覧でンサ7゛ネ倉出しk「0イ宮9(変1杉イ列
)第13図 [i11輻角 誇導コイル7゛才た出さ1れうP0イ官号(名t 釆 
イ列)第16図
1 to 11 show embodiments of the present invention.
The figure is a plan view and PC signal detection circuit diagram of the FG double signal PC signal detection device, Figure 2 is a perspective view of the multipolar magnet and magnetic sensor, Figure 3 is a structural diagram of the magnetic sensor, and Figure 4 is the direction of the magnetic field. Figure 5 is a circuit diagram configuring the magnetic sensor, Figure 6 is a graph showing the relationship between magnetic field rotation angle and output voltage, Figure 7 is a graph showing the relationship between the magnetic field rotation angle and the resistance value of the magnetoresistive element, and Figure 7 is a graph showing the relationship between the magnetic field rotation angle and the output voltage. Fig. 8 is a graph showing the FG multiplier signal detected by the magnetic sensor, Fig. 9 is a partial plan view showing the multipolar magnet and the direction of its magnetic field, and Fig. 10 is the magnetic sensor. Graph showing the F'G signal detected in the first
Figure 1 is a graph of each output voltage of ■, ■, ■, ■, ■ in the circuit diagram of Figure 1, and Figures 12 and 13 show modifications of the above embodiment. is a partial plan view showing the multipolar magnet and the direction of the magnetic field, Fig. 13 is a graph showing the FC signal detected by the magnetic sensor, Figs. 14 to 16 are conventional examples, and Fig. 14 is a brushless morph. FIG. 5 is a perspective view of the driving magnet and the induction coil, and FIG. 16 is a graph showing the PG multiplied signal detected by the induction coil. 3... Rotating shaft, 4... FG double signal PG signal detection device, 5... Multipolar magnet, 6... Magnetic sensor, 7...
... Delay circuit, 8... Notch. Multipolar magnet's net section
) Figure 2 Magnet at! "G4 (left hand Iku 1) No. 8" released by Nsa 71
Figure 3, Figure 5, Figure 6, Variety of 7ri'Nesotho's approach β, 1,000 The surface view and the direction of its λΔ field (
Absent A row) Figure 9 Stone bean reading "Death" 4 History t r-FG I word (*'Hosa climbing) Wlr If I on Brancis day evening (A garden A row) Figure 14, lJ movement Figure 15 of the dynamic 7-U, I11 Radiation Angle Excitation Coil 7-Year-Old Exit 1 P0 I Official title (first name)
A column) Figure 16

Claims (1)

【特許請求の範囲】[Claims] (1)回転軸に固着されN極とS極とが周方向に交互に
着磁された多極マグネットリングと、この多極マグネッ
トリングに対向して配置され前記N・S極の変化をFG
信号に変換させる磁気センサとを備え、 前記1つのN極又はS極の一部に1つのFG信号のデュ
ーティを変化させる切欠部を設け、前記デューティの変
化したFG信号からPG信号を取り出すPG信号検出回
路を設けたことを特徴とするFG信号・PG信号検出装
置。
(1) A multipolar magnet ring that is fixed to a rotating shaft and has N and S poles alternately magnetized in the circumferential direction, and an FG that is placed opposite to this multipolar magnet ring and that detects changes in the N and S poles.
a magnetic sensor that converts the signal into a signal, a notch part that changes the duty of one FG signal in a part of the one N pole or S pole, and a PG signal that extracts the PG signal from the FG signal whose duty has changed. An FG signal/PG signal detection device characterized by being provided with a detection circuit.
JP1212566A 1989-08-18 1989-08-18 Detecting device of fg signal and pg signal Pending JPH0375566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1212566A JPH0375566A (en) 1989-08-18 1989-08-18 Detecting device of fg signal and pg signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1212566A JPH0375566A (en) 1989-08-18 1989-08-18 Detecting device of fg signal and pg signal

Publications (1)

Publication Number Publication Date
JPH0375566A true JPH0375566A (en) 1991-03-29

Family

ID=16624823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1212566A Pending JPH0375566A (en) 1989-08-18 1989-08-18 Detecting device of fg signal and pg signal

Country Status (1)

Country Link
JP (1) JPH0375566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853184B2 (en) * 2002-12-02 2005-02-08 Honeywell International Inc. Methods and systems for utilizing a ring magnet for magnetic sensing applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853184B2 (en) * 2002-12-02 2005-02-08 Honeywell International Inc. Methods and systems for utilizing a ring magnet for magnetic sensing applications

Similar Documents

Publication Publication Date Title
US4737675A (en) Brushless motor with center leads for preventing signal distortion
JPH0295192A (en) Rotation control circuit for hall motor
JPH0375566A (en) Detecting device of fg signal and pg signal
US6218748B1 (en) Rotation detecting device for a brushless motor
US5631508A (en) Cost-saving, small-sized motor with improved stability over wide speed range
JPS6246811B2 (en)
JP3289344B2 (en) Drum motor
JPH04251535A (en) Brushless motor
JPH066708Y2 (en) DC brushless motor
JPS6181163A (en) Step motor
KR930007341Y1 (en) Motor of dc brushless
JP2696974B2 (en) DC brushless motor
JPH01133547A (en) Index pulse generator
JPS63157656A (en) Brushless motor
KR930003685Y1 (en) Frequency generator signal construction of brushless dc motor
JPS601416Y2 (en) Rotation speed detection device
JPH0819238A (en) Position detector for motor
JPH0865989A (en) Brushless motor
JPS60114713A (en) Rotary-phase detecting device
JPH0847231A (en) Motor
JPS63157652A (en) Brushless motor
JPS61112555A (en) Motor with frequency generator
JPH0297290A (en) Detector for direction of rotation of motor
JPH0393450A (en) Rotational position detector in motor
JPH07213036A (en) Motor