JPH0374612A - Flow control device for valve - Google Patents

Flow control device for valve

Info

Publication number
JPH0374612A
JPH0374612A JP20895189A JP20895189A JPH0374612A JP H0374612 A JPH0374612 A JP H0374612A JP 20895189 A JP20895189 A JP 20895189A JP 20895189 A JP20895189 A JP 20895189A JP H0374612 A JPH0374612 A JP H0374612A
Authority
JP
Japan
Prior art keywords
valve
flow rate
control
command
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20895189A
Other languages
Japanese (ja)
Inventor
Hiroshi Asano
寛 浅野
Tetsumi Nashiwa
梨和 哲美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP20895189A priority Critical patent/JPH0374612A/en
Publication of JPH0374612A publication Critical patent/JPH0374612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To prevent the hunting and response delay of a valve and stabilize the flow control by adding devices measuring the fluid pressure at the inlet and outlet of the valve, and multiplying a command signal by the inverse number of the square root of the difference between the inlet pressure and the outlet pressure. CONSTITUTION:Pressure gauges 5-7 measuring the fluid pressure are provided at the inlet and the outlet of a valve 1. An arithmetic device 9 determines the difference DELTAP between inlet pressures 6 and 7 and the outlet pressure 5 and calculates the inverse number of its square root. It multiplies a deviation signal between the command flow and the measured flow or a command signal PID-controlled with the deviation signal by the inverse number. The stable flow control can be continued without causing the hunting and response delay of the valve 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、バルブのtMm制御装置に係り、特に油・空
圧アクチュエータを駆動するために用いられるバルブの
流量制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a tMm control device for a valve, and particularly to a flow rate control device for a valve used to drive a hydraulic/pneumatic actuator.

[従来の技術] 油圧または空圧アクチュエータの作動を所望の速度に制
御するため、圧力源とアクチュエータとの間に設けられ
た方向切換弁(以下バルブという〉を通過する流体の流
量を制御する装置としては、第6図に示すように指令流
量に対して実際にバルブを流れる流量を計測してフィー
ドバックし、指令流量と計測流量との流量偏差をPID
制御することにより指令信号をバルブコントローラに出
力し、バルブコントローラは入力された指令信号に比例
した電tlLをバルブのソレノイドに出力し、バルブを
駆動してバルブ関口面積を調節することにより、流量を
制御する構造が用いられている。
[Prior Art] A device that controls the flow rate of fluid that passes through a directional valve (hereinafter referred to as a valve) provided between a pressure source and an actuator in order to control the operation of a hydraulic or pneumatic actuator to a desired speed. As shown in Figure 6, the flow rate that actually flows through the valve is measured and fed back to the command flow rate, and the flow deviation between the command flow rate and the measured flow rate is calculated using PID.
The control outputs a command signal to the valve controller, and the valve controller outputs an electric current tIL proportional to the input command signal to the valve solenoid, drives the valve, and adjusts the valve entrance area to control the flow rate. A controlling structure is used.

[発明が解決しようとする課題] しかしながら上記構造のバルブのtfA量制御装置にお
いては、たとえばアクチュエータが無負荷の状態におい
てPID制御のゲインを最適な値に設定しても、アクチ
ュエータに外部からの負荷がかかるとバルブの前後の差
圧Δpが変化して、制御系全体のゲインが前記差圧の平
方根FΔ下に比例して変化する。そして前記FΔ下が大
きくなるとバルブがハンチングを起こし、FΔ下が小さ
くなるとバルブの整定時間が長くなって、応答性が悪く
なる等の問題点がある。
[Problems to be Solved by the Invention] However, in the tfA amount control device for a valve having the above structure, even if the PID control gain is set to an optimal value when the actuator is under no load, the actuator is subject to an external load. When this occurs, the differential pressure Δp before and after the valve changes, and the gain of the entire control system changes in proportion to the square root FΔ of the differential pressure. When the above-mentioned F∆-lower becomes large, hunting occurs in the valve, and when the F∆-lower becomes small, the settling time of the valve becomes longer, resulting in problems such as poor response.

本発明は上記従来の問題点に着目し、流量制御特性がア
クチュエータに加わる負荷の変動すなわちバルブの入口
、出口の差圧変動によって変化することなく、常に最適
の流量制御を行うことができるようなバルブの流量制御
装置を提供することを目的とする。
The present invention has focused on the above-mentioned conventional problems, and has developed a system that allows optimal flow control at all times without changing the flow control characteristics due to changes in the load applied to the actuator, that is, changes in the differential pressure between the inlet and outlet of the valve. The purpose of the present invention is to provide a valve flow control device.

[11題を解決するための手段] 上記目的を達成するために本発明に係るバルブの流量制
御装置は、バルブへの指令流量に対する実流量を計測し
てフィードバックし、指令流量と計測流量との流量偏差
をPID制御(P制御、PI制御、PD制御を含む)す
ることにより指令信号を出力し、前記バルブを駆動する
バルブの流量制御装置において、バルブの入口および出
口に流体の圧力を測定する装置を付加し、入口圧と出口
圧との差の平方根の逆数を、指令流量と計測流量との偏
差信号または偏差信号をPID制御して得られた指令信
号に乗算する構成とし、またはバルブの人口および出口
に設ける流体圧力測定装置に代えてバルブの開口面積を
計算する装置を付加し、入口圧と出口圧との差の平方根
の逆数に代えて開口面積を計測流量で除した商を、指令
流量と計測流量との偏差信号または偏差信号をPID制
御して得られた指令信号に乗算する構成とした。
[Means for Solving Problem 11] In order to achieve the above object, the valve flow rate control device according to the present invention measures and feeds back the actual flow rate with respect to the commanded flow rate to the valve, and calculates the difference between the commanded flow rate and the measured flow rate. A command signal is output by controlling the flow rate deviation by PID control (including P control, PI control, and PD control), and the pressure of the fluid at the inlet and outlet of the valve is measured in the flow control device of the valve that drives the valve. A device is added and the command signal obtained by PID control of the deviation signal between the command flow rate and the measured flow rate or the deviation signal is multiplied by the reciprocal of the square root of the difference between the inlet pressure and the outlet pressure. In place of the fluid pressure measuring device installed at the port and outlet, a device for calculating the opening area of the valve is added, and instead of the reciprocal of the square root of the difference between the inlet pressure and the outlet pressure, the quotient of the opening area divided by the measured flow rate is calculated. The configuration is such that a deviation signal between the command flow rate and the measured flow rate or a deviation signal is multiplied by the command signal obtained by PID control.

[作用コ 上記構成によれば、流量偏差に、バルブ前後の差圧の平
方根の逆数またはバルブの開口面積を計測流量で除した
商を乗じて、これを指令信号としてバルブコントローラ
に入力させるようにしたので、制御系全体のゲインはバ
ルブ前後の差圧変動に関係なく一定となり、−度最適な
状態になるようにPID制御のゲインを設定すれば、ア
クチュエータに加わる負荷の変動にかかわらずバルブの
ハンチングや応答遅れ等を生じることなく、安定した流
量制御を続けることができる。
[Operation] According to the above configuration, the flow rate deviation is multiplied by the reciprocal of the square root of the differential pressure across the valve or the quotient of the opening area of the valve divided by the measured flow rate, and this is input to the valve controller as a command signal. Therefore, the gain of the entire control system is constant regardless of differential pressure fluctuations before and after the valve, and if the PID control gain is set so that it is in the optimum state, the valve's gain will be constant regardless of fluctuations in the load applied to the actuator. Stable flow control can be maintained without hunting or response delays.

[実施例] 以下に本発明に係るバルブの流量制御装置の実施例につ
いて、図面を参照して詳細に説明する。
[Example] Hereinafter, an example of the valve flow rate control device according to the present invention will be described in detail with reference to the drawings.

第1図および第2図は請求項(1)記載の実施例である
。第1図において、メータアウト紋りのバルブ1は、油
圧R2につながるボートP、アクチュエータ3につなが
るボー)A、B、および作動油タンク4につながるボー
トTを備えた4ボ一ト3位置切換弁で、アクチュエータ
3からの戻り回路は絞られている。この油圧回路のT、
  A;  Bボート付近にそれぞれ圧力計5. 6.
 7.  が設置され、Tボートから作動油タンク4に
至る油圧回路には流量計8が設置されている。また演算
装置9がバルブコントローラ10に接続され、バルブコ
ントローラ10の配線はバルブ1の両端に接続されてい
る。
FIGS. 1 and 2 show an embodiment according to claim (1). In FIG. 1, valve 1 with a meter-out pattern is a 4-point, 3-position switch with boat P connected to hydraulic pressure R2, bows A and B connected to actuator 3, and boat T connected to hydraulic oil tank 4. With the valve, the return circuit from the actuator 3 is throttled. T of this hydraulic circuit,
A; Pressure gauge near boat B5. 6.
7. is installed, and a flow meter 8 is installed in the hydraulic circuit extending from the T-boat to the hydraulic oil tank 4. Further, the computing device 9 is connected to the valve controller 10, and the wiring of the valve controller 10 is connected to both ends of the valve 1.

前記圧力計5. 6. 7.  により検出された圧力
をそれぞれp+、  p2+  psとすると、作動油
がP→A−)B→Tと流れる場合、バルブlの前後の差
圧Δpは、ΔI)=p3−p1となる。また作動油がP
→B+A−1−Tと流れる場合は、ΔI):p2−1)
1となる。
Said pressure gauge5. 6. 7. Let p+ and p2+ ps be the detected pressures, respectively. When the hydraulic oil flows from P→A−)B→T, the differential pressure Δp before and after the valve l becomes ΔI)=p3−p1. Also, the hydraulic oil is P
→ If it flows as B+A-1-T, ΔI):p2-1)
It becomes 1.

演算装置9には指令流量と流量計8が検出した計11流
量、および前記圧力pl+  92+  93が電気信
号として入力され、演算装置9は指令流量の符号等で作
動油の流れの方向を判別し、Δpを求めた上、その平方
根の逆数1/7Δ下を計算する。
The command flow rate, the total flow rate 11 detected by the flowmeter 8, and the pressure pl+92+93 are input as electrical signals to the calculation device 9, and the calculation device 9 determines the flow direction of the hydraulic oil based on the sign of the command flow rate, etc. , Δp, and then calculate the reciprocal 1/7 Δ of its square root.

また指令流量と計測流量とから流量偏差を求め、第2図
に示すようにこの値に 1/7Δ下を乗じた演算結果を
、PID制御方法により演算処理し、バルブコントロー
ラ10への指令信号として出力する。バルブコントロー
ラ10は入力された指令信号に比例した指令電流をバル
ブ1のソレノイドに出力し、バルブ1の開口面積を調節
する。このように流量偏差に1/7Δ下を乗じることに
よって、伝達関数全体ではバルブ前後の差圧による影響
がなくなり、常に最適の状態で流量を制御することがで
きる。
In addition, the flow rate deviation is determined from the command flow rate and the measured flow rate, and as shown in Fig. 2, the calculation result of multiplying this value by 1/7∆ is processed using the PID control method, and is sent as a command signal to the valve controller 10. Output. The valve controller 10 outputs a command current proportional to the input command signal to the solenoid of the valve 1 to adjust the opening area of the valve 1. By multiplying the flow rate deviation by 1/7Δ in this way, the influence of the differential pressure before and after the valve is eliminated on the entire transfer function, and the flow rate can always be controlled in an optimal state.

1/v/”−Δ下は、流量偏差をPID制御して演算処
理した指令信号に乗じてもよい、またメータイン絞りの
バルブを用いる場合は、第1図のP、  A。
1/v/''-Δ may be multiplied by a command signal calculated by PID control of the flow rate deviation.Also, when using a meter-in throttle valve, P and A in FIG.

Bの各ボート付近にそれぞれ圧力計を設置する。Install pressure gauges near each boat in B.

第31!lおよび第4図は請求項(2〉記載の実施例で
ある。第3図に示すように、バルブ1のストO−りすな
わち基準位置からの変位量を検出する、差動トランスを
用いたストローク位置センサ11がバルブ1の一端に設
置され、またバルブ10Tボートから作動油タンクdに
至る油圧回路には流量計8が設置されている。
31st! 1 and FIG. 4 are embodiments according to claim (2). As shown in FIG. 3, a differential transformer is used to detect the stroke of the valve 1, that is, the amount of displacement from the reference position. A stroke position sensor 11 is installed at one end of the valve 1, and a flow meter 8 is installed in the hydraulic circuit extending from the valve 10T boat to the hydraulic oil tank d.

バルブストロークS七閏口面積Aとの間には、第5rl
!Jに示すようにA=f(s)の関係があり、バルブス
トロークの測定値を用いて開口面積を計算することがで
きる。そこで指令流量と、ストローク位置センサ11が
出力するバルブlのストローク信号および前記流量計8
が出力する計測流量の信号を演算装置9に入力し、演算
装置9は指令流量と計測流量とから流量偏差を計算する
。またバルブ1のストロークと前記計測流量とからA、
/Qを算出し、この値を流量偏差に乗じた上、更にその
計算結果をPID制御してバルブコントローラ10に指
令信号として出力する。バルブコントローラ10は、指
令信号に比例した指令電流をバルブlのソレノイドに出
力し、バルブ1の開口面積を調節する。
There is a 5th rl between the valve stroke S
! As shown in J, there is a relationship A=f(s), and the opening area can be calculated using the measured value of the valve stroke. Therefore, the command flow rate, the stroke signal of the valve l output by the stroke position sensor 11, and the flow meter 8
A signal of the measured flow rate outputted by is inputted to the calculation device 9, and the calculation device 9 calculates the flow rate deviation from the command flow rate and the measured flow rate. Also, from the stroke of the valve 1 and the measured flow rate, A,
/Q is calculated, the flow rate deviation is multiplied by this value, and the result of the calculation is subjected to PID control and output as a command signal to the valve controller 10. The valve controller 10 outputs a command current proportional to the command signal to the solenoid of the valve 1, and adjusts the opening area of the valve 1.

バルブ1を通過する流量Qは、流量係数をC、バルブの
開口面積をA、作動油の密度をρ、バルブ前後の差圧を
Δpとすると、 で表される。よって、 となり、Cおよびρは定数と考えてもよいので、となる
、そこで第4図に示すように、流量偏差にA/Qを乗じ
ることによって伝達関数全体でバルブの前後差圧による
影響がなくなるので、常に最適の状態で制御することが
できる。
The flow rate Q passing through the valve 1 is expressed as follows, where C is the flow coefficient, A is the opening area of the valve, ρ is the density of the hydraulic oil, and Δp is the differential pressure before and after the valve. Therefore, C and ρ can be considered constants, so by multiplying the flow rate deviation by A/Q, as shown in Figure 4, the influence of the differential pressure across the valve can be reduced on the entire transfer function. Therefore, control can always be maintained in an optimal state.

このように本発明では、計測流量のデータにはバルブ前
後の差圧の平方根FK下の要素が含まれていて、これが
伝達関数全体のゲインを変化させ、バルブスプールのハ
ンチングや応答遅れを起こす原因であると推定し、FΔ
下の影響を除去する処置を施したところ、実験結果が推
定と一致するaとが認められた。
In this way, in the present invention, the measured flow rate data includes an element below the square root FK of the differential pressure across the valve, which changes the gain of the entire transfer function and causes hunting of the valve spool and response delay. It is estimated that FΔ
When we took steps to remove the effects below, we found that the experimental results were in agreement with the estimation.

本実施例ではバルブのストローク位置センサに差動トラ
ンスを用いたが、これに限るものではなく、磁気センサ
、磁歪センサ等を用いてもよい。
In this embodiment, a differential transformer is used as the valve stroke position sensor, but the present invention is not limited to this, and a magnetic sensor, magnetostrictive sensor, etc. may also be used.

また、ステッピングモータによってスプールを駆動する
ようなバルブの場合は、ステッピングモータの回転ステ
ップ数がバルブストロークに比例するので、回転ステッ
プ数をカウントすることでバルブストロークを計算する
ことができる。従ってストローク位置センサは不要とな
る。
Furthermore, in the case of a valve whose spool is driven by a stepping motor, the number of rotational steps of the stepping motor is proportional to the valve stroke, so the valve stroke can be calculated by counting the number of rotational steps. Therefore, a stroke position sensor is not required.

[発明の効果] 以上説明したように本発明によれば、指令流量と流量計
によって検出された計測流量とから算出される流量偏差
に、バルブ前後の差圧の平方根の逆数またはバルブの開
口面積を計測流量で除した商を乗じて、これを指令信号
としてバルブコントローラに入力させるようにしたので
、制御系全体のゲインはバルブ前後の差圧変動に関係な
く一定となり、−度最適な状態になるようにPID制御
のゲインを設定すれば、アクチュエータに加わる負荷の
変動にかかわらずバルブのハンチングや応答遅れ当を生
じることなく、安定した流量制御を続けることができる
ようになる。
[Effects of the Invention] As explained above, according to the present invention, the flow deviation calculated from the command flow rate and the measured flow rate detected by the flowmeter is determined by the reciprocal of the square root of the differential pressure before and after the valve or by the opening area of the valve. Since this is multiplied by the quotient of the measured flow rate and inputted to the valve controller as a command signal, the gain of the entire control system remains constant regardless of differential pressure fluctuations before and after the valve, resulting in an optimal state of - degrees. If the PID control gain is set so that the flow rate control can be maintained stably without causing valve hunting or response delay, regardless of changes in the load applied to the actuator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は請求項(1)の実施例に係るバルブの流量制御
装置の構成を示す油圧回路図、第2図、は第1図の流量
制御装置における流量制御のプロツり図、第3図は請求
項(2)の実施例に係るバルブの流量制御装置の構成を
示す油圧回路図、第4図は第3図の流量制御装置におけ
る流量制御のブロック図、第5図はバルブストロークと
、バルブの開口面積との関係を示す図、第6図は従来の
バルブの流量制御装置における流量制御のブロック図で
ある。 1◆O◆◆・バルブ 3・・・◆◆・アクチュエータ 5、 6. 7・・・・・・圧力計 8・・・・・・流量計 10◆・◆◆・・バルブコントローラ
FIG. 1 is a hydraulic circuit diagram showing the configuration of a valve flow rate control device according to an embodiment of claim (1), FIG. 2 is a plot diagram of flow rate control in the flow rate control device of FIG. 1, and FIG. is a hydraulic circuit diagram showing the configuration of the valve flow rate control device according to the embodiment of claim (2), FIG. 4 is a block diagram of flow rate control in the flow rate control device of FIG. 3, and FIG. 5 is a valve stroke; FIG. 6, which is a diagram showing the relationship with the opening area of the valve, is a block diagram of flow rate control in a conventional valve flow rate control device. 1◆O◆◆・Valve 3...◆◆・Actuator 5, 6. 7...Pressure gauge 8...Flow meter 10◆・◆◆...Valve controller

Claims (2)

【特許請求の範囲】[Claims] (1)バルブへの指令流量に対する実流量を計測してフ
ィードバックし、指令流量と計測流量との流量偏差をP
ID制御(P制御、PI制御、PD制御を含む)するこ
とにより指令信号を出力し、前記バルブを駆動するバル
ブの流量制御装置において、バルブの入口および出口に
流体の圧力を測定する装置を付加し、入口圧と出口圧と
の差の平方根の逆数を、指令流量と計測流量との偏差信
号または偏差信号をPID制御して得られた指令信号に
乗算することを特徴とするバルブの流量制御装置。
(1) Measure and feed back the actual flow rate relative to the command flow rate to the valve, and calculate the flow rate deviation between the command flow rate and the measured flow rate by P
In a valve flow rate control device that outputs a command signal through ID control (including P control, PI control, and PD control) and drives the valve, a device that measures fluid pressure is added to the inlet and outlet of the valve. Flow rate control of a valve, characterized in that the deviation signal between the command flow rate and the measured flow rate or the command signal obtained by PID control of the deviation signal is multiplied by the reciprocal of the square root of the difference between the inlet pressure and the outlet pressure. Device.
(2)バルブの入口および出口に設ける流体圧力測定装
置に代えてバルブの開口面積を計算する装置を付加し、
入口圧と出口圧との差の平方機の逆数に代えて開口面積
を計測流量で除した商を、指令流量と計測流量との偏差
信号または偏差信号をPID制御して得られた指令信号
に乗算することを特徴とする請求項(1)記載のバルブ
の流量制御装置。
(2) Adding a device to calculate the opening area of the valve in place of the fluid pressure measuring device installed at the inlet and outlet of the valve,
Instead of the reciprocal of the square machine of the difference between the inlet pressure and the outlet pressure, the quotient obtained by dividing the opening area by the measured flow rate is used as the deviation signal between the command flow rate and the measured flow rate, or the command signal obtained by PID control of the deviation signal. 2. The valve flow rate control device according to claim 1, wherein said multiplication is performed.
JP20895189A 1989-08-11 1989-08-11 Flow control device for valve Pending JPH0374612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20895189A JPH0374612A (en) 1989-08-11 1989-08-11 Flow control device for valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20895189A JPH0374612A (en) 1989-08-11 1989-08-11 Flow control device for valve

Publications (1)

Publication Number Publication Date
JPH0374612A true JPH0374612A (en) 1991-03-29

Family

ID=16564848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20895189A Pending JPH0374612A (en) 1989-08-11 1989-08-11 Flow control device for valve

Country Status (1)

Country Link
JP (1) JPH0374612A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107502U (en) * 1990-02-22 1991-11-06
JP2017020233A (en) * 2015-07-09 2017-01-26 日立建機株式会社 Control device for work machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107502U (en) * 1990-02-22 1991-11-06
JP2017020233A (en) * 2015-07-09 2017-01-26 日立建機株式会社 Control device for work machine

Similar Documents

Publication Publication Date Title
US7252030B2 (en) Hydraulic control circuit and method thereof
CA2483644C (en) A control system and a method for controlling an actuator and for optimizing the control by means of sets of valves coupled in parallel
US9103096B2 (en) Operating oil temperature controller for hydraulic drive device
US20030121409A1 (en) System and method for controlling hydraulic flow
JPH031524B2 (en)
JPH07210253A (en) System for control of actuator of flow-rate control valve
US20110155259A1 (en) Control arrangement having a pressure limiting valve
JP3925416B2 (en) Hydraulic control device for work machine
JPH0374612A (en) Flow control device for valve
JP2822907B2 (en) Hydraulic control device
US5409188A (en) Stability compensating mechanism of electro-hydraulic servo system
CN115434986A (en) Hydraulic system control method and readable storage medium
JP2774773B2 (en) Control device for variable displacement hydraulic pump
JPH10159809A (en) Flow controller for hydraulic actuator
JPH04351304A (en) Hydraulic driving device
JPH08177745A (en) Hydraulic pump flow rate control device
KR920010084A (en) Optimum working flow control device of excavator and its control method
JP3018788B2 (en) Hydraulic pump control circuit
JPH0210284B2 (en)
JPS61250390A (en) Working method of operating electric machine by hydraulic circuit for movable construction equipment
JPH09317705A (en) Actuator speed control device
JPS5992313A (en) Flow rate detector
JP2571982Y2 (en) Construction machine control circuit
JPH0346060B2 (en)
JPH0988902A (en) Pump capacity control method and its device