JPH0375340A - Supermagnetstriction alloy - Google Patents

Supermagnetstriction alloy

Info

Publication number
JPH0375340A
JPH0375340A JP21142489A JP21142489A JPH0375340A JP H0375340 A JPH0375340 A JP H0375340A JP 21142489 A JP21142489 A JP 21142489A JP 21142489 A JP21142489 A JP 21142489A JP H0375340 A JPH0375340 A JP H0375340A
Authority
JP
Japan
Prior art keywords
alloy
magnetstriction
magnetostriction
supermagnetstriction
laves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21142489A
Other languages
Japanese (ja)
Inventor
Tadahiko Kobayashi
忠彦 小林
Masashi Sahashi
政司 佐橋
Yoichi Tokai
陽一 東海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21142489A priority Critical patent/JPH0375340A/en
Priority to EP89310001A priority patent/EP0361969B1/en
Priority to DE68926768T priority patent/DE68926768T2/en
Priority to US07/671,074 priority patent/US5110376A/en
Publication of JPH0375340A publication Critical patent/JPH0375340A/en
Priority to US07/845,827 priority patent/US5223046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To offer the supermagnetstriction alloy by which high magnetstriction can be obtd. in a low magnetic field and having reduced change in magnetstriction value to the variation in temp. by forming it from the compsn. constituted, as a main phase, of Laves-type intermetallic compounds constituted of prescribed atomic ratios of Dy, Tb, Fe and Mn and one or both of Co and Ni. CONSTITUTION:The above supermagnetstriction alloy is formed by regulating Laves-type intermetallic compounds constituted of the compsn. expressed by inequality (shown in table 1) as a main phase. Figure shows the properties of temp.-magnetstriction amt. in a supermagnetstriction alloy of which Co and/or Ni is added to Dy-Tb-Fe-Mn. Then, as cleared from the same figure, the magnetstriction amt. is nearly be changed in the range from -100 to +100 deg.C when the above Co and/or Ni is added. However, the magnetstriction amt. is drastically changed in the case of comparative example free from the addition of Co and/or Ni. Furthermore, the magnetstriction alloy has excellent mechanical characteristics.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は磁歪が大きく、磁気−機械変位変換デバイス等
に用いられる磁歪素子用として好適な超磁歪合金に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a giant magnetostrictive alloy that has large magnetostriction and is suitable for use in magnetostrictive elements used in magneto-mechanical displacement conversion devices and the like.

(従来の技術) 磁性体に外部磁場を印加した除虫じる歪である磁歪の応
用として、磁歪フィルタ、磁歪センサ、超音波遅延線、
磁歪振動子等がある。従来はNi基合金、Fe−Co合
金、フェライト等が用いられている。
(Prior art) Applications of magnetostriction, which is a repellent strain produced by applying an external magnetic field to a magnetic material, include magnetostrictive filters, magnetostrictive sensors, ultrasonic delay lines,
There are magnetostrictive vibrators, etc. Conventionally, Ni-based alloys, Fe-Co alloys, ferrites, etc. have been used.

近年、計測工学の進歩および精密機械分野の発展に伴い
、ミクロンオーダーの微小変位制御に不可欠の変位駆動
部の開発が必要とされている。この変位駆動部の駆動機
構の一つとして磁歪物質を用いた磁気−機械変換デバイ
スが有力である。しかしながら従来の磁歪材料では変位
の絶対量が充分でなく、ミクロンオーダーの精密変位制
御駆動部材料としては絶対駆動変位量のみならず、精密
制御の点からも満足し得るものではなかった。
In recent years, with advances in measurement engineering and development in the field of precision machinery, there has been a need to develop a displacement drive unit that is indispensable for minute displacement control on the micron order. A magneto-mechanical conversion device using a magnetostrictive material is effective as one of the drive mechanisms for this displacement drive section. However, with conventional magnetostrictive materials, the absolute amount of displacement is not sufficient, and as a material for a drive part for precision displacement control on the micron order, they are not satisfactory not only in terms of absolute drive displacement amount but also in terms of precision control.

このような課題を解決すべく本発明者等が研究を進めた
結果、Dy−Tb−Fe−Mn系のラーベス型金属間化
合物で飽和磁歪(λS)が1000 X 10’″6を
超えるものが得られることを見出した(特公昭61−3
3892号)。
As a result of the research carried out by the present inventors to solve these problems, a Dy-Tb-Fe-Mn-based Laves-type intermetallic compound with a saturation magnetostriction (λS) exceeding 1000 x 10'''6 was discovered. I found that it can be obtained (Tokuko Sho 61-3)
No. 3892).

(発明が解決しようとする課題) 特公昭61−33892号にも示されているように、実
用上は数koe程度の低磁界で大きな磁気歪を示し、か
つ高い靭性を有することが要求されている。
(Problems to be Solved by the Invention) As shown in Japanese Patent Publication No. 33892/1983, in practice, it is required to exhibit large magnetostriction in a low magnetic field of several koe and to have high toughness. There is.

しかしながらこの特公昭61−33892号に示されて
いる材料でもまだ不十分であり、より高性能の磁歪材料
が望まれている。
However, the material disclosed in Japanese Patent Publication No. 61-33892 is still insufficient, and a magnetostrictive material with higher performance is desired.

また微小変位を発生する際、問題となるのは使用温度範
囲内での磁歪特性の変化である。この様な温度特性が良
好でないと、変位量に温度依存性が生じてしまい、実用
上大きな問題となる。
Furthermore, when generating minute displacements, a problem is the change in magnetostrictive characteristics within the operating temperature range. If such temperature characteristics are not good, the amount of displacement will be temperature dependent, which will pose a serious problem in practice.

本発明はこのような問題点を考慮してなされたもので、
低磁場で大きな磁歪を得ると共に温度変化に対する磁歪
値の変化を低減し、かつ機械的性質にも優れた超磁歪合
金を提供することを目的とする。
The present invention was made in consideration of such problems, and
The object of the present invention is to provide a giant magnetostrictive alloy that can obtain large magnetostriction in a low magnetic field, reduce changes in magnetostriction value due to temperature changes, and have excellent mechanical properties.

〔発明の構成〕 (課題を解決するための手段及び作用)本発明は、[子
比で Dy14Tb、(Fe、−x−yMnzXy)zの組成
よりなるラーベス型金属間化合物を主相とすることを特
徴とした超磁歪合金である。
[Structure of the Invention] (Means and Effects for Solving the Problems) The present invention is characterized in that the main phase is a Laves-type intermetallic compound having a composition of Dy14Tb, (Fe, -x-yMnzXy)z in terms of particle ratio. It is a giant magnetostrictive alloy with the following characteristics.

本発明者らは先にDy−Tb−Fe−Mnの4元系合金
で磁歪の優れたものを開発した(特許第1370488
号)。本発明はその合金の磁歪特性を落とすことなく温
度特性を改良したものである。
The present inventors previously developed a Dy-Tb-Fe-Mn quaternary alloy with excellent magnetostriction (Patent No. 1370488).
issue). The present invention improves the temperature characteristics of the alloy without degrading its magnetostrictive characteristics.

第1図はDy−Tb−Fe−MnにGo、Niを添加し
た超磁歪合金の温度−磁歪量特性を示すものである。同
図にはGo、Niの添加のない比較例も併せて示すが、
同図より明らかな様に、−100〜+100℃の間で本
発明に係るGo、Ni添加の磁歪量はほとんど変化しな
い。これに対し比較例の場合は大きく変化している。
FIG. 1 shows the temperature-magnetostriction characteristics of a giant magnetostrictive alloy in which Go and Ni are added to Dy-Tb-Fe-Mn. The figure also shows a comparative example without the addition of Go or Ni.
As is clear from the figure, the amount of magnetostriction of the addition of Go and Ni according to the present invention hardly changes between -100 and +100°C. On the other hand, in the case of the comparative example, there is a large change.

上記式中のX(Co、Ni)量を示すVであるが、0.
05〜0.1の間で温度特性改善の顕著な効果が得られ
る。Vの値が大きすぎると磁歪特性が低下してしまいま
たX成分の添加はMn添加によるキュリー温度の低下を
補償する効果があるが小さすぎると添加効果が顕著には
現われない。
In the above formula, V indicates the amount of X (Co, Ni), but 0.
A remarkable effect of improving temperature characteristics can be obtained between 0.05 and 0.1. If the value of V is too large, the magnetostrictive properties will deteriorate, and addition of the X component has the effect of compensating for the decrease in the Curie temperature due to the addition of Mn, but if the value of V is too small, the effect of addition will not be noticeable.

DyとTbの比を表わすaが0.2〜0.9で良好な磁
歪特性を得るが、本発明の基本成分であるDy−Tb−
Fa−Mnの4元素ではa≧0.35の領域で磁歪値の
ピークが認められる。従って好ましくはa=0.35〜
0.9である。希土類金属の組成と磁歪特性との関係を
調べた結果を第2図に示す0合金組戒はDYx−aTb
a (Feo、sMno、asXo、oi)x、s C
ただし、X = Co1である。磁歪特性の評価方法と
しては、歪ゲージ法により、10kOe迄の磁界を印加
して求めた6図中縦軸の磁歪値は、低磁界駆動(低入力
パワー)の実用性を考慮し、2kOe(キロエルステッ
ド)の磁界を印加した時の各組成合金の磁歪値をD y
 F e、の同条件下での磁歪値で規格化した相対値を
して示す、同図よりa≧0.35を越える領域でピーク
がみられることが分かる。
Good magnetostrictive properties are obtained when a, which represents the ratio of Dy and Tb, is 0.2 to 0.9, but Dy-Tb- which is the basic component of the present invention
For the four elements Fa-Mn, a peak of magnetostriction value is observed in the region of a≧0.35. Therefore, preferably a=0.35~
It is 0.9. Figure 2 shows the results of investigating the relationship between the composition of rare earth metals and magnetostrictive properties.The zero alloy set is DYx-aTb.
a (Feo, sMno, asXo, oi) x, s C
However, X = Co1. As for the evaluation method of magnetostriction characteristics, the magnetostriction value on the vertical axis in Figure 6, which was obtained by applying a magnetic field of up to 10 kOe using the strain gauge method, is 2 kOe (low input power) considering the practicality of low magnetic field drive (low input power). D y is the magnetostriction value of each composition alloy when a magnetic field of Kloersted
From the same figure, which shows the relative value normalized by the magnetostriction value of Fe under the same conditions, it can be seen that a peak is observed in the region where a≧0.35 is exceeded.

Mn量を示す工は、O,OS〜0.4である。大きすぎ
るとキュリー温度が低下して実用上の問題が生じ、小さ
すぎると靭性及び加工性が低下する。
The value indicating the amount of Mn is O,OS~0.4. If it is too large, the Curie temperature will drop, causing a practical problem, and if it is too small, toughness and workability will decrease.

希土類金属と遷移金属の比を示す2であるが、Z>2.
1では異相(希土類:遷移金属=1=3など)が生成し
、磁歪特性を低下する。またZ)1.95ではラーベス
型金属間化合物が合金体積中に占める割合がほぼ100
%となり、延性に富む希土類金属相が消失するため靭性
が低下し、難加工性材料となり、磁歪特性も低下するた
め、望ましくはミニ1.95である。一方、Z<1.4
ではラーベス型金属間化合物が合金体積中に占める割合
が50%を下回り、磁歪特性が大幅に減少する0例えば
、Z=2において、100%ラーベス型金属間化合物の
ときの磁歪定数を100とした場合、Z<1.4では磁
歪定数が30〜50となり、磁歪特性の劣化が顕著であ
ることから実用材にはならない。
2 indicates the ratio of rare earth metals to transition metals, and Z>2.
1, a different phase (rare earth: transition metal = 1 = 3, etc.) is generated, which deteriorates the magnetostrictive properties. In addition, at Z) 1.95, the proportion of Laves type intermetallic compounds in the alloy volume is almost 100.
%, the rare earth metal phase rich in ductility disappears, the toughness decreases, the material becomes difficult to process, and the magnetostrictive properties also decrease, so it is preferably mini 1.95. On the other hand, Z<1.4
In this case, the proportion of the Laves-type intermetallic compound in the alloy volume is less than 50%, and the magnetostriction properties decrease significantly.For example, at Z=2, the magnetostriction constant when 100% Laves-type intermetallic compound is 100. In this case, when Z<1.4, the magnetostriction constant is 30 to 50, and the deterioration of the magnetostrictive properties is significant, so it cannot be used as a practical material.

本発明では希土類元素はDy−Tbの2元素を基本とす
るが、本発明の特性を損なわない範囲で、La、 Ce
、 Pr、 Nd、 Pa、 Sm、 Eu、 Gd、
 Ho。
In the present invention, the rare earth elements are basically Dy-Tb, but La, Ce, etc. are used as long as the characteristics of the present invention are not impaired.
, Pr, Nd, Pa, Sm, Eu, Gd,
Ho.

Er、 Tag、 Yb、 Lu、 Yの他の希土類元
素を添加しても良い。添加量の上限はoy−’rbの合
計量中の50at%程度までである。
Other rare earth elements such as Er, Tag, Yb, Lu, and Y may be added. The upper limit of the amount added is about 50 at% of the total amount of oy-'rb.

本発明の希土類鉄系超磁歪合金では、主要合金(添加)
元素である鉄およびマンガンはテルビウムおよびディス
プロシウムとラーベス型金属間化合物を形成し、加工性
および靭性が良好で更に室温以上の温度領域における磁
歪特性を著しく向上せしめ、満足し得る特性に至らしめ
るものである。
In the rare earth iron-based giant magnetostrictive alloy of the present invention, the main alloy (addition)
The elements iron and manganese form a Laves-type intermetallic compound with terbium and dysprosium, which provides good workability and toughness, and also significantly improves magnetostriction properties in the temperature range above room temperature, resulting in satisfactory properties. It is something.

加工性および靭性の向上は、ラーベス型金属間化合物を
構成する遷移金属として、鉄とマンガンを選択すること
によって達成される。またさらに加工性および靭性を向
上せしめる手段としてはラーベス型金属間化合物(A 
B2)  中に延性に富む希土類金属α相(R)、を分
散せしめ破壊靭性値を向上せしめることである(第3図
)、シかしこの場合、ラーベス型金属間化合物以外の化
合物が生成すると磁歪特性が大幅に劣化することから、
熱平衡状態図より、上記希土類金属・遷移金属系に限定
される。
Improvements in workability and toughness are achieved by selecting iron and manganese as transition metals constituting the Laves-type intermetallic compound. Furthermore, as a means to further improve workability and toughness, Laves-type intermetallic compounds (A
B2) The method is to improve the fracture toughness value by dispersing the highly ductile rare earth metal α phase (R) (Fig. 3). However, in this case, when compounds other than Laves-type intermetallic compounds are formed, magnetostriction occurs. Because the characteristics deteriorate significantly,
Based on the thermal equilibrium phase diagram, it is limited to the above rare earth metal/transition metal systems.

また本発明合金は鋳造体、焼結体など多結晶体でも良い
し、一方向凝固等による結晶配向やフローティングゾー
ンメルト法等を用いた結晶性を制御したものでも良い、
 <111>方向が磁歪量の軸であり、この方向への制
御は有効であることが期待できる。
Further, the alloy of the present invention may be a polycrystalline body such as a cast body or a sintered body, or may be one whose crystallinity is controlled using a method such as crystal orientation by unidirectional solidification or a floating zone melt method.
The <111> direction is the axis of the amount of magnetostriction, and control in this direction can be expected to be effective.

(実施例) 表1に示した合金をアーク溶解にて作成した後、900
℃X1veekの均一化処理を施した試料を切削加工に
て101mX10閣×5閣厚の試験片とした。
(Example) After creating the alloy shown in Table 1 by arc melting,
A sample subjected to homogenization treatment at ℃×1veak was cut into a test piece of 101 m x 10 mm x 5 mm thick.

磁歪特性は、室温下で抗磁性ゲージを用い、磁界は対向
磁極型電磁石により発生させ、  2kOe印加磁界中
で評価した。
The magnetostrictive properties were evaluated at room temperature using a coercive gauge, the magnetic field was generated by an electromagnet with opposing magnetic poles, and an applied magnetic field of 2 kOe was evaluated.

磁歪量の温度特性変化は上記評価方法を用いて試料の温
度を変えながら行なった。
Changes in the temperature characteristics of the amount of magnetostriction were conducted using the above evaluation method while changing the temperature of the sample.

磁歪の温度特性は一100℃から+100℃における変
化量を室温の磁歪値で規格化した値を求め、表1に示し
た。
The temperature characteristics of magnetostriction were obtained by normalizing the amount of change from -100°C to +100°C by the magnetostriction value at room temperature, and are shown in Table 1.

靭性の比較評価法は鉄製敷板への落下試験を採用し、同
一形状(はぼ同一重量)の試験片を3mの位置より自然
落下させ破壊の有無を調べた。このとき、同じ組成の試
験片10個を落下試験し、全数とも破壊しなかったとき
を0.1つでも破壊したものをΔ、全数破壊したものを
×とした。
For the comparative evaluation of toughness, a drop test on a steel floor plate was adopted, in which test pieces of the same shape (same weight) were dropped naturally from a position of 3 m to examine the presence or absence of fracture. At this time, 10 test pieces of the same composition were subjected to a drop test, and when none of the test pieces were broken, it was marked as Δ when even 0.1 of the test pieces were broken, and when all of them were broken, it was marked as ×.

また、合金組成は光学顕微鏡、EDXにより2相状態あ
るいは単相状態であるかを同定した。
Further, the alloy composition was identified as a two-phase state or a single-phase state using an optical microscope and EDX.

以下余白 表1に示した実施例から明らかな如く、本発明による希
土類・鉄系超磁歪合金は、低磁界において極めて大きな
磁歪特性を有しており、ラーベス型金属間化合物相と残
部となる希土類金属α相より増成される2相合金組織を
有していることから。
As is clear from the examples shown in Table 1 below, the rare earth/iron giant magnetostrictive alloy according to the present invention has an extremely large magnetostriction property in a low magnetic field, and has a Laves-type intermetallic compound phase and a rare earth This is because it has a two-phase alloy structure enhanced by the metal α phase.

靭性も大幅に改善されることが確認された。It was confirmed that toughness was also significantly improved.

比較のために、比較例1.2の特性を表1に併せて示す
For comparison, the characteristics of Comparative Example 1.2 are also shown in Table 1.

比較例1は磁歪特性については良好な特性を示している
ものの、靭性が低く、脆弱である。
Although Comparative Example 1 shows good magnetostrictive properties, it has low toughness and is brittle.

比較例2は、靭性が良好であるが、磁歪特性が著しく劣
化してしまう。
Comparative Example 2 has good toughness, but the magnetostriction properties deteriorate significantly.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明により希土類−鉄系超磁歪合金
は従来の磁歪材料の特性に比べ、極めて優れた磁歪特性
を有するとともに磁歪の温度安定性、靭性が、良好であ
る等の実用材料に不可欠な要因をも満たし、特にミクロ
ンオーダーの微小変位制御用駆動部1強力超音波発生用
振動子、センサ等の構成材料として極めて優れた特性を
有するものである。
As explained above, the rare earth-iron giant magnetostrictive alloy of the present invention has extremely superior magnetostrictive properties compared to the properties of conventional magnetostrictive materials, and has good temperature stability and toughness of magnetostriction, which is essential for practical materials. It satisfies the following factors and has extremely excellent properties as a constituent material of the drive unit 1 for controlling minute displacements on the micron order, vibrators for generating strong ultrasonic waves, sensors, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁歪量の温度変化を示した特性図、第2図は磁
歪特性と組成比の関係図、第3図は2相合金組織の構成
図。
FIG. 1 is a characteristic diagram showing temperature changes in the amount of magnetostriction, FIG. 2 is a diagram showing the relationship between magnetostriction characteristics and composition ratio, and FIG. 3 is a configuration diagram of a two-phase alloy structure.

Claims (1)

【特許請求の範囲】 原子比で Dy_1_−_aTb_a(Fe_1_−_x_−_y
Mn_xX_y)_zただし0.2≦a≦0.9 0.05≦x≦0.4 0.05≦y≦0.1 1.4≦z≦2.1 x;Co及びNiの少なくとも一種 の組成よりなるラーベス型金属間化合物を主相とするこ
とを特徴とした超磁歪合金。
[Claims] Dy_1_-_aTb_a(Fe_1_-_x_-_y
Mn_xX_y)_z However, 0.2≦a≦0.9 0.05≦x≦0.4 0.05≦y≦0.1 1.4≦z≦2.1 x; Composition of at least one of Co and Ni A giant magnetostrictive alloy characterized by having a Laves-type intermetallic compound as its main phase.
JP21142489A 1988-09-29 1989-08-18 Supermagnetstriction alloy Pending JPH0375340A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP21142489A JPH0375340A (en) 1989-08-18 1989-08-18 Supermagnetstriction alloy
EP89310001A EP0361969B1 (en) 1988-09-29 1989-09-29 Super-magnetostrictive alloy
DE68926768T DE68926768T2 (en) 1988-09-29 1989-09-29 Super magnetostrictive alloy
US07/671,074 US5110376A (en) 1988-09-29 1991-03-18 Super-magnetostrictive alloy
US07/845,827 US5223046A (en) 1988-09-29 1992-03-06 Super-magnetostrictive alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21142489A JPH0375340A (en) 1989-08-18 1989-08-18 Supermagnetstriction alloy

Publications (1)

Publication Number Publication Date
JPH0375340A true JPH0375340A (en) 1991-03-29

Family

ID=16605728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21142489A Pending JPH0375340A (en) 1988-09-29 1989-08-18 Supermagnetstriction alloy

Country Status (1)

Country Link
JP (1) JPH0375340A (en)

Similar Documents

Publication Publication Date Title
EP0344018B1 (en) Rare earth permanent magnet
CA2104211A1 (en) Fe-ni based soft magnetic alloys having nanocrystalline structure
EP0361969B1 (en) Super-magnetostrictive alloy
EP0086485B1 (en) Wound iron core
US20030010405A1 (en) Magnetostrictive devices and methods using high magnetostriction, high strength fega alloys
Wang et al. Effect of copper on magnetostriction and mechanical properties of TbDyFe alloys
JP3452210B2 (en) Manufacturing method of magnetostrictive material
US6273966B1 (en) High performance rare earth-transition metal magnetostrictive materials
US5192375A (en) Fe-based soft magnetic alloy
US5565830A (en) Rare earth-cobalt supermagnetostrictive alloy
JPS62170446A (en) Vitreous alloy having perminvar characteristics
Mei et al. Preparation and magnetostriction of Tb Dy Fe sintered compacts
JPH0375340A (en) Supermagnetstriction alloy
US5223046A (en) Super-magnetostrictive alloy
JP3354183B2 (en) Magnetostrictive material and magnetostrictive actuator using the same
JP2791564B2 (en) Magnetostrictive material
JP2877365B2 (en) Giant magnetostrictive alloy and actuator for micro displacement control
US4938267A (en) Glassy metal alloys with perminvar characteristics
JP2848643B2 (en) Giant magnetostrictive alloy and actuator for micro displacement control
JP3313386B2 (en) Giant magnetostrictive alloy and magneto-mechanical mutation conversion device
JP2881006B2 (en) Magnetostrictive material
CN1170941A (en) Soft magnetic alloy rod with high magnetic induction strength, high magnetic conductivity, high resistivity, low coercive force, low residual magnetism and density
JPS6133892B2 (en)
JPH01298703A (en) Rare earth permanent magnet
JPH02221350A (en) Magnetostriction material