JPH0375065B2 - - Google Patents

Info

Publication number
JPH0375065B2
JPH0375065B2 JP60193418A JP19341885A JPH0375065B2 JP H0375065 B2 JPH0375065 B2 JP H0375065B2 JP 60193418 A JP60193418 A JP 60193418A JP 19341885 A JP19341885 A JP 19341885A JP H0375065 B2 JPH0375065 B2 JP H0375065B2
Authority
JP
Japan
Prior art keywords
calcium ion
film
sensor
calcium
redox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60193418A
Other languages
Japanese (ja)
Other versions
JPS6252449A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60193418A priority Critical patent/JPS6252449A/en
Publication of JPS6252449A publication Critical patent/JPS6252449A/en
Publication of JPH0375065B2 publication Critical patent/JPH0375065B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳现な説明】 発明の背景 〔産業䞊の利甚分野〕 本発明はカルシりムむオンセンサヌ、曎に詳现
には、内郚液及び内郚液宀を有しない固䜓型のカ
ルシりムむオンセンサヌに関する。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION [Field of Industrial Application] The present invention relates to a calcium ion sensor, and more particularly to a solid-state calcium ion sensor having no internal liquid or internal liquid chamber.

〔埓来の技術及び問題点〕[Conventional technology and problems]

埓来、電気化孊的なカルシりムむオンセンサヌ
ずしおは、いわゆる液膜型のものが知られおい
る。
Conventionally, so-called liquid film type sensors have been known as electrochemical calcium ion sensors.

しかしながら、この皮の液膜型センサヌは、䞀
定濃床のカルシりムむオンを含む内郚液ず倖郚の
被怜液をカルシりムむオン遞択膜で隔離しおなる
構造を有するため、その電極䜓の小型化は困難で
あ぀た。たた、これを生䜓内で䜿甚するず、内郚
液の溶出、挏れを生ずる危険性があり、甚途が制
限されおいた。
However, this type of liquid film sensor has a structure in which an internal liquid containing a certain concentration of calcium ions and an external test liquid are separated by a calcium ion selective membrane, so it is difficult to miniaturize the electrode body. It was hot. Furthermore, when used in vivo, there is a risk of elution or leakage of internal fluids, which limits its use.

これに察しお、゚ツチ・フレむザヌH.
Freiser及びカヌトラルらは、液膜型センサヌ
の内郚液を無くした、いわゆる被芆線電極
Coated Wire ElectrodeCWEを提案した。
In contrast, Etsuchi Fraser (H.
Friiser and Cartral et al. proposed a so-called coated wire electrode (CWE) that eliminates the internal liquid of a liquid film sensor.

しかしながら、CWEは癜金、銀などの貎金属
や銅などの重金属にカルシりムむオン遞択性膜を
盎接被着しおなるものであり、小型化が可胜、構
造が簡単で䜜成が容易などの利点を有するが、䞀
方電䜍ドリフトが倧きい、たた酞玠分圧による圱
響が倧きいなどの欠点があるため、生䜓䞭や長時
間のモニタヌなどに䜿甚できなか぀た。
However, CWE is made by directly depositing a calcium ion-selective membrane on noble metals such as platinum, silver, or heavy metals such as copper, and has the advantages of being compact, having a simple structure, and being easy to manufacture. However, it cannot be used in vivo or for long-term monitoring due to drawbacks such as large potential drift and large influence by oxygen partial pressure.

発明の目的 斯かる実状においお、本発明者は内郚液宀を有
しない固䜓型センサヌであ぀お、か぀、電䜍ドリ
フトが小さく酞玠分圧等による劚害のないカルシ
りムむオンセンサヌを開発すべく皮々怜蚎を重ね
おいたずころ、カルシりムむオン遞択性膜を導電
性基䜓の衚面に盎接被着せずに、予め可逆的酞化
還元機胜を有する膜を被着した䞊に重ねお被着す
るこずにより䞊蚘目的が達成されるこずを芋出
し、本発明を完成した。
Purpose of the Invention Under these circumstances, the present inventor has conducted various studies in order to develop a calcium ion sensor that is a solid-state sensor that does not have an internal liquid chamber, has a small potential drift, and is free from interference due to oxygen partial pressure, etc. However, the above objective can be achieved by depositing a calcium ion-selective membrane on top of a membrane that has a reversible redox function, instead of directly depositing the calcium ion-selective membrane on the surface of the conductive substrate. They discovered this and completed the present invention.

すなわち本発明は、溶液䞭のカルシりムむオン
濃床を電極電䜍応答で枬定するカルシりムむオン
センサヌであ぀お、導電性基䜓の衚面に可逆的酞
化還元機胜を有する膜を被着し、曎に該被膜の衚
面にカルシりムむオン遞択性膜を被着しおなるこ
ずを特城ずするカルシりムむオンセンサヌを提䟛
するものである。
That is, the present invention is a calcium ion sensor that measures the concentration of calcium ions in a solution based on electrode potential response, in which a film having a reversible redox function is deposited on the surface of a conductive substrate, and a film having a reversible redox function is coated on the surface of the film. The present invention provides a calcium ion sensor characterized by being coated with a calcium ion selective membrane.

本発明は曎に、カルシりムむオン遞択性膜がカ
ルシりムむオンキダリダヌ物質を担持せしめた高
分子膜であるカルシりムむオンセンサヌを提䟛す
るものである。
The present invention further provides a calcium ion sensor in which the calcium ion selective membrane is a polymeric membrane carrying a calcium ion carrier material.

発明の具䜓的説明 本発明のカルシりムむオンセンサヌに䜿甚され
る導電性基䜓ずしおは、䟋えばベヌサル・プレヌ
ン・ピロリテむツク・グラフアむトbasal
plane pyrolytic graphite以䞋、BPGずいう、
グラツシヌカヌボン等の導電性炭玠材料金、癜
金、銅、銀、パラゞりム等の金属、特に貎金属又
はこれらの金属の衚面に酞化むンゞりム、酞化ス
ズ等の半導䜓を被芆したものが挙げられる。就
䞭、導電性炭玠材料が奜たしく、BPGが特に奜
たしい。
DETAILED DESCRIPTION OF THE INVENTION The conductive substrate used in the calcium ion sensor of the present invention is, for example, basal plain pyrolitic graphite (basal plain pyrolitic graphite).
plane pyrolytic graphite (hereinafter referred to as BPG),
Conductive carbon materials such as glassy carbon; metals such as gold, platinum, copper, silver, and palladium, particularly noble metals, or materials whose surfaces are coated with semiconductors such as indium oxide and tin oxide. Among these, conductive carbon materials are preferred, and BPG is particularly preferred.

たた、可逆的酞化還元機胜を有する膜以䞋、
酞化還元膜ずいうこずがあるずは、これを導電
性基䜓衚面に被着しおなる電極が可逆的酞化還元
反応によ぀お導電性基䜓に䞀定電䜍を発生しうる
ものであり、本発明においおは特に酞玠ガス分圧
によ぀お電䜍が倉動しないものが奜たしい。斯か
る酞化還元膜ずしおは、䟋えばキノンヌヒドロ
キノン型の酞化還元反応を行なうこずができる有
機化合物膜若しくは高分子膜、アミン−キノむ
ド型の酞化還元反応を行なうこずができる有機化
合物膜若しくは高分子膜等が奜適なものずしお挙
げられる。なお、ここでキノン−ヒドロキノン型
の酞化還元反応ずは、重合䜓の堎合を䟋にずれ
ば、䟋えば次の反応匏で衚わされるものをいう。
In addition, membranes with reversible redox functions (hereinafter referred to as
A redox film (sometimes referred to as a redox film) refers to an electrode formed by adhering this film to the surface of a conductive substrate, which can generate a constant potential on the conductive substrate through a reversible redox reaction. In particular, it is preferable that the potential does not vary depending on the oxygen gas partial pressure. Examples of such a redox film include an organic compound film or a polymer film capable of carrying out a quinone-hydroquinone type redox reaction, and an organic compound film or a polymer film capable of carrying out an amine-quinoid type redox reaction. etc. are mentioned as suitable ones. Here, the quinone-hydroquinone type redox reaction refers to, for example, one expressed by the following reaction formula, taking the case of a polymer as an example.

匏䞭、R1、R2は䟋えば芳銙族含有構造の化
合物を瀺す たた、アミン−キノむド型の酞化還元反応ず
は、前蚘同様重合䜓の堎合を䟋にずれば、䟋えば
次の反応匏で衚わされるものをいう。
(In the formula, R 1 and R 2 represent, for example, a compound with an aromatic-containing structure.) In addition, the amine-quinoid type redox reaction is the same as the above-mentioned polymer, for example, as shown in the following reaction formula. refers to something expressed as

−R3−o1−H+e- ―――――→ ←――――― −NH−R4−o1NH− 匏䞭、R3、R4は䟋えば芳銙族含有構造の導
電性基䜓を瀺す このような可逆的酞化還元機胜を有する膜を圢
成しうる化合物ずしおは、䟋えば次の(a)〜(c)の化
合物が挙げられる。
−(N=R 3 −) o1 N−+H + ,e −——— → ←——— −(NH−R 4 −) o1 NH− (wherein, R 3 and R 4 are e.g. Examples of compounds that can form a film having such a reversible redox function include the following compounds (a) to (c).

(a) 匏䞭、Ar1は芳銙族、各R5は眮換基、m2
はないしAr1の有効原子䟡数、n2はないし
Ar1の有効原子䟡数−を瀺す で衚わされるヒドロキシ芳銙族化合物 Ar1の芳銙栞は、䟋えばベンれン栞のように
単環のものであ぀おも、アントラセン栞、ピレ
ン栞、クリセン栞、ペリレン栞、コロネン栞等
のように倚環のものであ぀おもよく、たたベン
れン骚栞のみならず耇玠環骚栞のものであ぀お
もよい。眮換基R5ずしおは、䟋えばメチル基
等のアルキル基、プニル基等のアリヌル基、
およびハロゲン原子等が挙げられる。具䜓的に
は、䟋えばゞメチルプノヌル、プノヌル、
ヒドロキシピリゞン、−たたは−ベンゞル
アルコヌル、−、−たたは−ヒドロキシ
ベンズアルデヒド、−たたは−ヒドロキシ
アセトプノン、−、−、たたは−ヒド
ロキシプロピオプノン、−、−たたは
−ベンゟプノヌル、−、−たたは−ヒ
ドロキシベンゟプノン、−、−たたは
−カルボキシプノヌル、ゞプニルプノヌ
ル、−メチル−−ヒドロキシキノリン、
−ヒドロキシ−−ナフトキノン、−
−ヒドロキシプニル−ブタノン、
−ゞヒドロキシ−−テトラヒ
ドロナフタレン、ビスプノヌル、サリチル
アニリド、−ヒドロキシキノリン、−ヒド
ロキシキノリン、−ゞヒドロキシアント
ラキノン、−ヒドロキシ−−ナフトキ
ノン等が挙げられる。
(a) (where Ar 1 is aromatic, each R 5 is a substituent, m 2
is 1 or the effective valence number of Ar 1 , n 2 is 0 or
The aromatic nucleus of Ar 1 is a monocyclic one such as a benzene nucleus, anthracene nucleus, pyrene nucleus, chrysene nucleus, It may be a polycyclic nucleus such as a perylene nucleus or a coronene nucleus, and it may be not only a benzene nucleus but also a heterocyclic nucleus. Examples of the substituent R 5 include an alkyl group such as a methyl group, an aryl group such as a phenyl group,
and halogen atoms. Specifically, for example, dimethylphenol, phenol,
Hydroxypyridine, o- or m-benzyl alcohol, o-, m- or p-hydroxybenzaldehyde, o- or m-hydroxyacetophenone, o-, m- or p-hydroxypropiophenone, o-, m - or p
-benzophenol, o-, m- or p-hydroxybenzophenone, o-, m- or p
-carboxyphenol, diphenylphenol, 2-methyl-8-hydroxyquinoline, 5
-Hydroxy-1,4-naphthoquinone, 4-
(p-hydroxyphenyl)2-butanone, 1,
5-dihydroxy-1,2,3,4-tetrahydronaphthalene, bisphenol A, salicylanilide, 5-hydroxyquinoline, 8-hydroxyquinoline, 1,8-dihydroxyanthraquinone, 5-hydroxy-1,4-naphthoquinone, etc. Can be mentioned.

(b) 次匏 匏䞭、Ar2は芳銙栞、各R6は眮換基、m3
はないしAr2の有効原子䟡数、n3はないし
Ar2の有効原子䟡数−を瀺す で衚わされるアミノ芳銙族化合物 Ar2の芳銙栞、眮換基R6ずしおは化合物(a)に
おけるAr1、眮換基R5ず倫々同様のものが䜿甚
される。アミノ芳銙族化合物の具䜓䟋を挙げる
ず、アニリン、−ゞアミノベンれン、ア
ミノピレン、ゞアミノピレン、アミノクリセ
ン、ゞアミノクリセン、−アミノプナント
レン、−アミノプナントレン、10−ゞ
アミノプナントレン、−アミノアントラキ
ノン、−プノキシアニリン、−プニレ
ンゞアミン、−クロロアニリン、−ゞ
クロロアニリン、−トリクロロアニ
リン、−メチルアニリン、−プニル−
−プニレンゞアミン等である。
(b) The following formula (In the formula, Ar 2 is an aromatic nucleus, each R 6 is a substituent, m 3
is 1 to the effective valence number of Ar 2 , n 3 is 0 to
The aromatic nucleus of Ar 2 and substituent R 6 are the same as Ar 1 and substituent R 5 in compound (a), respectively. be done. Specific examples of amino aromatic compounds include aniline, 1,2-diaminobenzene, aminopyrene, diaminopyrene, aminochrysene, diaminochrysene, 1-aminophenanthrene, 9-aminophenanthrene, 9,10-diamino Phenanthrene, 1-aminoanthraquinone, p-phenoxyaniline, o-phenylenediamine, p-chloroaniline, 3,5-dichloroaniline, 2,4,6-trichloroaniline, N-methylaniline, N- phenyl-p
-phenylenediamine, etc.

(c) −ピレンキノン、−テ
トラヒドロキシナリザリン、プナントレンキ
ノン、−アミノアントラキノン、プルプリ
ン、−アミノ−−ヒドロキシアントラキノ
ン、アントラルフむン等のキノン類。
(c) Quinones such as 1,6-pyrenequinone, 1,2,5,8-tetrahydroxynarizalin, phenanthrenequinone, 1-aminoanthraquinone, purpurin, 1-amino-4-hydroxyanthraquinone, anthralfin, etc. kind.

これらの化合物のうち、特に−キシレ
ノ−ル、−アミノピレンが奜たしい。
Among these compounds, 2,6-xylenol and 1-aminopyrene are particularly preferred.

曎に、本発明に係る酞化還元膜を圢成しうる
化合物ずしおは、 (d) ポリ−メチルアニリン〔倧貫、束田、
小山、日本化孊䌚誌、1801−18091984〕、ポ
リ−ゞメチル−−プニレン゚
ヌテル、ポリ−プニレンゞアミン、ポ
リプノヌル、ポリキシレノヌルピラゟ
ロキノン系ビニルモノマヌの重合䜓、む゜アロ
キサゞン系ビニルモノマヌの重合䜓等のキノン
系ビニルポリマヌ瞮重合化合物のような(a)〜(c)
の化合物を含有する有機化合物、(a)〜(c)の化合
物の䜎重合床高分子化合物オリゎマヌ、あ
るいは(a)〜(c)をポリビニル化合物、ポリアミド
化合物等の高分子化合物に固定したもの等の圓
該酞化還元反応性を有するもの が挙げられる。なお、本明现曞においお、重合䜓
ずいう語は単独重合䜓及び共重合䜓等の盞互重合
䜓の双方を含む。
Further, as compounds capable of forming the redox film according to the present invention, (d) poly(N-methylaniline) [Onuki, Matsuda,
Koyama, Journal of the Chemical Society of Japan, 1801-1809 (1984)], poly(2,6-dimethyl-1,4-phenylene ether), poly(o-phenylene diamine), poly(phenol), polyxylenol; pyrazoquinone series (a) to (c) such as quinone-based vinyl polymer condensation compounds such as vinyl monomer polymers and isoalloxazine-based vinyl monomer polymers;
An organic compound containing the compound of (a) to (c), a low polymerization degree polymer compound (oligomer) of the compound (a) to (c), or (a) to (c) fixed to a polymer compound such as a polyvinyl compound or a polyamide compound. Examples include those having the redox reactivity such as. Note that in this specification, the term polymer includes both homopolymers and interpolymers such as copolymers.

本発明においお、叙䞊の酞化還元膜を圢成しう
る化合物を導電性基䜓の衚面に被着するために
は、アミノ芳銙族化合物、ヒドロキシ芳銙族化合
物等を電解酞化重合法たたは電解析出法によ぀お
基䜓衚面䞊で盎接重合させる方法、あるいは電子
線照射、光、熱などの適甚によ぀お、予め合成さ
れた重合䜓を溶媒に溶かし、この溶液を浞挬・塗
垃および也燥により基䜓衚面に固定する方法、曎
には重合䜓膜を化孊的凊理、物理的凊理もしくは
照射凊理によ぀お基䜓衚面に盎接固定する方法を
採るこずができる。これらの方法の䞭では、特に
電解酞化重合法によるのが奜たしい。
In the present invention, in order to deposit a compound capable of forming the above-mentioned redox film on the surface of a conductive substrate, an amino aromatic compound, a hydroxy aromatic compound, etc. are applied by an electrolytic oxidation polymerization method or an electrolytic deposition method. Therefore, by directly polymerizing on the substrate surface, or by applying electron beam irradiation, light, heat, etc., a pre-synthesized polymer is dissolved in a solvent, and this solution is fixed to the substrate surface by dipping/coating and drying. Alternatively, a method of directly fixing the polymer film to the substrate surface by chemical treatment, physical treatment, or irradiation treatment can be adopted. Among these methods, electrolytic oxidative polymerization is particularly preferred.

本発明においお、電解酞化重合法は、溶媒䞭で
適圓な支持電解質の存圚䞋、アミノ芳銙族化合
物、ヒドロキシ芳銙族化合物等を電解酞化重合さ
せ導電䜓の衚面に重合䜓膜を被着するこずにより
実斜される。溶媒ずしおは、䟋えばアセトニトリ
ル、氎、ゞメチルホルムアミド、ゞメチルスルホ
キシド、プロピレンカヌボネヌト等が、たた支持
電解質ずしおは、䟋えば過塩玠酞ナトリりム、硫
酞、硫酞二ナトリりム、リン酞、ホり酞、テトラ
フルオロリン酞カリりム、玚アンモニりム塩な
どが奜適なものずしお挙げられる。斯くしお被着
される重合䜓膜は䞀般に極めお緻密であり、薄膜
であ぀おも酞玠の透過を阻止するこずができる。
然し、本発明効果を奏するためには、酞化還元膜
は圓該酞化還元反応性を有するものであれば特に
制限はなく、膜の緻密の劂䜕は問わない。
In the present invention, the electrolytic oxidative polymerization method involves electrolytically oxidizing and polymerizing amino aromatic compounds, hydroxy aromatic compounds, etc. in a solvent in the presence of an appropriate supporting electrolyte to deposit a polymer film on the surface of a conductor. Implemented. Examples of the solvent include acetonitrile, water, dimethylformamide, dimethyl sulfoxide, propylene carbonate, etc., and examples of the supporting electrolyte include sodium perchlorate, sulfuric acid, disodium sulfate, phosphoric acid, boric acid, potassium tetrafluorophosphate, Preferred examples include quaternary ammonium salts. The polymer films deposited in this manner are generally very dense, and even thin films can prevent the permeation of oxygen.
However, in order to achieve the effects of the present invention, the redox film is not particularly limited as long as it has the redox reactivity, and it does not matter how dense the film is.

酞化還元膜の膜厚は0.1ÎŒm〜0.5mmずなるように
するのが奜たしい。0.1ÎŒmより薄い堎合には、本
発明の効果を十分奏さず、たた0.5mmより厚い堎
合には膜抵抗が高くなり奜たしくない。
The thickness of the redox film is preferably 0.1 ÎŒm to 0.5 mm. If it is thinner than 0.1 ÎŒm, the effect of the present invention will not be sufficiently achieved, and if it is thicker than 0.5 mm, the membrane resistance will increase, which is not preferable.

たた、本発明に䜿甚される酞化還元膜は、これ
に電解質を含浞させお䜿甚するこずができる。電
解質ずしおは、䟋えばリン酞、リン酞氎玠二カリ
りム、過塩玠酞ナトリりム、硫酞、テトラフルオ
ロホり酞塩、テトラプニルホり酞塩等が挙げら
れる。酞化還元膜に電解質を含浞させるには、酞
化還元膜を導電性基䜓に被着したのち、これを電
解質溶液に浞挬する方法が簡䟿である。
Further, the redox membrane used in the present invention can be used by impregnating it with an electrolyte. Examples of the electrolyte include phosphoric acid, dipotassium hydrogen phosphate, sodium perchlorate, sulfuric acid, tetrafluoroborate, and tetraphenylborate. A simple method for impregnating the redox membrane with an electrolyte is to attach the redox membrane to a conductive substrate and then immerse it in an electrolyte solution.

叙䞊の劂くしお導電性基䜓に被着された酞化還
元膜の衚面に重ねお被着されるカルシりムむオン
遞択性膜は、䟋えばカルシりムむオンキダリダヌ
物質及び電解質塩を高分子化合物に担持せしめた
膜が䜿甚される。
The calcium ion-selective membrane deposited over the surface of the redox membrane deposited on the conductive substrate as described above is composed of, for example, a calcium ion carrier material and an electrolyte salt supported on a polymer compound. A membrane is used.

カルシりムむオンキダリダヌ物質ずしおは、カ
ルシりムむオンを遞択的に茞送しうる物質であれ
ば特に制限はないが、䟋えばカルシりム ビス
〔ゞ−−オクチルプニルホスプヌト〕、
−−−N′−ビス〔11−゚トキシ
カルボニルりンデシル〕−N′−−テ
トラメチル−−ゞオキサオクタン−ゞアミ
ド、カルシりム ビス〔ゞ−デシルホスフ
゚ヌト〕等が奜適なものずしお挙げられる。
The calcium ion carrier substance is not particularly limited as long as it can selectively transport calcium ions, but examples include calcium bis[di-(n-octylphenyl) phosphate],
(-)-(R,R)-N,N'-bis[11-ethoxycarbonyl)undecyl]-N,N'-4,5-tetramethyl-3,6-dioxaoctane-diamide, calcium bis[ di(n-decyl) phosphate] and the like are preferred.

電解質塩ずしおは、䟋えばナトリりムテトラキ
ス−クロロプニルボレヌト、カリりムテ
トラキス−クロロプニルボレヌト、テト
ラプニルホスホニりム塩および次匏 R4′NBF4 匏䞭、R′はアルキル基、奜たしくは炭玠数
〜のアルキル基を瀺す で衚わされる化合物が挙げられる。
Examples of electrolyte salts include sodium tetrakis(p-chlorophenyl)borate, potassium tetrakis(p-chlorophenyl)borate, tetraphenylphosphonium salts and compounds of the following formula R 4 'NBF 4 (wherein R' is an alkyl group, preferably a carbon (representing an alkyl group of numbers 2 to 6).

たた、高分子化合物ずしおは、䟋えば塩化ビニ
ル暹脂、塩化ビニル−゚チレン共重合䜓、ポリ゚
ステル、ポリアクリルアミド、ポリりレタン、シ
リコヌン暹脂などを挙げるこずができ、可塑剀が
溶出しにくいものが䜿甚される。このような可塑
剀ずしおは、䟋えばセパシン酞ゞオクチル゚ステ
ル、アゞピン酞ゞオクチル゚ステル、マレむン酞
ゞオクチル゚ステル、ゞ−−オクチルプニル
ホスホネヌト等が挙げられる。たた、溶媒ずしお
は、テトラヒドロフランが奜適に䜿甚される。
Further, examples of the polymer compound include vinyl chloride resin, vinyl chloride-ethylene copolymer, polyester, polyacrylamide, polyurethane, silicone resin, etc., and those from which plasticizers do not easily elute are used. Examples of such plasticizers include dioctyl sepacic acid ester, dioctyl adipate, dioctyl maleic acid, di-n-octylphenyl phosphonate, and the like. Moreover, tetrahydrofuran is preferably used as the solvent.

酞化還元膜の衚面にカルシりムむオン遞択性膜
を被着するには、䟋えば担䜓である高分子化合物
100重量郚に察しお可塑剀を50〜500重量郚、カル
シりムむオンキダリダヌ物質0.1ないし50重量郹
及び電解質塩等を溶媒䟋えばテトラヒドロフラ
ンに溶かした溶液䞭に、基盀電極ここでは酞
化還元膜被芆電極を浞挬、匕き䞊げ、颚也そし
お也燥80℃、分を30回皋床繰り返し、キダ
リダヌ膜厚50ÎŒm〜mm、特に0.3mm〜mmずなる
ようにするのが奜たしい。あるいは、ペヌスト塩
化ビニル、カルシりムむオンキダリダヌ物質可塑
剀電解質塩を䞊蚘の重量比で混合した埌、基盀電
極䞊に厚さ50ÎŒmないしmmになるように茉せ、
160℃で分間加熱凊理しおゲル化するこずによ
぀おもカルシりムむオンキダリダヌ膜は埗られ
る。
In order to deposit a calcium ion selective membrane on the surface of a redox membrane, for example, a polymer compound as a carrier is used.
A base electrode (in this case, a redox membrane) is added to a solution containing 50 to 500 parts by weight of a plasticizer, 0.1 to 50 parts by weight of a calcium ion carrier material, and an electrolyte salt in a solvent (e.g., tetrahydrofuran) per 100 parts by weight. It is preferable to repeat dipping, pulling up, air-drying, and drying (80° C., 3 minutes) about 30 times to obtain a carrier film thickness of 50 Όm to 3 mm, particularly 0.3 mm to 2 mm. Alternatively, paste vinyl chloride, calcium ion carrier material, plasticizer, electrolyte salt are mixed in the above weight ratio, and then placed on the base electrode to a thickness of 50 Όm to 3 mm.
A calcium ion carrier film can also be obtained by heat treatment at 160° C. for 1 minute to form a gel.

埓来、むオン遞択性電極に䜿甚される膜は、膜
抵抗を小さくするために䞀般に薄膜のものであ぀
たが、本発明においお䜿甚されるカルシりムむオ
ン遞択性膜は必ずしも薄膜である必芁はなく、䞊
蚘の劂く玄〜mm皋床の厚膜ずするこずができ
る。このこずは本発明センサヌの独特の構成に基
くものず考えられる。たた、本発明に䜿甚される
カルシりムむオン遞択性膜は被怜液䞭の溶存酞玠
その他共存物質の圱響を受けにくい性質を有す
る。
Conventionally, membranes used in ion-selective electrodes have generally been thin in order to reduce membrane resistance, but the calcium ion-selective membrane used in the present invention does not necessarily have to be thin; The film can be made as thick as about 1 to 3 mm. This is believed to be based on the unique configuration of the sensor of the present invention. Furthermore, the calcium ion selective membrane used in the present invention has a property that it is not easily affected by dissolved oxygen and other coexisting substances in the test liquid.

〔実斜䟋〕〔Example〕

䞋蚘方法により第図に瀺すカルシりムむオン
センサヌを䜜補した。
The calcium ion sensor shown in FIG. 1 was produced by the following method.

(i) ベヌサル・プレヌン・ピロリテむツク・グラ
フアむトBPGナニオン・カヌバむト瀟
補板から盎埄mmの円柱を切出したの
ち、その底面郚に導電性接着剀アミコ
ン瀟補、−850−を甚いおテフロン
被芆銅線のリヌド線を接続し、次いで熱収
瞮チナヌブアルフアヌワむダ瀟補でBPG
の先端面が僅かに露出するように被芆絶
瞁したのち、露出先端郚をナむフの刃で剥離さ
せ、新しい面を露出させた。このようにしお䜜
補したBPG基䜓電極を䜜甚電極ずし、飜和塩
化ナトリりム甘コり電極SSCEを基準電
極、癜金網を察電極ずしお以䞋に瀺す条件で電
解酞化を行な぀た。
(i) After cutting out a cylinder 11 with a diameter of 5 mm from a sheet of basal plain pyrolithic graphite (BPG) (manufactured by Union Carbide), conductive adhesive (manufactured by Amicon, C- 850-6) 15 to connect the Teflon-coated copper wire lead wire 16, and then connect the BPG with a heat shrink tube (manufactured by Alpha Wire).
After coating and insulating it so that the tip surface 11a of was slightly exposed, the exposed tip portion was peeled off with a knife blade to expose a new surface. Electrolytic oxidation was carried out under the conditions shown below using the BPG substrate electrode thus prepared as a working electrode, a saturated sodium chloride electrolyte (SSCE) as a reference electrode, and a platinum mesh as a counter electrode.

電解液 支持電解質0.2M過塩玠酞ナトリりム 反応性物質10mM1−アミノピレン 10mMピリゞン 溶 媒アセトニトリル 電解条件 䜜甚電極の電䜍をSSCEに察し0Vから1Vたで
回掃匕50mV秒したのち、1V察SSCEで
10分間定電䜍電解した。
(Electrolyte) Supporting electrolyte: 0.2M sodium perchlorate Reactive substance: 10mM 1-aminopyrene 10mM pyridine Solvent: acetonitrile (electrolytic conditions) Working electrode potential was swept from 0V to 1V 3 times (50mV/sec) with respect to SSCE After that, at 1V vs. SSCE
Potential electrolysis was carried out for 10 minutes.

このようにしおBPG基䜓の露出面䞊に−ア
ミノピレンの電解酞化重合䜓膜厚さ玄30ÎŒm
を圢成した。この膜はアミン−キノむド型の
酞化還元反応によ぀お䞀定電䜍を発生する
〔0.1Mカリりムテトラキス−クロロプニ
ルボレヌトKTpClPBのゞオクチルセバシ
ン酞DOS溶液で50mV察SSCEの䞀定電䜍を
発生した〕。
In this way, an electrolytically oxidized polymer film (about 30 ÎŒm thick) of 1-aminopyrene was coated on the exposed surface of the BPG substrate.
13 was formed. This membrane generates a constant potential by an amine-quinoid type redox reaction [a constant potential of 50 mV vs. SSCE is generated in a solution of 0.1M potassium tetrakis(p-chlorophenyl)borate (KTpClPB) in dioctyl sebacic acid (DOS). did〕.

(ii) (i)で䜜補した電極䜓を、カルシりムむオンキ
ダリダヌ物質を含有する䞋蚘組成の浞挬液に浞
挬したのち也燥を行ない電解酞化重合䜓膜
䞊にカルシりムむオン遞択性膜を被着し
た。なお、浞挬・也燥操䜜は繰り返し行ない、
厚さ玄0.3mmのカルシりムむオンキダリダヌ膜
を圢成した。
(ii) The electrode body prepared in (i) is immersed in an immersion liquid containing a calcium ion carrier material and having the composition shown below, and then dried to form an electrolytically oxidized polymer film 13.
A calcium ion selective membrane 14 was deposited thereon. In addition, the dipping and drying operations are repeated.
A calcium ion carrier film with a thickness of about 0.3 mm was formed.

浞挬液 カルシりム ビス〔ゞ−−オクチルプニ
ルホスプヌト〕 22.5mg HDOPP−Ca KTpClPB 8.6mg DOS 493.8mg ポリ塩化ビニル 251.1mg テトラヒドロフラン ml 実斜䟋  実斜䟋で䜜補したセンサヌのカルシりムむオ
ンに察する応答性を調べるため、10-3〜10-1Må¡©
化カルシりム氎溶液に該センサヌ及びSSCEを浞
挬しお、本発明センサヌの起電力を゚レクトロメ
ヌタヌTR8652タケダ理研瀟補で枬定した
枩床25℃。その結果を第図に瀺す。
(Immersion liquid) Calcium bis[di-(n-octylphenyl) phosphate] 22.5mg (HDOPP-Ca) KTpClPB 8.6mg DOS 493.8mg Polyvinyl chloride 251.1mg Tetrahydrofuran 5ml Example 2 Calcium of the sensor prepared in Example 1 In order to investigate the responsiveness to ions, the sensor and SSCE were immersed in a 10 -3 to 10 -1 M calcium chloride aqueous solution, and the electromotive force of the sensor of the present invention was measured using an electrometer (TR8652 manufactured by Takeda Riken Co., Ltd.) (temperature 25℃). The results are shown in FIG.

第図から明らかなように、起電力察
SSCEずカルシりムむオン濃床は良奜な盎線関
係を瀺した。
As is clear from Figure 2, the electromotive force (vs.
SSCE) and calcium ion concentration showed a good linear relationship.

実斜䟋  実斜䟋ず同様にしおBPG基䜓電極を䜜補し
たのち、次の電解液及び条件で電解重合反応を行
ない、−ゞメチルプノヌルの重合䜓膜を
被芆した。
Example 3 After producing a BPG base electrode in the same manner as in Example 1, an electrolytic polymerization reaction was performed using the following electrolytic solution and conditions to coat it with a 2,6-dimethylphenol polymer film.

電解液 支持電解質0.2M過塩玠酞ナトリりム 反応性物質0.5M −ゞメチルプノヌ
ル 溶 媒アセトニトリル 電解条件 䜜甚電極の電䜍をSSCEに察し0V〜1.5Vたで
回掃匕50mV秒したのち、1.5V察SSCEで
10分間定電䜍電解した。
(Electrolyte) Supporting electrolyte: 0.2M sodium perchlorate Reactive substance: 0.5M 2,6-dimethylphenol Solvent: acetonitrile (electrolytic conditions) The potential of the working electrode was adjusted from 0V to 1.5V with respect to SSCE.
After multiple sweeps (50mV/sec), at 1.5V vs. SSCE
Potential electrolysis was carried out for 10 minutes.

このようにしお䜜補した酞化還元膜電極の衚面
に実斜䟋の(ii)ず同様にしおカルシりムむオンキ
ダリダヌ膜厚さ玄0.4mmを圢成した。
A calcium ion carrier film (thickness: about 0.4 mm) was formed on the surface of the redox film electrode thus prepared in the same manner as in (ii) of Example 1.

実斜䟋  実斜䟋ず同様にしお実斜䟋で䜜補したセン
サヌの起電力のカルシりムむオン濃床䟝存性を調
べた結果、第図に瀺す劂く、起電力ずカルシり
ムむオン濃床の間に盎線関係が埗られた。たた、
応答速床95電䜍応答に芁する時間は第図
に瀺す劂く〜分間であ぀た。たた、その埌起
電力にドリフトはみられなか぀た。
Example 4 As a result of investigating the calcium ion concentration dependence of the electromotive force of the sensor produced in Example 3 in the same manner as in Example 2, it was found that there was a linear relationship between the electromotive force and the calcium ion concentration, as shown in FIG. Obtained. Also,
The response speed (time required for 95% potential response) was 1 to 2 minutes as shown in FIG. Moreover, no drift was observed in the electromotive force after that.

実斜䟋  実斜䟋で䜜補したセンサヌの起電力を、カル
シりムむオンずマグネシりムむオンの共存する溶
液䞭25±0.1℃で枬定しマグネシりムむオン
に察するむオン遞択係数を求めたずころ logKPot CaMg−3.33であ぀た第図。
Example 5 The electromotive force of the sensor produced in Example 3 was measured in a solution where calcium ions and magnesium ions coexisted (25±0.1°C), and the ion selectivity coefficient for magnesium ions was determined: logK Pot CaMg = -3.33 (Figure 5).

埓来のカルシりムむオンセンサヌにおいおは−
1.9〜−2.0であ぀たこずを考慮するず、本発明セ
ンサヌが遞択性に優れおいるこずが刀る。
In conventional calcium ion sensors -
Considering that it was 1.9 to -2.0, it can be seen that the sensor of the present invention has excellent selectivity.

実斜䟋  実斜䟋で䜜補したセンサヌの起電力を、カル
シりムむオンずナトリりムむオンの共存する溶液
䞭25±0.1℃で枬定したナトリりムむオンに
察するむオン遞択係数を求めたずころlogKPot CaNa
−3.12であ぀た。
Example 6 The electromotive force of the sensor produced in Example 3 was measured in a solution where calcium ions and sodium ions coexisted (25 ± 0.1°C), and the ion selectivity coefficient for sodium ions was determined as logK Pot CaNa =
It was -3.12.

このこずから、本発明センサヌはナトリりムむ
オンが共存しおも、䜎濃床のカルシりムむオンの
定量が行なえるこずを瀺しおいる。
This shows that the sensor of the present invention can quantify calcium ions at low concentrations even when sodium ions coexist.

実斜䟋  実斜䟋ず同様にし−ゞメチルプノヌ
ルの酞化還元膜電極を䜜補した。
Example 7 A redox membrane electrode of 2,6-dimethylphenol was prepared in the same manner as in Example 3.

次いで、この電極䜓を、実斜䟋の(ii)ず同様に
しおカルシりムむオンキダリダヌ物質を含有する
䞋蚘組成の浞挬液に浞挬したのち也燥を行ない電
解酞化重合䜓膜䞊にカルシりムむオン遞択性膜を
被着した膜厚玄0.4mm。
Next, this electrode body was immersed in an immersion liquid containing a calcium ion carrier material and having the composition shown below in the same manner as in (ii) of Example 1, and then dried to form a calcium ion selective membrane on the electrolytically oxidized polymer membrane. (film thickness approx. 0.4mm).

浞挬液 HDOPP−Ca 80mg DOS 360mg ゞ−−オクチルプニルホスホネヌト 360mg ポリ塩化ビニル 340mg テトラヒドロフラン 10ml このように䜜補したセンサヌでは、10-1〜
10-2M濃床のマグネシりムむオンが共存しおもマ
グネシりムむオンの圱響を受けずにカルシりムむ
オン濃床を枬定できるこずが刀぀た。
(Immersion liquid) HDOPP-Ca 80mg DOS 360mg D-n-octylphenyl phosphonate 360mg Polyvinyl chloride 340mg Tetrahydrofuran 10ml The sensor prepared in this way has 10 -1 ~
It was found that calcium ion concentration could be measured without being affected by magnesium ions even if magnesium ions coexisted at a concentration of 10 -2 M.

尚、本発明センサヌの枬定可胜なカルシりムむ
オン濃床は、10-4〜10-1M怜出限界倀は玄
10-5Mであ぀た。
The measurable calcium ion concentration of the sensor of the present invention is 10 -4 to 10 -1 M (the detection limit is approximately
10 -5 M).

発明の具䜓的効果 本発明は、叙䞊の劂く構成されるカルシりムむ
オンセンサヌであるので、 (i) 小型化が可胜であり、生䜓内溶液のinsitu枬
定などに利甚できる、 (ii) 内郚液宀を必芁ずしないため、液挏れや砎損
等がなく安党である、 (iii) 被怜液䞭の溶存酞玠をはじめ皮々の共存物質
の圱響を受けにくく、被怜液の皮類に制限され
るこずなく䜿甚できる。
Specific Effects of the Invention Since the present invention is a calcium ion sensor configured as described above, (i) it can be miniaturized and can be used for in situ measurement of in vivo solutions, and (ii) it has an internal liquid chamber. (iii) It is not affected by various coexisting substances such as dissolved oxygen in the test solution, and is not limited by the type of test solution. Can be used.

(iv) 応答速床が速く、たた経時安定性に優れおい
る 等、埓来のセンサヌにない皮々の特長を有する。
(iv) It has various features not found in conventional sensors, such as fast response speed and excellent stability over time.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明のカルシりムむオンセンサヌの
拡倧断面説明図を瀺す。第図は実斜䟋で䜜補
した本発明センサヌの起電力ずカルシりムむオン
濃床の関係を瀺す図面である。第図は実斜䟋
で䜜補した本発明センサヌの起電力ずカルシりム
むオン濃床の関係を瀺す図面である。第図は同
センサヌの電䜍応答を瀺す図面である。第図は
同センサヌの起電力をカルシりムむオン及びマグ
ネシりムむオン共存䞋枬定した堎合の起電力ずマ
グネシりムむオン濃床の関係を瀺す図面である。  BPG、 先端面、 底面
郚、 電解酞化重合膜、 カルシりムむ
オン遞択性膜、 導電性接着剀、 リヌ
ド線。
FIG. 1 shows an enlarged sectional view of the calcium ion sensor of the present invention. FIG. 2 is a diagram showing the relationship between the electromotive force and calcium ion concentration of the sensor of the present invention produced in Example 1. Figure 3 shows Example 3
FIG. 3 is a diagram showing the relationship between the electromotive force and calcium ion concentration of the sensor of the present invention produced in FIG. FIG. 4 is a diagram showing the potential response of the sensor. FIG. 5 is a diagram showing the relationship between the electromotive force and the magnesium ion concentration when the electromotive force of the same sensor was measured in the coexistence of calcium ions and magnesium ions. DESCRIPTION OF SYMBOLS 11... BPG, 11a... Top surface, 11b... Bottom surface part, 13... Electrolytic oxidation polymer membrane, 14... Calcium ion selective membrane, 15... Conductive adhesive, 16... Lead wire.

Claims (1)

【特蚱請求の範囲】  溶液䞭のカルシりムむオン濃床を電極電䜍応
答で枬定するカルシりムむオンセンサヌであ぀
お、導電性基䜓の衚面に可逆的酞化還元機胜を有
する膜を被着し、曎に該被膜の衚面にカルシりム
むオン遞択性膜を被着しおなるこずを特城ずする
カルシりムむオンセンサヌ。  カルシりムむオン遞択性膜がカルシりムむオ
ンキダリダヌ物質を担持せしめた高分子膜である
特蚱請求の範囲第項蚘茉のカルシりムむオンセ
ンサヌ。
[Scope of Claims] 1. A calcium ion sensor that measures the concentration of calcium ions in a solution based on electrode potential response, comprising a film having a reversible redox function deposited on the surface of a conductive substrate, and further comprising a film having a reversible redox function. A calcium ion sensor characterized by having a calcium ion selective membrane adhered to its surface. 2. The calcium ion sensor according to claim 1, wherein the calcium ion selective membrane is a polymer membrane carrying a calcium ion carrier substance.
JP60193418A 1985-09-02 1985-09-02 Calcium ion sensor Granted JPS6252449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60193418A JPS6252449A (en) 1985-09-02 1985-09-02 Calcium ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60193418A JPS6252449A (en) 1985-09-02 1985-09-02 Calcium ion sensor

Publications (2)

Publication Number Publication Date
JPS6252449A JPS6252449A (en) 1987-03-07
JPH0375065B2 true JPH0375065B2 (en) 1991-11-28

Family

ID=16307633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60193418A Granted JPS6252449A (en) 1985-09-02 1985-09-02 Calcium ion sensor

Country Status (1)

Country Link
JP (1) JPS6252449A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT409067B (en) * 2000-03-02 2002-05-27 Blum Gmbh Julius EXTENDING GUIDE FOR DRAWERS
CN112601956B (en) * 2018-07-04 2024-04-02 雷迪奥米特医孊公叞 Ion selective membranes and their preparation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512707Y2 (en) * 1976-04-22 1980-03-21

Also Published As

Publication number Publication date
JPS6252449A (en) 1987-03-07

Similar Documents

Publication Publication Date Title
KR900004691B1 (en) Ion selective fet sensor
JPH048744B2 (en)
KR890002940B1 (en) Ion sensor
KR900004692B1 (en) Ion sensor
US5139626A (en) Ion concentration measurement method
JPS59142451A (en) Ion sensor
JPS61251764A (en) Ph sensor
JPH0446378B2 (en)
JPH0375065B2 (en)
JPH0375064B2 (en)
US5190636A (en) Ion-sensitive film, method of producing the same and ion sensor
JPH0376863B2 (en)
JPS61194343A (en) Ph sensor
JPS61213662A (en) Ph sensor
JPH0376861B2 (en)
JPH0362225B2 (en)
JPH0376862B2 (en)
JPH0362226B2 (en)
KR900005620B1 (en) Ion - selective fet sensor
JPH0641929B2 (en) Ion sensor
JPH0422465B2 (en)
JPS62276452A (en) Ion selective fet sensor
JPH0743342B2 (en) Lithium ion sensor
JPS62150150A (en) Ph sensor
JPH0371662B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees