JPH0374505B2 - - Google Patents

Info

Publication number
JPH0374505B2
JPH0374505B2 JP61008227A JP822786A JPH0374505B2 JP H0374505 B2 JPH0374505 B2 JP H0374505B2 JP 61008227 A JP61008227 A JP 61008227A JP 822786 A JP822786 A JP 822786A JP H0374505 B2 JPH0374505 B2 JP H0374505B2
Authority
JP
Japan
Prior art keywords
light source
vibration
mirror
vibration isolation
isolation table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61008227A
Other languages
Japanese (ja)
Other versions
JPS62165916A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61008227A priority Critical patent/JPS62165916A/en
Priority to US07/004,133 priority patent/US4724466A/en
Publication of JPS62165916A publication Critical patent/JPS62165916A/en
Priority to US07/104,041 priority patent/US4805000A/en
Publication of JPH0374505B2 publication Critical patent/JPH0374505B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体素子製造に用いる光学露光装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical exposure apparatus used for manufacturing semiconductor devices.

さらに詳しくは、半導体素子製造におけるホト
リソグラフイー工程の超微細加工を実現するため
に考案された縮小投影型エキシマー露光装置に関
するものである。
More specifically, the present invention relates to a reduction projection excimer exposure apparatus devised to realize ultrafine processing in a photolithography process in semiconductor device manufacturing.

従来の技術 従来、すでに半導体素子、特にLSI、VLSI等
の微細加工用として超高圧水銀灯を光原として用
いた縮小投影型露光装置(ステツパー)が市販さ
れている。しかしながら、従来のステツパーは超
高圧水銀灯のg線(436nm)やi線(365nm)
を用いているため、解像度はg線で1.2μm,i線
で0.8μm程度が限界であつた。これらの波長で
は、今後4MbitRAMや16MbitRAM製造に必要
とされる0.5μmの解像度を得ることは不可能に近
い。
2. Description of the Related Art Conventionally, reduction projection exposure apparatuses (steppers) using ultra-high pressure mercury lamps as light sources have already been commercially available for microfabrication of semiconductor devices, particularly LSIs, VLSIs, etc. However, conventional steppers only use the G-line (436nm) and I-line (365nm) of ultra-high pressure mercury lamps.
Because of this, the resolution was limited to about 1.2 μm for the g-line and 0.8 μm for the i-line. At these wavelengths, it is nearly impossible to obtain the 0.5 μm resolution required for future 4MbitRAM and 16MbitRAM production.

そこで、近年、g線やi線に比べより波長の短
いXeCl(308nm)やKrF(249nm)やArF(193n
m)等のエキシマー光源を用いた露光装置の開発
が検討されるようになつてきた。
Therefore, in recent years, XeCl (308 nm), KrF (249 nm), and ArF (193 nm), which have shorter wavelengths than g-lines and i-lines, have been
The development of exposure apparatuses using excimer light sources such as m) has begun to be considered.

発明が解決しようとする問題点 しかしながら、超高圧水銀灯に比べ、エキシマ
ー光源は、発振させるために高電圧のパルス放電
を利用しているので、放電時の衝撃波による振動
がアライメントや露光時の大きな問題となる。ま
た、光源の設置スペースが大きなことも、超クリ
ーンルームを必要とする半導体製造工業にとつて
は問題である。放電時の防振対策のみであれば、
光源、レンズ系、ウエハステージ、マスクホルダ
ー等全てを同一防振台に乗せることである程度解
決できるが、この場合どうしても超クリーンルー
ム内での設置スペースが3倍程度も大きくなつて
しまうとともに振動による光軸ズレの問題が残
る。そこで、本発明は、発振時の防振を効果的に
行うとともに、超クリーンルームの必要面積を小
さくし、さらに振動にもとづく光軸のズレを防ぐ
ことを目的とする。
Problems to be Solved by the Invention However, compared to ultra-high-pressure mercury lamps, excimer light sources use high-voltage pulsed discharge for oscillation, so vibrations caused by shock waves during discharge cause major problems during alignment and exposure. becomes. Furthermore, the large installation space for the light source is also a problem for the semiconductor manufacturing industry, which requires ultra-clean rooms. If it is only for anti-vibration measures during discharge,
This can be solved to some extent by placing the light source, lens system, wafer stage, mask holder, etc. all on the same anti-vibration table, but in this case, the installation space in the ultra-clean room will be about three times larger, and the optical axis will be affected by vibrations. The problem of misalignment remains. Accordingly, it is an object of the present invention to effectively perform vibration isolation during oscillation, to reduce the required area of an ultra-clean room, and to further prevent deviation of the optical axis due to vibration.

問題点を解決するための手段 本発明の露光装置は、縮小投影レンズと、ウエ
ハステージと、マスクホルダーと、放電によりエ
キシマー光源を発する光と、前記エキシマー光源
を乗せた第1防振台に固定され前記光源から出た
光を受ける第1ミラーと、前記縮小投影レンズ、
ウエハステージおよびマスクホルダーを乗せた第
2防振台に固定された第2ミラーとを有し、前記
光源より出た前記第1ミラーから第2ミラーを介
して前記レンズに導くとともに、前記第1と第2
ミラー間の光軸が前記第1の防振台の前記光源の
振動にて生じる振動方向に一致するように組み合
わされている構成を用いる。
Means for Solving the Problems The exposure apparatus of the present invention includes a reduction projection lens, a wafer stage, a mask holder, a light emitted from an excimer light source by electric discharge, and a first vibration isolation table fixed to the excimer light source on which the excimer light source is placed. a first mirror that receives the light emitted from the light source; and the reduction projection lens;
a second mirror fixed to a second vibration isolation table on which a wafer stage and a mask holder are mounted; and second
A configuration is used in which the mirrors are combined so that the optical axes of the mirrors coincide with the direction of vibration caused by the vibration of the light source of the first vibration isolation table.

作 用 従つて、本発明によれば、光源の発振時の振動
がレンズ系を含む本体に伝わることがなく、しか
も、光源と本体が完全に分離されているため、超
クリーン度を必要とする本体部のみ超クリーンル
ームへ設置し、光源部は別室に設置することが可
能となる。そして、第1と第2ミラー間の光軸
を、第1の防振台の光源の振動にて生じる振動方
向に一致させておくことにより、振動が生じても
光路長が伸縮するのみで光軸のズレを防止できる
作用がある。このため、前記効果が発揮される。
Therefore, according to the present invention, vibrations generated during oscillation of the light source are not transmitted to the main body including the lens system, and since the light source and the main body are completely separated, ultra-cleanliness is required. Only the main unit can be installed in an ultra-clean room, while the light source can be installed in a separate room. By aligning the optical axis between the first and second mirrors with the direction of vibration caused by the vibration of the light source of the first vibration isolation table, even if vibration occurs, the optical path length will only expand or contract, and the light will not be transmitted. It has the effect of preventing shaft misalignment. Therefore, the above-mentioned effects are exhibited.

実施例 以下、本発明の実施例を第1図を用いて説明す
る。すなわち、光源部として、第1防振台1に乗
せたKrFエキシマーレーザ光源2と光源2より発
射される光を垂直方向に折曲げる第1防振台1に
直接固定した第1のミラー3を組立る。一方、本
体部として、第2防振台4に乗せた半導体基板W
を支持したウエハステージ5、縮小投映石英レン
ズ6、ビームスプリツター7、マスクMを保持し
たマスクホルダー8、コンデンサレンズ9、第2
のミラー10、インテグレーター11、第3のミ
ラー12よりなる本体部13、さらに本体部13
に固定されたアライメントレンズ14、アライメ
ント光源15(例えば超高圧水銀灯の光をカツト
フイルタまたはモノクロメータで分光したもの)、
アライメント用ビームスプリツター16、画像パ
ターン信号増幅用IIT17、画像読取り用CCDカ
メラ18によりなるアライメント光学系19を組
み立てる。また、マスクMとウエハWのアライメ
ントを行うために、CCDカメラ18により読み
取つた画像信号を処理しウエハステージ5の移動
を制御するためのコンピユータ20を別体で設置
しておく。
Embodiment Hereinafter, an embodiment of the present invention will be described using FIG. That is, as a light source part, a KrF excimer laser light source 2 placed on a first vibration isolation table 1 and a first mirror 3 directly fixed to the first vibration isolation table 1 that bends the light emitted from the light source 2 in the vertical direction are used. Assemble. On the other hand, as a main body, a semiconductor substrate W placed on a second vibration isolating table 4
, a wafer stage 5 supporting a reduction projection quartz lens 6, a beam splitter 7, a mask holder 8 holding a mask M, a condenser lens 9, a second
A main body part 13 consisting of a mirror 10, an integrator 11, and a third mirror 12;
an alignment lens 14 fixed to, an alignment light source 15 (for example, light from an ultra-high pressure mercury lamp separated by a cut filter or a monochromator),
An alignment optical system 19 consisting of a beam splitter 16 for alignment, an IIT 17 for amplifying image pattern signals, and a CCD camera 18 for image reading is assembled. In addition, in order to align the mask M and the wafer W, a computer 20 is separately installed to process image signals read by the CCD camera 18 and to control movement of the wafer stage 5.

エキシマー光源2は前述したごとく、発振時の
放電による衝撃波により、光源2が横方向に設置
された第1図の場合光源2からの光と垂直方向に
放電並びに振動が生じる。このとき、光源を出た
エキシマー光をレンズに導くために、第1防振台
1に固定された第1ミラー3と本体部に固定され
た第2ミラー10の光軸を合せておき、且つこの
2つのミラー(カツプリングミラー)間の光軸2
1の方向を防振台の振動方向(この場合は防振台
にエアーサスペンシヨンを使用し垂直方向に合せ
ておく)に一致させておく。
As described above, in the excimer light source 2, shock waves caused by discharge during oscillation cause discharge and vibration in a direction perpendicular to the light from the light source 2 when the light source 2 is installed horizontally as shown in FIG. At this time, in order to guide the excimer light emitted from the light source to the lens, the optical axes of the first mirror 3 fixed to the first vibration isolation table 1 and the second mirror 10 fixed to the main body are aligned, and Optical axis 2 between these two mirrors (coupling mirrors)
The direction of 1 should match the vibration direction of the vibration isolation table (in this case, use air suspension for the vibration isolation table and align it vertically).

発明の効果 エキシマー露光装置において、本発明の構成す
なわち光源部と本体部を別体の防振台に乗せるこ
とにより、エキシマー光源の発振時の強力な振動
が本体部に伝わるのを完全に防止できる。
Effects of the Invention In an excimer exposure apparatus, by having the structure of the present invention, that is, placing the light source section and the main body section on separate anti-vibration stands, it is possible to completely prevent strong vibrations from being transmitted to the main body section when the excimer light source oscillates. .

そして、光源の振動にて生じる防振台の振動方
向と、第1と第2ミラー間の光軸を一致させてお
くことにより、別体におかれた装置間の振動時の
光軸のズレを防止できる。この場合、光路長のズ
レは防止できないが、レーザー光は平行光であり
しかもインテグレーター以降はすべて本体側で一
体構造とすることによりパターン解像度とは無関
係となる。
By matching the direction of vibration of the vibration isolation table caused by the vibration of the light source with the optical axis between the first and second mirrors, it is possible to prevent deviations in the optical axis during vibration between separate devices. can be prevented. In this case, deviations in optical path length cannot be prevented, but since the laser beam is a parallel beam and everything after the integrator is integrally constructed on the main body side, it has no relation to pattern resolution.

また、本体部と光源部を別体とすることにより
本体を設置すべき超クリーンルームのスペースを
大幅に縮小できる効果もある。
Furthermore, by separating the main body and the light source, the space in the ultra-clean room in which the main body is installed can be significantly reduced.

以上の理由により、実用レベルで超々LSIに必
要な0.5μmの解像度を有するエキシマー露光装置
を完成できる。なお、エキシマー光源はKrFに限
定されるものではない。また、反射縮小投影露光
装置でも同じ効果が得られることも明らかであろ
う。
For the above reasons, it is possible to complete an excimer exposure device with a resolution of 0.5 μm, which is necessary for ultra-super LSI at a practical level. Note that the excimer light source is not limited to KrF. It will also be clear that the same effect can be obtained with a catoptric reduction projection exposure apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のエキシマー露光装
置を説明するための概念図である。 1……第1防振台、4……第2防振台、3……
第1ミラー、10……第2ミラー、5……ウエハ
ステージ、6……石英レンズ、8……マスクホル
ダー。
FIG. 1 is a conceptual diagram for explaining an excimer exposure apparatus according to an embodiment of the present invention. 1...First vibration isolation table, 4...Second vibration isolation table, 3...
1st mirror, 10...2nd mirror, 5...wafer stage, 6...quartz lens, 8...mask holder.

Claims (1)

【特許請求の範囲】[Claims] 1 縮小投影レンズと、ウエハステージと、マス
クホルダーと、放電によりエキシマー光を発する
光源と、前記エキシマー光源を乗せた第1防振台
に固定され前記光源から出た光を受ける第1ミラ
ーと、前記縮小投影レンズ、ウエハステージおよ
びマスクホルダーを乗せた第2防振台に固定され
た第2ミラーとを有し、前記光源より出た光を前
記第1ミラーから第2ミラーを介して前記レンズ
に導くとともに、前記第1と第2ミラー間の光軸
が、前記第1の防振台の前記光源の振動にて生じ
る振動方向に一致するように組み合わされている
ことを特徴とした露光装置。
1. A reduction projection lens, a wafer stage, a mask holder, a light source that emits excimer light by electric discharge, and a first mirror that is fixed to a first vibration isolation table on which the excimer light source is placed and receives the light emitted from the light source. the reduction projection lens, a wafer stage, and a second mirror fixed to a second vibration isolation table on which the mask holder is mounted, and the light emitted from the light source is transmitted from the first mirror to the second mirror to the lens. The exposure apparatus is characterized in that the first and second mirrors are combined so that the optical axis between the first and second mirrors coincides with the direction of vibration caused by the vibration of the light source of the first vibration isolation table. .
JP61008227A 1986-01-17 1986-01-17 Exposure device Granted JPS62165916A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61008227A JPS62165916A (en) 1986-01-17 1986-01-17 Exposure device
US07/004,133 US4724466A (en) 1986-01-17 1987-01-16 Exposure apparatus
US07/104,041 US4805000A (en) 1986-01-17 1987-10-02 Exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61008227A JPS62165916A (en) 1986-01-17 1986-01-17 Exposure device

Publications (2)

Publication Number Publication Date
JPS62165916A JPS62165916A (en) 1987-07-22
JPH0374505B2 true JPH0374505B2 (en) 1991-11-27

Family

ID=11687275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61008227A Granted JPS62165916A (en) 1986-01-17 1986-01-17 Exposure device

Country Status (1)

Country Link
JP (1) JPS62165916A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2653793B2 (en) * 1987-09-04 1997-09-17 キヤノン株式会社 Exposure apparatus and element manufacturing method
US5643801A (en) 1992-11-06 1997-07-01 Semiconductor Energy Laboratory Co., Ltd. Laser processing method and alignment
JP2001085353A (en) * 2000-08-10 2001-03-30 Semiconductor Energy Lab Co Ltd Laser process method
EP1321822A1 (en) * 2001-12-21 2003-06-25 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5021207B2 (en) * 2003-10-29 2012-09-05 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical assembly in photolithography.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161719A (en) * 1985-01-11 1986-07-22 Canon Inc Exposure apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161719A (en) * 1985-01-11 1986-07-22 Canon Inc Exposure apparatus

Also Published As

Publication number Publication date
JPS62165916A (en) 1987-07-22

Similar Documents

Publication Publication Date Title
JPWO2008090975A1 (en) Support structure and exposure apparatus
US7554105B2 (en) Lithographic apparatus and device manufacturing method
CN109564392B (en) Lithographic apparatus, lithographic projection apparatus and device manufacturing method
JP2000012453A (en) Aligner and its using method, exposure method, and manufacturing method of mask
JP2001148341A (en) Aligner
JP2005315426A (en) Vibration insulating system, vibration insulating method, lithography device, and method for manufacturing the device
US8044373B2 (en) Lithographic apparatus and device manufacturing method
JP5077656B2 (en) Pattern data processing method and system, and exposure method and apparatus
US20030147155A1 (en) Optical element holding device
JP2001291654A (en) Projection aligner and its method
JPH0374505B2 (en)
JP2009146426A (en) Pre-filter for servo control loop, and applications thereof
US10816910B2 (en) Vibration isolator, lithographic apparatus and device manufacturing method
JPS6310520A (en) Exposure device and method
JP4363328B2 (en) Projection optical system and exposure apparatus
JP2000208406A (en) Projection aligner
JPH0359568B2 (en)
JPH09246179A (en) Projection exposure apparatus and manufacture of device using the aligner
TWI841580B (en) Illumination optical system, exposure device and article manufacturing method
JP2005191150A (en) Stage device and exposure apparatus, and method of manufacturing device
JP2005236258A (en) Optical apparatus and device manufacturing method
JP4307424B2 (en) Exposure apparatus and device manufacturing method
JP2006066688A (en) Fixing apparatus, stage device, exposure device and method of manufacturing device
JP2005079480A (en) Aligner and method for manufacturing device
KR100328384B1 (en) Apparatus for forming a pattern and phase shift mask using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees