JPH0374475B2 - - Google Patents

Info

Publication number
JPH0374475B2
JPH0374475B2 JP59204865A JP20486584A JPH0374475B2 JP H0374475 B2 JPH0374475 B2 JP H0374475B2 JP 59204865 A JP59204865 A JP 59204865A JP 20486584 A JP20486584 A JP 20486584A JP H0374475 B2 JPH0374475 B2 JP H0374475B2
Authority
JP
Japan
Prior art keywords
inner cylinder
heat generating
heating element
generating device
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59204865A
Other languages
Japanese (ja)
Other versions
JPS6182698A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20486584A priority Critical patent/JPS6182698A/en
Publication of JPS6182698A publication Critical patent/JPS6182698A/en
Publication of JPH0374475B2 publication Critical patent/JPH0374475B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電気発熱線を用いた原子炉模擬試験用
発熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a heating device for a nuclear reactor simulation test using an electric heating wire.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

原子炉設備に関する模擬試験を行なう模擬試験
装置として、電気ヒータを備えた筒型の発熱装置
が用いられている。
A cylindrical heat generating device equipped with an electric heater is used as a simulation test device for conducting simulation tests regarding nuclear reactor equipment.

従来の発熱装置は、炉心筒の周囲に金属線から
なる発熱体を螺旋状に巻回して設け、その外周側
に炉壁筒を設けたもので、炉心筒と炉壁筒との間
の間隙は両端部を開いて大気に対して開放した構
造となつている。
In conventional heat generating devices, a heating element made of metal wire is spirally wound around a core tube, and a furnace wall tube is provided on the outer periphery of the heating element, and the gap between the core tube and the furnace wall tube is The structure is such that both ends are open to the atmosphere.

しかしながらこのような従来の発熱装置は炉心
筒と炉壁筒との間の間隙が大気に対して開放さ
れ、この間隙に設けられる発熱体が酸化雰囲気中
に置かれている。このため発熱体は発熱による酸
化を防止するために、Ni−Cr合金やM0Si2など
の耐酸化性をもつた金属からなるものが用いられ
ている。しかしながらこの耐酸化性金属からなる
発熱体は比較的高温の発熱が行なえず、Ni−Cr
合金が1200℃であり、M0Si2の1800℃が最高であ
つた。
However, in such conventional heat generating devices, the gap between the core tube and the furnace wall tube is open to the atmosphere, and the heating element provided in this gap is placed in an oxidizing atmosphere. For this reason, in order to prevent oxidation due to heat generation, a heating element made of a metal with oxidation resistance such as a Ni-Cr alloy or M 0 Si 2 is used. However, heating elements made of this oxidation-resistant metal cannot generate heat at relatively high temperatures, and Ni-Cr
The highest temperature was 1800°C for M 0 Si 2 .

しかしてこの発熱装置において2000℃以上の高
温の発熱を行なうためには、W、M0などの高融
点金属からなる発熱体を用いる必要がある。しか
しその高融点金属からなる発熱体は耐酸化性が弱
いために、酸化雰囲気である炉心筒と炉壁筒との
間隙に設けると酸化して使用できない。
However, in order to generate heat at a high temperature of 2000° C. or higher in this heat generating device, it is necessary to use a heat generating element made of a high melting point metal such as W or M 0 . However, the heating element made of a high-melting point metal has poor oxidation resistance, so if it is installed in the gap between the core tube and the furnace wall tube, which are in an oxidizing atmosphere, it will oxidize and become unusable.

このような高融点金属発熱体を使用する上での
問題に対する方策として、発熱装置全体を非酸化
雰囲気、すなわち真空中や不活性ガス中に入れて
使用する、あるいは発熱体を断熱材の内部に埋設
する方法がある。しかしながら前者の方法では設
備が大掛りで作業が面倒であり、発熱雰囲気が限
定され、また後者の方法では発熱体と断熱材との
熱膨張率の差により断熱材にクラツクを生じ、こ
のクラツクを介して発熱体が大気に触れ酸化する
という問題があり、いずれも実用的でない。従つ
て従来の発熱装置では酸化雰囲気で2000℃以上の
高温の発熱はできなかつた。
As a countermeasure to these problems when using high-melting point metal heating elements, the entire heating device is used in a non-oxidizing atmosphere, i.e. in a vacuum or inert gas, or the heating element is placed inside an insulating material. There is a way to bury it. However, the former method requires large-scale equipment and troublesome work, and the heat generating atmosphere is limited, while the latter method causes cracks in the heat insulating material due to the difference in thermal expansion coefficient between the heating element and the heat insulating material. There is a problem in that the heating element comes into contact with the atmosphere through the heating element and oxidizes, so neither is practical. Therefore, conventional heat generating devices cannot generate heat at temperatures above 2000°C in an oxidizing atmosphere.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に基づいてなされたもので、
高温の発熱を無理なく行なうことができる原子炉
模擬試験用発熱装置を提供することを目的とす
る。
The present invention was made based on the above circumstances, and
An object of the present invention is to provide a heat generating device for a nuclear reactor simulation test that can easily generate high temperature heat.

〔発明の概要〕[Summary of the invention]

本発明の原子炉模擬試験用発熱装置は、ZrO2
Al2O3、MgO、ThO2、BeO、HfO2の1種または
2種からなる外筒と、ZrO2、Al2O3、Mgo、
ThO2、BeO、HfO2の1種または2種からなる内
筒との間にW、Mo、Re、Ir、Osの1種からなる
発熱体を設け、前記外筒と前記内筒との間の間〓
の両端部を封止して、この間〓の内部を非酸化雰
囲気にし、且つ前記内筒の両端部を蓋で閉塞して
前記内筒の内部に温度計を設けてなることを特徴
とするものである。
The heat generating device for nuclear reactor simulation tests of the present invention includes ZrO 2 ,
An outer cylinder made of one or two of Al 2 O 3 , MgO, ThO 2 , BeO, HfO 2 , ZrO 2 , Al 2 O 3 , Mgo,
A heating element made of one of W, Mo, Re, Ir, and Os is provided between an inner cylinder made of one or two of ThO 2 , BeO, and HfO 2 , and a heating element made of one of W, Mo, Re, Ir, and Os is provided between the outer cylinder and the inner cylinder. Between〓
Both ends of the inner cylinder are sealed to create a non-oxidizing atmosphere inside the inner cylinder, and both ends of the inner cylinder are closed with lids, and a thermometer is provided inside the inner cylinder. It is.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面で示す実施例について説明す
る。
Embodiments of the present invention illustrated in the drawings will be described below.

第1図ないし第3図は本発明の原子炉模擬試験
用発熱装置の一実施例を示している。
FIGS. 1 to 3 show an embodiment of the heat generating device for nuclear reactor simulation tests of the present invention.

内筒1と外筒2は両端を開口した円筒体からな
るもので、内外側に同心的に配置して立設されて
いる。内筒1および外筒2は例えばZrO2セラミ
ツクスで形成されている。内筒1と外筒2との間
の間隙3は後述するように発熱体4を設け且つ発
熱体4をリード端子5と接続する筒所であり、こ
の間隙3は内筒1と外筒2の両端部に無機接着剤
6,6、例えばZrO2ペーストを充填することに
より気密に封止されている。内筒1と外筒2の両
端開口には例えばZrO2セラミツクスからなる蓋
7,7を嵌合してZrO2ペーストなどの無機接着
剤6により接着してある。外筒2および蓋7,7
の周囲にはフアイバ状断熱材8が包囲して設けて
あり、さらにフアイバ状断熱材8の周囲には顆粒
状断熱材9が包囲して設けてある。
The inner tube 1 and the outer tube 2 are cylindrical bodies with both ends open, and are arranged concentrically on the inside and outside. The inner cylinder 1 and the outer cylinder 2 are made of ZrO 2 ceramics, for example. The gap 3 between the inner tube 1 and the outer tube 2 is a space where a heating element 4 is installed and connected to the lead terminal 5, as will be described later. The both ends of the tube are filled with an inorganic adhesive 6, 6, such as ZrO 2 paste, and thereby hermetically sealed. Covers 7, 7 made of ZrO 2 ceramics, for example, are fitted into the openings at both ends of the inner cylinder 1 and the outer cylinder 2, and are adhered with an inorganic adhesive 6 such as ZrO 2 paste. Outer cylinder 2 and lid 7, 7
A fiber-like heat insulating material 8 is provided surrounding the fiber-like heat insulating material 8, and a granular heat-insulating material 9 is provided surrounding the fiber-like heat insulating material 8.

ここで、発熱体4とリード端子5を設ける構成
を述べる。発熱体4は例えばタングステンからな
る細線をコイル状に連続して形成したものであ
る。リード端子5は例えばタングステンからなる
もので、発熱体4の素線に対して大きな断面積を
有するように太い線材を用いている。内筒1と外
筒2との間の間隙3に面する内筒1の外周部には
軸方向全体にわたり螺旋溝10が形成してある。
内筒1の両端部を除く部分に位置する螺旋溝10
には発熱体4が配置してある。このため発熱体4
は内筒1と外筒2の間隙3内部に螺旋状に巻回し
て設けられる。内筒1の両端部に位置する螺旋溝
10にはリード端子5,5が配置されている。こ
れによりリード端子5,5は間隙3内部の両端部
に螺旋状に巻回して設けられる。発熱体4の両端
の端末とこれに対向するリード端子5,5端末は
内筒1の螺旋溝10にて接続される。第4図はそ
の接続部11の構造の一例を示している。すなわ
ちリード端子5の端末を半円形部5aに切欠き加
工し、この半円形部の平坦面上に発熱体4の端末
をのせて、その周囲に高融点金属例えばタングス
テンからなる細線12を巻付け、さらに接続部1
2全体を無機接着剤13例えばZrO2ペーストに
より固着する。必要に応じて発熱体4の端末をリ
ード端子5に溶接により固着する。なお、リード
端子5,5は各々内筒1と外筒2の間隙3の両端
を閉じる無機接着剤6,6を貫通して間隙3から
導出され、さらに蓋7、断熱材8,9を通り外部
へ導出される。このように発熱体4およびリード
端子5,5が内筒1と外筒2の間隙3の内部に組
込まれる。内筒1と外筒2の間隙3は両端が無機
接着剤6,6により封止して大気としや断され、
且つ内部に不活性ガス例えばArガスが封入され
て非酸化雰囲気としてある。なお、内筒1の内部
にはこの内部温度を図る熱電対14が設けてあ
る。このようにして発熱装置が構成される。
Here, the configuration in which the heating element 4 and the lead terminals 5 are provided will be described. The heating element 4 is formed by continuously forming a thin wire made of, for example, tungsten into a coil shape. The lead terminals 5 are made of tungsten, for example, and are made of thick wires so as to have a larger cross-sectional area than the wires of the heating element 4. A helical groove 10 is formed in the outer circumference of the inner cylinder 1 facing the gap 3 between the inner cylinder 1 and the outer cylinder 2 over the entire axial direction.
A spiral groove 10 located in a portion of the inner cylinder 1 excluding both ends
A heating element 4 is arranged. For this reason, the heating element 4
is spirally wound inside the gap 3 between the inner cylinder 1 and the outer cylinder 2. Lead terminals 5, 5 are arranged in the spiral groove 10 located at both ends of the inner cylinder 1. As a result, the lead terminals 5, 5 are provided in a spiral manner at both ends inside the gap 3. Terminals at both ends of the heating element 4 and opposing terminals of lead terminals 5, 5 are connected through a spiral groove 10 in the inner cylinder 1. FIG. 4 shows an example of the structure of the connecting portion 11. That is, the end of the lead terminal 5 is cut out into a semicircular part 5a, the end of the heating element 4 is placed on the flat surface of this semicircular part, and a fine wire 12 made of a high melting point metal such as tungsten is wound around it. , and further connection part 1
The entire structure 2 is fixed with an inorganic adhesive 13 such as ZrO 2 paste. If necessary, the end of the heating element 4 is fixed to the lead terminal 5 by welding. The lead terminals 5, 5 are led out from the gap 3 by passing through the inorganic adhesives 6, 6 that close both ends of the gap 3 between the inner tube 1 and the outer tube 2, and further pass through the lid 7 and the heat insulating materials 8, 9. Extracted to the outside. In this way, the heating element 4 and the lead terminals 5, 5 are assembled inside the gap 3 between the inner cylinder 1 and the outer cylinder 2. The gap 3 between the inner cylinder 1 and the outer cylinder 2 is sealed at both ends with an inorganic adhesive 6, 6, and is cut off from the atmosphere.
Moreover, an inert gas such as Ar gas is sealed inside to provide a non-oxidizing atmosphere. Note that a thermocouple 14 is provided inside the inner cylinder 1 to measure the internal temperature. In this way, the heat generating device is constructed.

しかしてこの発熱装置において、内筒1と外筒
2との間の間隙3に発熱体4を設け、この間隙3
の両端を封止してあるので、間隙3の内部に設け
た発熱体4は大気中すなわち酸化雰囲気に対して
しや断される。また密封された間隙3の内部不活
性ガスを封入して非酸化雰囲気にしてある。この
ため発熱体4は酸化雰囲気をしや断した条件の下
で使用して発熱させることができる。従つて発熱
体4としてW、Mo、Re、Ir、Osなどの高融点金
属からなるものを使用し2000℃以上の高温で発熱
を行なうことができる。ここで、内筒1と外筒2
は発熱体4の発熱温度を考慮して高融点酸化物で
あるZrO2、Al2O3、MgO、ThO2、BeO、HfO2
などの電気的絶縁体で形成する。内筒1と外筒2
の間隙3を封止する無機接着剤6は、発熱体4の
発熱温度に耐えられ且つ内筒1および外筒2の材
料の熱膨張係数に近い熱膨張係数を有するもの、
例えばZrO2ペーストを用いる。間隙3内部を非
酸化雰囲気にするためには、不活性ガスを封入す
ることの外に間隙3を真空にしても良い。
However, in this heat generating device, a heating element 4 is provided in the gap 3 between the inner cylinder 1 and the outer cylinder 2, and this gap 3
Since both ends of the gap 3 are sealed, the heating element 4 provided inside the gap 3 is completely isolated from the atmosphere, that is, the oxidizing atmosphere. Furthermore, an inert gas is filled inside the sealed gap 3 to create a non-oxidizing atmosphere. Therefore, the heating element 4 can be used to generate heat under conditions where the oxidizing atmosphere is suppressed. Therefore, when the heating element 4 is made of a high melting point metal such as W, Mo, Re, Ir, Os, etc., it is possible to generate heat at a high temperature of 2000° C. or higher. Here, inner cylinder 1 and outer cylinder 2
are high melting point oxides ZrO 2 , Al 2 O 3 , MgO, ThO 2 , BeO, HfO 2 in consideration of the heating temperature of the heating element 4.
Formed from electrical insulators such as Inner cylinder 1 and outer cylinder 2
The inorganic adhesive 6 that seals the gap 3 is one that can withstand the heat generation temperature of the heating element 4 and has a coefficient of thermal expansion close to the coefficient of thermal expansion of the materials of the inner tube 1 and the outer tube 2;
For example, use ZrO 2 paste. In order to create a non-oxidizing atmosphere inside the gap 3, the gap 3 may be evacuated in addition to filling with an inert gas.

内筒1と外筒2との間隙3は空間部として構成
してある。そして、発熱体4は間隙3内部におい
て内筒1に形成した螺旋溝10に沿つて挿入して
ある。このため発熱体4は内筒1および外筒2に
対してフリーの状態で組込むことができる。従つ
て発熱体4は熱膨張時に内筒1および外筒2に阻
害されることなく長手方向に伸び縮みすることが
でき、発熱体4の断線および内筒1および外筒の
破損を防止できる。
A gap 3 between the inner cylinder 1 and the outer cylinder 2 is configured as a space. The heating element 4 is inserted inside the gap 3 along a spiral groove 10 formed in the inner cylinder 1. Therefore, the heating element 4 can be assembled into the inner cylinder 1 and the outer cylinder 2 in a free state. Therefore, the heating element 4 can expand and contract in the longitudinal direction without being hindered by the inner cylinder 1 and the outer cylinder 2 during thermal expansion, thereby preventing disconnection of the heating element 4 and damage to the inner cylinder 1 and the outer cylinder.

リード端子5,5を内筒1と外筒2との間隙3
の内部両端に挿入して発熱体4と接続してあるの
で、リード端子5,5自身と、リード端子5,5
と発熱体4との接続部は非酸化雰囲気中にあつて
酸化を防止することができる。また、リード端子
5,5の断面積を発熱体4の素線に対して大きく
していることと、リード端子5,5を内筒1の螺
旋溝10に沿つて螺旋状に設けてあるので、リー
ド端子5,5の発熱を抑えることができる。この
ためリード端子5,5の酸化を防止し、且つ内筒
1と外筒2との間隙3の両端を封止する無機接着
剤6,6の熱による軟化を防止できる。リード端
子5,5は発熱体4と同等またはそれ以上の高融
点を有する材料で形成する。
The lead terminals 5, 5 are connected to the gap 3 between the inner cylinder 1 and the outer cylinder 2.
The lead terminals 5, 5 themselves and the lead terminals 5, 5
The connecting portion between the heating element 4 and the heating element 4 is in a non-oxidizing atmosphere, so that oxidation can be prevented. In addition, the cross-sectional area of the lead terminals 5, 5 is made larger than the wire of the heating element 4, and the lead terminals 5, 5 are provided in a spiral shape along the spiral groove 10 of the inner cylinder 1. , heat generation of the lead terminals 5, 5 can be suppressed. Therefore, the lead terminals 5, 5 can be prevented from being oxidized, and the inorganic adhesives 6, 6 sealing both ends of the gap 3 between the inner tube 1 and the outer tube 2 can be prevented from softening due to heat. The lead terminals 5, 5 are made of a material having a melting point equal to or higher than that of the heating element 4.

発熱体4とリード端子5,5との接続部を第4
図で示す構造とすると、電気的および熱的な面で
支障をきたすことなく確実な接続を行なえる。
The connection part between the heating element 4 and the lead terminals 5, 5 is connected to the fourth
With the structure shown in the figure, a reliable connection can be made without causing any electrical or thermal problems.

断熱構造は、発熱体4に近い方からZrO2セラ
ミツクスなどの緻密な断熱材からなる内筒1およ
び外筒2と、フアイバ状断熱材8と、顆粒状絶縁
材9とを組合せて構成してあるので、小さな断熱
材スペースで2000℃以上の高温に対する充分な断
熱効果を有し、最外表面を低い温度にすることが
できる。また、フアイバ状断熱材8は内筒1およ
び外筒2の熱膨張を弾性変形により吸収し、内筒
2および外筒を損なうことなく断熱効果を上げる
ことができる。
The heat insulating structure is composed of a combination of an inner cylinder 1 and an outer cylinder 2 made of a dense heat insulating material such as ZrO 2 ceramics, a fiber-like heat insulating material 8, and a granular insulating material 9 from the side closest to the heating element 4. Therefore, it has a sufficient insulation effect against high temperatures of 2000℃ or more with a small insulation material space, and the outermost surface can be kept at a low temperature. Further, the fiber-like heat insulating material 8 absorbs thermal expansion of the inner tube 1 and the outer tube 2 through elastic deformation, and can improve the heat insulation effect without damaging the inner tube 2 and the outer tube.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、セラミツ
クスで形成した外筒とセラミツクスで形成した内
筒との間の間隙を非酸化雰囲気にして、この間隙
に高融点金属で形成した発熱体を設けたもので、
外筒と内筒をセラミツクスである高融点酸化物で
形成して発熱体による高い発熱温度での発熱を可
能とする断熱構造とし、さらに内筒と外筒との間
の間隙を非酸化雰囲気にして、この間隙に設けた
発熱体の酸化を防止して高融点金属で形成した発
熱体の使用を可能とすることにより、2000℃以上
の高い温度の発熱を行えて原子炉模擬試験に用い
る発熱装置として最適な原子炉模擬試験用発熱装
置を得ることができる。
As explained above, according to the present invention, the gap between the outer cylinder made of ceramics and the inner cylinder made of ceramics is made into a non-oxidizing atmosphere, and a heating element made of a high melting point metal is provided in this gap. Something,
The outer cylinder and inner cylinder are made of high-melting-point oxide ceramics to create an insulating structure that allows the heating element to generate heat at a high temperature, and the gap between the inner cylinder and the outer cylinder is made into a non-oxidizing atmosphere. By preventing the oxidation of the heating element installed in this gap and making it possible to use a heating element made of high-melting point metal, it is possible to generate heat at a high temperature of 2000℃ or more, which is suitable for use in nuclear reactor simulation tests. It is possible to obtain a heat generating device for a nuclear reactor simulation test that is most suitable as an apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の発熱装置の一実施例を示す縦
断面図、第2図および第3図は同実施例における
内筒、外筒および発熱体の構成を示す縦断面図お
よび横断面図、第4図a,bは同実施例における
発熱体とリード端子との接続部を示す縦断面図お
よび横断面図である。 1……内筒、2……外筒、3……間隙、4……
発熱体、5……リード端子、6……無機接着剤、
7……蓋、8,9……断熱材、10……螺旋溝。
FIG. 1 is a longitudinal cross-sectional view showing one embodiment of the heat generating device of the present invention, and FIGS. 2 and 3 are longitudinal cross-sectional views and cross-sectional views showing the configurations of the inner cylinder, outer cylinder, and heating element in the same embodiment. , FIGS. 4a and 4b are a longitudinal cross-sectional view and a cross-sectional view showing the connecting portion between the heating element and the lead terminal in the same embodiment. 1... Inner cylinder, 2... Outer cylinder, 3... Gap, 4...
Heating element, 5... Lead terminal, 6... Inorganic adhesive,
7...Lid, 8,9...Insulating material, 10...Spiral groove.

Claims (1)

【特許請求の範囲】 1 ZrO2、Al2O3、MgO、ThO2、BeO、HfO2
の1種または2種からなる外筒と、ZrO2
Al2O3、MgO、ThO2、BeO、HfO2の1種または
2種からなる内筒との間にW、Mo、Re、Ir、Os
の1種からなる発熱体を設け、前記外筒と前記内
筒との間の間〓の両端部を封止して、この間〓の
内部を非酸化雰囲気にし、且つ前記内筒の両端部
を蓋で閉塞して前記内筒の内部に温度計を設けて
なる原子炉模擬試験用発熱装置。 2 外筒と内筒との間の間〓を封止する物質は無
機接着剤である特許請求の範囲第1項記載の原子
炉模擬試験用発熱装置。 3 外筒と内筒との間の間〓を封止する無機接着
剤はZrO3である特許請求の範囲第2項記載の原
子炉模擬試験用発熱装置。 4 外筒と内筒との間の間〓は真空または不活性
ガス雰囲気である特許請求の範囲第1項ないし第
3項いずれかに記載の原子炉模擬試験用発熱装
置。 5 外筒の外側をフアイバ状断熱材で包囲し、さ
らにその外側を顆粒状断熱材で包囲してなる特許
請求の範囲第1項ないし第4項いずれかに記載の
原子炉模擬試験用発熱装置。 6 内筒の外周部には螺旋溝を形成し、この螺旋
溝に沿つて発熱体を螺旋状に配置してなる特許請
求の範囲第1項ないし第5項いずれかに記載の原
子炉模擬試験用発熱装置。 7 発熱体と接続するリード端子は高融点金属で
形成され、発熱体より大径である特許請求の範囲
第1項ないし第6項いずれかに記載の原子炉模擬
試験用発熱装置。 8 リード端子の一部が外筒と内筒との間の間〓
に導入して発熱体の端部と接続してなる特許請求
の範囲第1項ないし第7項いずれかに記載の原子
炉模擬試験用発熱装置。
[Claims] 1 ZrO 2 , Al 2 O 3 , MgO, ThO 2 , BeO, HfO 2
An outer cylinder made of one or two types of ZrO 2 ,
W, Mo, Re, Ir, Os between the inner cylinder made of one or two of Al 2 O 3 , MgO, ThO 2 , BeO, HfO 2
A heating element made of one of the following is provided, and both ends of the space between the outer cylinder and the inner cylinder are sealed to create a non-oxidizing atmosphere inside the space, and both ends of the inner cylinder are sealed. A heat generating device for a nuclear reactor simulation test, which is closed with a lid and has a thermometer installed inside the inner cylinder. 2. The heat generating device for a nuclear reactor simulation test according to claim 1, wherein the substance sealing the space between the outer cylinder and the inner cylinder is an inorganic adhesive. 3. The heat generating device for a nuclear reactor simulation test according to claim 2, wherein the inorganic adhesive sealing the space between the outer cylinder and the inner cylinder is ZrO 3 . 4. The heat generating device for a nuclear reactor simulation test according to any one of claims 1 to 3, wherein the space between the outer cylinder and the inner cylinder is a vacuum or an inert gas atmosphere. 5. A heat generating device for a nuclear reactor simulation test according to any one of claims 1 to 4, wherein the outside of the outer cylinder is surrounded by a fiber-like heat insulating material, and the outside is further surrounded by a granular heat-insulating material. . 6. A nuclear reactor simulation test according to any one of claims 1 to 5, in which a spiral groove is formed on the outer periphery of the inner cylinder, and a heating element is arranged spirally along the spiral groove. Heat generating device. 7. The heat generating device for a nuclear reactor simulation test according to any one of claims 1 to 6, wherein the lead terminal connected to the heat generating element is made of a high-melting point metal and has a larger diameter than the heat generating element. 8 Part of the lead terminal is between the outer cylinder and the inner cylinder〓
A heat generating device for a nuclear reactor simulation test according to any one of claims 1 to 7, which is introduced into a heating element and connected to an end of a heating element.
JP20486584A 1984-09-29 1984-09-29 Heat generator Granted JPS6182698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20486584A JPS6182698A (en) 1984-09-29 1984-09-29 Heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20486584A JPS6182698A (en) 1984-09-29 1984-09-29 Heat generator

Publications (2)

Publication Number Publication Date
JPS6182698A JPS6182698A (en) 1986-04-26
JPH0374475B2 true JPH0374475B2 (en) 1991-11-27

Family

ID=16497677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20486584A Granted JPS6182698A (en) 1984-09-29 1984-09-29 Heat generator

Country Status (1)

Country Link
JP (1) JPS6182698A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3622266Y1 (en) * 1959-03-14 1961-08-26
JPS5261843A (en) * 1975-11-18 1977-05-21 Toshiba Corp Sheathed heater
JPS53132832A (en) * 1977-04-25 1978-11-20 Toshiba Corp Sheathed heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3622266Y1 (en) * 1959-03-14 1961-08-26
JPS5261843A (en) * 1975-11-18 1977-05-21 Toshiba Corp Sheathed heater
JPS53132832A (en) * 1977-04-25 1978-11-20 Toshiba Corp Sheathed heater

Also Published As

Publication number Publication date
JPS6182698A (en) 1986-04-26

Similar Documents

Publication Publication Date Title
US5247158A (en) Electrical heater
US5901900A (en) Thermocouple assemblies
US3898431A (en) Tubular electric heater with a thermocouple assembly
US3317353A (en) Thermocouple comprising intimately twisted wires
US6040519A (en) Unit sheath
US3463674A (en) Thermocouple having composite sheath
US2768424A (en) Method of making a thermopile
US3556864A (en) Thermocouple structure and method for making same
JPH04272685A (en) Sheath heater
US2177502A (en) Electrical device and method of fabricating the same
US3065436A (en) Sheathed heating element
KR100856147B1 (en) Ceramic electrochemical corrosion potential sensor probe with increased lifetime
US2794059A (en) Sealed tip thermocouples
US2402927A (en) Insulating seal
JPH0374475B2 (en)
JP2515067Y2 (en) Thermistor temperature sensor
US3243869A (en) Process for producing thermoelectric elements
US4379248A (en) Ionization chamber having coaxially arranged cylindrical electrodes
US2677712A (en) Thermopile structure
US3980504A (en) Thermocouple structure
US4628147A (en) Semiconductor housings
US2740370A (en) Electrical device with temperature indicator
JPH0215259Y2 (en)
JPH0668965A (en) Sheath heater
JPS6219952Y2 (en)