JPH0374435A - Polar ultrathin film - Google Patents
Polar ultrathin filmInfo
- Publication number
- JPH0374435A JPH0374435A JP20969289A JP20969289A JPH0374435A JP H0374435 A JPH0374435 A JP H0374435A JP 20969289 A JP20969289 A JP 20969289A JP 20969289 A JP20969289 A JP 20969289A JP H0374435 A JPH0374435 A JP H0374435A
- Authority
- JP
- Japan
- Prior art keywords
- film
- group
- compound
- polar
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- 125000001165 hydrophobic group Chemical group 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 11
- 125000002723 alicyclic group Chemical group 0.000 claims abstract description 3
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 3
- 125000003118 aryl group Chemical group 0.000 claims abstract description 3
- 239000010408 film Substances 0.000 claims description 38
- 239000010409 thin film Substances 0.000 claims description 11
- 238000009825 accumulation Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 abstract description 8
- 230000002378 acidificating effect Effects 0.000 abstract description 4
- 125000000896 monocarboxylic acid group Chemical group 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 12
- 125000000524 functional group Chemical group 0.000 description 9
- 239000012528 membrane Substances 0.000 description 8
- 230000010287 polarization Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 101100343203 Vigna unguiculata LBII gene Proteins 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000009878 intermolecular interaction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
新規な有極性超薄膜に関し、
膜内で分子分極した安定で圧電効果、焦電効果及び非線
型光学特性に優れた有極性超薄LB膜を作製することを
目的とし、
酸性基及び疎水性基を有する化合物(i)と、塩基性基
及び疎水性基を有する化合物(ii)とを酸−塩基結合
を利用してラングミュアーブロジェット(LB)法によ
り交互に累積させて成る有極性薄膜において、前記疎水
性基の少なくとも一方に、累積後の極性が互いに打ち消
されないように、双極子モーメントを有する官能性部分
を導入した化合物を使用して成膜して1tcする。[Detailed Description of the Invention] [Summary] Regarding a novel polar ultra-thin film, a polar ultra-thin LB film with stable molecular polarization within the film and excellent piezoelectric effect, pyroelectric effect, and nonlinear optical properties is produced. For the purpose of this, a compound (i) having an acidic group and a hydrophobic group and a compound (ii) having a basic group and a hydrophobic group are combined using the Langmuir-Blodgett (LB) method using an acid-base bond. The polar thin film is formed by using a compound in which a functional moiety having a dipole moment is introduced into at least one of the hydrophobic groups so that the polarities after accumulation do not cancel each other out. Apply a film and add 1tc.
本発明は新規な有極性超薄膜に関する。この有極性超薄
膜は安定で圧電、焦電及び非線型光学特性を有する。The present invention relates to a novel polar ultra-thin film. This polar ultra-thin film is stable and has piezoelectric, pyroelectric, and nonlinear optical properties.
〔従来の技術]
LB(ラングミュア・プロジェット)膜とは、所謂ラン
グミュア・プロジェット(LB)法と呼ばれる方法によ
って、両親媒性分子(例えば直鎖の飽和脂肪酸など)を
水面上に展開し、それを圧縮して形成した単分子膜を基
板に一層ずつ移し取って(累積して)作製される有機超
薄膜であり、その典型的な作製過程は第1図に示す通り
である。[Prior Art] LB (Langmuir-Prodgett) membrane is a method in which amphipathic molecules (such as linear saturated fatty acids) are spread on the water surface by a method called the Langmuir-Prodgett (LB) method. It is an organic ultra-thin film that is produced by compressing and forming a monomolecular film onto a substrate layer by layer (accumulating), and its typical production process is as shown in FIG.
即ち、第1図(a)〜(f)に順次示す通り、適当な槽
1の中に水2を入れ、その水面上に両親媒性分子3を展
開してその単分子膜を形成させる。この槽1には、例え
ばガラス板のような基板4が上下動できるように、また
浮板(圧縮板)5が例えば滑車6及び重り7によって水
平上を移動できるように配されている。具体的なLB膜
の作製方法は、先ず、水面上に展開された両親媒性分子
3の単分子膜に浮板5によって適正な圧力を加え(a)
、基板4を下げるい)。次に、基t7i 4を引き上げ
るにつれて基板4の表面に単分子膜が付<(C)、基板
を引き上げた後乾燥しくd)、再度基板を下げる(e)
。この操作を繰り返してすることにより基板4上に累積
膜8を得ることができる(f)。That is, as shown in FIGS. 1(a) to 1(f), water 2 is placed in a suitable tank 1, and amphipathic molecules 3 are spread on the water surface to form a monomolecular film. In this tank 1, a substrate 4 such as a glass plate is arranged so that it can be moved up and down, and a floating plate (compression plate) 5 is arranged so that it can be moved horizontally by means of a pulley 6 and a weight 7, for example. A specific method for producing an LB film is to first apply appropriate pressure using a floating plate 5 to a monomolecular film of amphiphilic molecules 3 spread on the water surface (a).
, lower the board 4). Next, as the group t7i 4 is pulled up, a monomolecular film forms on the surface of the substrate 4 (C), after the substrate is pulled up, it is dried (d), and the substrate is lowered again (e).
. By repeating this operation, a cumulative film 8 can be obtained on the substrate 4 (f).
二のようにして得られたLBIIは以下の特徴を有する
。LBII obtained in the second manner has the following characteristics.
■膜厚が分子長オーダで制御でき、均一、大面積の超薄
膜を作製することが可能である。- Film thickness can be controlled on the order of molecular length, making it possible to produce uniform, ultra-thin films with large areas.
■分子が同一層内で同じ方向を向いて並ぶため、得られ
る膜が高度の秩序構造を有する。■Because molecules are aligned in the same layer facing the same direction, the resulting film has a highly ordered structure.
■常温、常圧で製膜できる。■ Films can be formed at room temperature and pressure.
前記したまうなLBIIの作製手法の一つにヘテロ累積
がある。LB膜は基板上に分子を一層ずつ積んでいくた
め、異種分子の交互累積(ヘテロ累積)させることによ
り秩序正しい有機超格子が形成できる。現在、分子間相
互作用などに基づいてLB膜を作製し、新規な特性を発
現させるべく多くの研究がなされている。なかでも双極
子モーメントの異なる分子をヘテロ累積させることによ
って膜にマクロな分極を持たせた有極性LB膜は、圧電
、焦電および非線型光学特性等を有するため、その実用
化に向けた研究が盛んに行なわれている。One of the methods for producing the above-mentioned durable LBII is hetero-accumulation. Since the LB film stacks molecules one layer at a time on a substrate, an ordered organic superlattice can be formed by alternately accumulating different types of molecules (heteroaccumulation). Currently, many studies are being conducted to produce LB films based on intermolecular interactions and to develop new properties. Among these, polar LB films, which have macropolarization in the film by hetero-accumulating molecules with different dipole moments, have piezoelectric, pyroelectric, and nonlinear optical properties, so research toward their practical application is required. is being actively carried out.
前記したようなLB法で極性構造の膜を作製する時には
、基板上にヘテロ累積したLB膜において、分子は膜内
で第2図に模式的に示したような配置になる。この膜に
は分子A及びBの双極子モーメントの差に相当する分極
が現れるが、この分子配置では分子間の斥力が強いため
膜は不安定であり、時間の経過に従って分子が反転し、
膜全体での分極は失われてしまう、従って、このような
分子の反転を抑え安定な分極膜を作るため、結晶性の高
い分子を用いたり、重合性分子を用いて面内で重合させ
たりするなどの手法が取られてきた。When a film having a polar structure is produced by the LB method as described above, molecules in the LB film heterogeneously accumulated on a substrate are arranged as schematically shown in FIG. 2 within the film. Polarization corresponding to the difference in the dipole moments of molecules A and B appears in this film, but in this molecular arrangement, the repulsion between molecules is strong, so the film is unstable, and the molecules reverse over time.
Polarization in the entire film is lost. Therefore, in order to suppress such molecular reversal and create a stable polarized film, it is necessary to use highly crystalline molecules or polymerizable molecules to polymerize in-plane. Methods such as doing this have been taken.
また分子間相互作用を利用して、膜をある程度安定化す
ることも試みられている。Attempts have also been made to stabilize the membrane to some extent by utilizing intermolecular interactions.
しかしながら、実用化が可能な安定な分極膜を得るまで
には至っていないのが現状である。However, at present, it has not yet been possible to obtain a stable polarized film that can be put to practical use.
従って、本発明は、前記した従来技術の問題点を解決し
て、膜内で分子分極した安定で圧電効果、焦電効果及び
非線型光学特性に優れた有極性超薄LBIIIを作製す
ることを目的とする。Therefore, the present invention aims to solve the problems of the prior art described above and to produce a polar ultra-thin LBIII that is stable and has excellent piezoelectric effect, pyroelectric effect, and nonlinear optical properties with molecular polarization within the film. purpose.
〔課題を解決するための手段]
本発明に従った有極性超薄膜は、酸性基及び疎水性基を
有する化合物(i)と、塩基性基及び疎水性基を有する
化合物(ii )とを酸−塩基結合を利用してラング壽
ユアーブロジ眞ット(1,B)法により交互に累積させ
て戒る有極性薄膜において、前記疎水性基の少なくとも
一方に、累積後の極性が互いに打ち消されないように、
双極子モーメントを有する官能性部分を導入した化合物
を使用して底膜して成る。[Means for Solving the Problems] The polar ultra-thin film according to the present invention comprises a compound (i) having an acidic group and a hydrophobic group and a compound (ii) having a basic group and a hydrophobic group. - In a polar thin film that is alternately accumulated by Lang's own blog (1, B) method using base bonds, the polarities of at least one of the hydrophobic groups after accumulation do not cancel each other out. like,
The bottom film is made of a compound into which a functional moiety with a dipole moment is introduced.
前記化合物(i)及び(ii)の具体例としては、それ
ぞれ例えば式RICOOH及びR”NHz(式中、R1
及びR1は各独立に例えば炭素数16〜22の長鎖の脂
肪族、例えば炭素数6〜18の脂環族又は、例えば炭素
数6〜18の芳香族の疎水性基を示す)で表される化合
物をあげることができる。Specific examples of the compounds (i) and (ii) include formulas RICOOH and R''NHz (wherein R1
and R1 are each independently represented by, for example, a long-chain aliphatic group having 16 to 22 carbon atoms, an alicyclic group having 6 to 18 carbon atoms, or an aromatic hydrophobic group having 6 to 18 carbon atoms. The following compounds can be mentioned.
例えば、第3図に示すように、両親媒性分子の親水基末
端にカルボキシル基とアミノ基をそれぞれ有する分子を
純水上で累積すれば、第3図に模式的に示したように、
層間で酸−塩基結合を作り、安定な膜が構築される。な
おここで形成される正−負の電荷対は膜に極性を付与し
、その結果このLB膜は無電効果を示すようになる。For example, as shown in FIG. 3, if molecules having a carboxyl group and an amino group at the end of the hydrophilic group of an amphipathic molecule are accumulated on pure water, as shown schematically in FIG.
Acid-base bonds are created between the layers and a stable membrane is constructed. Note that the positive-negative charge pairs formed here impart polarity to the film, and as a result, this LB film comes to exhibit an electroless effect.
本発明に従えば、第3図のアミノ基の部分またはカルボ
キシル基の部分に極性を有する官能基を導入し、酸−塩
基相互作用により膜を安定化させるとともに、官能基の
配向を固定することができる。さらに官能基の極性の方
向を酸−塩基の電荷対の極性方向と揃えることで、より
高い焦電応答性、さらには非線型光学効果などの高次の
効果を実現させようとするものである。According to the present invention, a polar functional group is introduced into the amino group part or the carboxyl group part in FIG. 3, and the membrane is stabilized by acid-base interaction, and the orientation of the functional group is fixed. I can do it. Furthermore, by aligning the polarity direction of the functional group with the polarity direction of the acid-base charge pair, the aim is to achieve higher pyroelectric responsiveness and even higher-order effects such as nonlinear optical effects. .
本発明に従ってLB膜を作製するにあたり、前記化合物
(i)及び(ii)の少なくとも一方に導入することの
できる極性基の具体例としては例えばN (CHs)z
、NHz、Br、 F、 I、 CI、 OHなどの
電子供与性基やNo、、ONなどの電子吸引性基などを
あげることができる。Specific examples of polar groups that can be introduced into at least one of the compounds (i) and (ii) in producing the LB film according to the present invention include N (CHs)z
, NHZ, Br, F, I, CI, and OH, and electron-withdrawing groups such as No, , ON, and the like.
例えばNo8をNH8を含む化合物に導入した具体例と
しては以下のものを掲げることができる。For example, the following can be listed as specific examples of No.8 introduced into a compound containing NH8.
低分子LBII中に極性の大きい官能基Xを導入しよう
とする時には第4図(a)のように、長鎖末端に結合さ
せるか、第4図(b)のように、長鎖の間に挿入しよう
とするのが一般的である。しかしながら、前者の場合に
は、官能基の運動が比較的自由なため、必ずしも分子の
方向が揃わないおそれがあり、また後者の場合でも分子
反転などが生じるため、大きな分極を維持することは困
難である。When trying to introduce a highly polar functional group It is common to try to insert However, in the former case, the movement of the functional groups is relatively free, so there is a risk that the molecules will not necessarily align in the same direction, and even in the latter case, molecular inversion occurs, making it difficult to maintain large polarization. It is.
これに対し本発明では第5図の原理説明図に示すように
、分子AのY部分は双極子モーメントを持ち、それは矢
印の方向を向いている。これはアミン−カルボン酸によ
り形成される電荷対の方向と同じである。またY部分の
一端は化学結合、他端は酸−塩基結合により固定されて
いるため、分子の反発力に抗して安定に膜内で存在しう
る。こうして膜全体で大きな分極が安定に維持されるこ
とになり、高い圧電特性、焦電特性、非線型光学特性な
どが得られる。なお上記官能基の導入はカルボキシル基
側に行ってもよく、酸性基及び塩基性基、の両方ともに
行ってもよい、しかしあまり分極が大きくなると膜が不
安定になるため、酸−塩基結合だけでこれを安定化する
ことは困難になるおそれもある。On the other hand, in the present invention, as shown in the principle explanatory diagram of FIG. 5, the Y portion of molecule A has a dipole moment, which points in the direction of the arrow. This is the same direction as the charge pair formed by amine-carboxylic acid. Furthermore, since one end of the Y moiety is fixed by a chemical bond and the other end by an acid-base bond, it can exist stably within the membrane against the repulsion of molecules. In this way, large polarization is stably maintained throughout the film, resulting in high piezoelectric properties, pyroelectric properties, nonlinear optical properties, etc. Note that the above functional groups may be introduced to the carboxyl group side, or may be introduced to both the acidic group and the basic group. However, if the polarization becomes too large, the membrane will become unstable, so only the acid-base bond is introduced. It may be difficult to stabilize this situation.
以下、実施例に従って本発明を更に詳しく説明する。 Hereinafter, the present invention will be explained in more detail according to Examples.
分子A及び分子Bとして以下の構造を有する化分子B
: CHs(CHz)tic OOH分子Aにおいて−
N Hzは電子供与性であり、−No、は電子吸引性で
ある。また分子AのNHC○結合は極性には大きな寄与
はしない。従って分子Aの双極子モーメントは全体とし
て矢印の方向を向いている。この分子Aをステアリン酸
(分子B)とへテロ累積したところ、分子はLB膜内で
模式的には第6図のような状態をとり、安定な分極構造
を構築した。即ち分子A及びBを2.87x10− ’
Mのクロロホルム溶液とし、水相を純水として、CaF
、基板およびAg蒸着基板上にLB膜を10層へテロ累
積した0両サンプルでFT−IR測測定行ったところ、
NH3”及びCOO−由来の吸収が観測され、両分子は
層間で塩を形成していることを確認した。またピークの
二色比より、ベンゼン環は基板に対しほぼ垂直方向に配
向していることを確認した。更にAl−へテロ累積膜−
AIの構造で焦電電流を測定したところ、単なる酸−塩
基構造(ステアリン酸+ステアリルアξン)の焦電電流
値より電流量が約30%増加しており、官能基部分の寄
与が明らかとなった。Molecule A and molecule B have the following structures:
: CHs(CHz)tic In OOH molecule A-
N Hz is electron-donating, and -No is electron-withdrawing. Furthermore, the NHC◯ bond of molecule A does not contribute significantly to polarity. Therefore, the dipole moment of molecule A as a whole points in the direction of the arrow. When this molecule A was hetero-accumulated with stearic acid (molecule B), the molecule assumed a state schematically shown in FIG. 6 within the LB membrane, and a stable polarized structure was constructed. That is, molecules A and B are 2.87x10-'
A chloroform solution of M, pure water as the aqueous phase, CaF
FT-IR measurements were performed on a sample of 10 layers of LB film stacked on a substrate and an Ag-deposited substrate.
Absorption derived from NH3'' and COO- was observed, confirming that both molecules form a salt between the layers. Also, the dichroic ratio of the peak indicates that the benzene ring is oriented almost perpendicular to the substrate. It was confirmed that Al-hetero-accumulation film-
When the pyroelectric current was measured with the AI structure, the amount of current increased by about 30% compared to the pyroelectric current value of a simple acid-base structure (stearic acid + stearyl amine), and the contribution of the functional group part was clear. It became.
以上説明したように、本発明に従えば、膜内で分子分極
した安定で圧電特性、焦電特性及び非線型光学特性に優
れた有極性超薄LB膜を得ることができ、その実用的価
値は非常に高い、また、本発明は官能基を高機能な分子
に替えることにより、−層高度な膜機能を発現させるこ
とができる。将来の分子素子実現に向けて分子配列技術
は益々重要性を増すが、本発明の手法はその一手段とし
て非常に有効である。As explained above, according to the present invention, it is possible to obtain a stable polarized ultra-thin LB film with molecular polarization within the film and excellent piezoelectric properties, pyroelectric properties, and nonlinear optical properties, and its practical value. Moreover, in the present invention, by replacing the functional groups with highly functional molecules, highly advanced membrane functions can be expressed. Molecular alignment technology will become increasingly important for the realization of future molecular devices, and the method of the present invention is extremely effective as a means for achieving this goal.
第1図は従来の典型的なLBl!Iの作成過程を説明し
た図面であり、
第2図はへテロ累積LB膜内での分子配置を模式的に示
した図面であり、
第3図は膜内での酸−塩基対の形成を模式的に示した図
面であり、
第4図はLB膜中への一般的な官能基の取り込み方を模
式的に示した図面であり、
第5図は本発明の詳細な説明する図面であり、第6図は
本発明の実施例で得られた膜の構造を模式的に示した図
面である。
l・・・槽、2・・・水、3・・・両親媒性分子。4・
・・基板。Figure 1 shows a typical conventional LBl! Fig. 2 is a drawing that schematically shows the molecular arrangement within the hetero-cumulative LB film, and Fig. 3 shows the formation of acid-base pairs within the film. FIG. 4 is a diagram schematically showing how a general functional group is incorporated into an LB film, and FIG. 5 is a diagram illustrating the present invention in detail. , FIG. 6 is a drawing schematically showing the structure of a film obtained in an example of the present invention. l...tank, 2...water, 3...amphiphilic molecule. 4.
··substrate.
Claims (1)
性基及び疎水性基を有する化合物(ii)とを酸−塩基
結合を利用してラングミュアーブロジェット(LB)法
により交互に累積させて成る有極性薄膜において、前記
疎水性基の少なくとも一方に、累積後の極性が互いに打
ち消されないように、双極子モーメントを有する官能性
部分を導入した化合物を使用して成膜して成ることを特
徴とする有極性超薄膜。 2、前記化合物(i)及び(ii)が、それぞれ、式R
^1COOH及びR^2NH_2(式中、R^1及びR
^2は各独立に長鎖の脂肪族、脂環族又は芳香族の疎水
性基を示す)で表される化合物である第1項に記載の有
極性超薄膜。[Claims] 1. Langmuir-Blodgett ( In a polar thin film formed by alternating accumulation by the LB method, a compound is used in which a functional moiety having a dipole moment is introduced into at least one of the hydrophobic groups so that the polarities after accumulation do not cancel each other out. A polar ultra-thin film characterized by being formed by forming a film using 2. The compounds (i) and (ii) each have the formula R
^1COOH and R^2NH_2 (in the formula, R^1 and R
2. The polar ultra-thin film according to item 1, wherein ^2 each independently represents a long-chain aliphatic, alicyclic, or aromatic hydrophobic group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20969289A JPH0374435A (en) | 1989-08-15 | 1989-08-15 | Polar ultrathin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20969289A JPH0374435A (en) | 1989-08-15 | 1989-08-15 | Polar ultrathin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0374435A true JPH0374435A (en) | 1991-03-29 |
Family
ID=16577053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20969289A Pending JPH0374435A (en) | 1989-08-15 | 1989-08-15 | Polar ultrathin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0374435A (en) |
-
1989
- 1989-08-15 JP JP20969289A patent/JPH0374435A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Miyashita | Recent studies on functional ultrathin polymer films prepared by the Langmuir-Blodgett technique | |
KR101964761B1 (en) | Self-assemblable polymer and method for use in lithography | |
Shimizu et al. | Noncovalent formation of polyglycine II-type structure by hexagonal self-assembly of linear polymolecular chains | |
JP2010500622A (en) | Anisotropic polymer film and method for producing the same | |
DE4026978A1 (en) | Coated substrates for electro=optical applications, etc. | |
JPH01120541A (en) | Film comprising at least one monomer layer | |
US5006410A (en) | Film comprising at least one unimolecular layer | |
JPH0374435A (en) | Polar ultrathin film | |
Yokoyama et al. | Preparation and in-plane anisotropic photobleaching properties of polyimide Langmuir-Blodgett films having a photoresponsive p-nitroazobenzene pendant group | |
US5019451A (en) | Non-centrosymmetric, multi-layer Langmuir-Blodgett films | |
US5081212A (en) | Polyurea and film composed of at least one monomolecular layer of a polyurea | |
JPH02225449A (en) | Amphipathic monomer having mixed chain structure, polymer thereof, and film comprising monomolecular layer of at least one of these compounds | |
Miyashita et al. | A highly ordered structure in N-octadecylacrylamide Langmuir-Blodgett multilayers | |
Yokoyama et al. | Functional dendritic macromolecules: preparation and optical properties | |
JPH022892A (en) | Production of thin film having polarization structure | |
Kinoshita et al. | The guest-induced oscillation of a monolayer composed of polypeptide containing β-cyclodextrin at the terminal | |
JP2550786B2 (en) | Liquid crystal alignment film manufacturing method | |
Yamaguchi et al. | Formation behavior of monolayers on the water surface of water-soluble thermoplastic and insoluble-thermosetting copolymers with hyperbranched units containing s-benzenetricarbamide cores | |
JPH02281047A (en) | Complex thin film, its production and thin film of electronic optical element consisting of the same thin film | |
JPH0560994B2 (en) | ||
Qin et al. | Controlled evaporation as an easy method of constructing novel nano objects from amphiphilic diblock molecules | |
Takeoka et al. | Fabrication of polycondensed multilayer thin films by a self-assembly method | |
JPS63141639A (en) | Preparation of molecular oriented thin film | |
JPH02287517A (en) | Formation of x-type or z-type lb film | |
Judge et al. | Synthesis and characterization of a novel amphiphilic polydiacetylene |