JPH0374341A - Synthesis of spherical magnesium alcoholate having narrow particle size distribution - Google Patents

Synthesis of spherical magnesium alcoholate having narrow particle size distribution

Info

Publication number
JPH0374341A
JPH0374341A JP21017889A JP21017889A JPH0374341A JP H0374341 A JPH0374341 A JP H0374341A JP 21017889 A JP21017889 A JP 21017889A JP 21017889 A JP21017889 A JP 21017889A JP H0374341 A JPH0374341 A JP H0374341A
Authority
JP
Japan
Prior art keywords
alcohol
magnesium
particle size
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21017889A
Other languages
Japanese (ja)
Other versions
JPH0720898B2 (en
Inventor
Harumitsu Nomura
野村 春光
Shinji Kurihara
栗原 信治
Kazuaki Higuchi
一明 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KORUKOOTO ENG KK
Original Assignee
KORUKOOTO ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16585071&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0374341(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KORUKOOTO ENG KK filed Critical KORUKOOTO ENG KK
Priority to JP21017889A priority Critical patent/JPH0720898B2/en
Publication of JPH0374341A publication Critical patent/JPH0374341A/en
Publication of JPH0720898B2 publication Critical patent/JPH0720898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To efficiently obtain the title spherical compound having a narrow particle size distribution in the presence of a catalyst in a solventless state by adding metal magnesium and an alcohol in a specific final addition ratio to a reaction system under alcohol reflux, reacting for a specific time and then aging. CONSTITUTION:In synthesizing a magnesium alcoholate by directly reacting (A) metal magnesium with (B) an alcohol shown by the formula ROH (R is 1-20C alkyl, cycloalkyl or aralkyl), preferably ethyl alcohol in the presence of a catalyst in a solventless state, the component A and the compound B in the final addition ratio of the component A/B (weight ratio)=1/9-15 are continuously or intermittently added to the reaction system under reflux of alcohol, reacted for 5-80 minutes and subjected to aging reaction under reflux of an alcohol to efficiently give the objective spherical compound having 10-50mum particle diameter and a narrow particle size distribution useful as a catalyst for alpha-olefin polymerization, a dehydrating agent and a desiccant for alcohols, etc., a ceramic raw material, etc.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用) 本発明は、α−オレフィン重合触媒用担体、アルコール
等の脱水剤、セラミックス原料などに有用な粒径が10
〜50Flの球形で粒度分イij範囲の狭いマグネシウ
ムアルコラートの合成方法に関するものである。
Detailed Description of the Invention (Objective of the Invention) (Industrial Application) The present invention provides a particle size of 10 to 10, which is useful for carriers for α-olefin polymerization catalysts, dehydrating agents for alcohols, raw materials for ceramics, etc.
The present invention relates to a method for synthesizing magnesium alcoholate having a spherical shape of ~50 Fl and a narrow particle size range.

(従来の技術〉 α−オレフィン類の重合触媒としてブーグラ(Zieg
ler)触媒が開発され常温常圧でエチレン、プロピレ
ン等の重合が行なえるようになったことは周知の通りで
ある。このチーグラー型触媒の一成分として固体のチタ
ンハロゲン化物が用いられているが、初期のチーグラー
型触媒においては、触is分中のチタン当りの重合体収
量が低く、別言すれば、チタン当りの重合活性が低く、
触媒残渣の除去工程(いわゆる脱灰工程〉が不可欠であ
った。これに対し、近年チタンハロゲン化物のうち、三
塩化チタンが活性を有することが見い出され、三塩化チ
タン型触媒を用いることにより触媒残渣の除去負荷が軽
減されるようになってきている。しかし、この場合でも
実際の活性種となるものは使用総チタンの0.1%以下
にすぎないと言われている。これは三塩化チタンの固体
表面の極く一部のチタン原子が触媒活性にあずかるだけ
であり、固体内部のチタン原子はまったく触媒活性に寄
与しないためである。
(Prior art) As a polymerization catalyst for α-olefins, Zieg
It is well known that ethylene, propylene, etc. can be polymerized at room temperature and pressure with the development of catalysts. Solid titanium halide is used as a component of this Ziegler-type catalyst, but in the early Ziegler-type catalysts, the polymer yield per titanium in the catalytic fraction was low; Polymerization activity is low,
A process for removing catalyst residue (so-called deashing process) was indispensable.In recent years, however, it has been discovered that among titanium halides, titanium trichloride has activity. The burden of removing residues is becoming lighter.However, even in this case, it is said that the amount of active species actually accounts for less than 0.1% of the total titanium used. This is because only a small portion of the titanium atoms on the surface of the titanium solid participate in the catalytic activity, and the titanium atoms inside the solid do not contribute to the catalytic activity at all.

前記したヂグラー型触媒におけるチタン当りの低い重合
活性という問題を解決するために、最近においては、マ
グネシウム化合物上に三塩化チタンを]−トする方法(
担持型触媒)が開発され、マグネシウム化合物として塩
化マグネシウムが担体として利用されてぎている。この
担持型触媒により表面積が200Td/gと非常に大き
くなり、例えば、三塩化チタン型触媒に比べ触tJX活
性か200倍以上に高活性化される。
In order to solve the problem of the low polymerization activity per titanium in the Ziegler-type catalyst described above, a method has recently been developed in which titanium trichloride is deposited on a magnesium compound (
Supported catalysts have been developed, and magnesium chloride has been used as a support for magnesium compounds. This supported catalyst has a very large surface area of 200 Td/g, and has a tJX activity more than 200 times higher than that of, for example, a titanium trichloride type catalyst.

前記担持型触媒において、担体として塩化マグネシウム
が選ばれるのは結晶構造の類似性やチタンとマグネシウ
ムのイオン半径の近似性(Mq。
In the supported catalyst, magnesium chloride is selected as the carrier because of the similarity in crystal structure and the proximity of the ionic radii of titanium and magnesium (Mq).

0.65′A、 rr、o、5sA)などのためである
。その後、塩化マグネシウムばかりでなく、Ng(OR
h 、RH(IX。
0.65'A, rr, o, 5sA), etc. After that, not only magnesium chloride but also Ng (OR
h, RH (IX.

R2)1oaど種々のマグネシウム化合物を担体とする
担持型触媒による高活性化触媒の開発がさかんに行なわ
れている。なかでも、塩化マグネシウムに含まれる塩素
が、生成重合体の劣化や黄変の原因となること、あるい
は重合装置を腐蝕させることなどの観点からマグネシウ
ムアルコラートを用いる担持型触媒に関する特許が多数
提案されている(例えば、特公昭62−47446@、
特公昭64−963号、特開昭59−221308号な
ど。〉。
R2) Highly activated catalysts using supported catalysts using various magnesium compounds such as 1OA as carriers are being actively developed. In particular, many patents have been proposed regarding supported catalysts using magnesium alcoholate, since the chlorine contained in magnesium chloride causes deterioration and yellowing of the produced polymer, or corrodes the polymerization equipment. (For example, Special Public Interest Publication No. 62-47446@,
Japanese Patent Publication No. 64-963, Japanese Patent Publication No. 59-221308, etc. 〉.

また、最近においては、シリカ(5i02)を担体とす
るシリカ担持型触媒も開発されている。即ち、シリカに
Hg化合物や11化合物を担持させるものが開発・され
ている。
Furthermore, recently, a silica-supported catalyst using silica (5i02) as a carrier has also been developed. That is, products in which silica supports Hg compounds and 11 compounds have been developed.

一方、担持型触媒による重合反応の特徴は、重合反応生
成物であるポリマーの形状が重合反応の中心となる触媒
の形状、すなわち担体となるマグネシウム化合物の形状
に相似するという点である。
On the other hand, a feature of the polymerization reaction using a supported catalyst is that the shape of the polymer, which is the polymerization reaction product, is similar to the shape of the catalyst that is the center of the polymerization reaction, that is, the shape of the magnesium compound that is the support.

このことは、担体となるマグネシウム化合物の形状、粒
径を制御することにより生成する重合体の形状、粒径を
制御することができることを意味する。
This means that the shape and particle size of the produced polymer can be controlled by controlling the shape and particle size of the magnesium compound used as a carrier.

前記した点は、工業的に重要な意味を有しており、生成
重合体が球形かつ粒度分布が狭け、れば、造粒工程の省
略、生成重合体の後処理工程への移送、生成重合体の取
扱い等が極めて容易となる。
The above points have an important industrial meaning, and if the produced polymer is spherical and has a narrow particle size distribution, the granulation process can be omitted, the produced polymer can be transferred to a post-treatment process, and the produced polymer can be easily produced. Handling of the polymer becomes extremely easy.

以上の観点から、粒子の形状、粒径や粒度分布を所望な
ものに制御しうるマグネシウムアルコラートの製造技術
の確立が強く望まれている。
From the above viewpoint, it is strongly desired to establish a manufacturing technology for magnesium alcoholate that can control particle shape, particle size, and particle size distribution to desired values.

現在、触媒用担体としてのマグネシウムアルコラートは
、マグネシウムアルコラートを機械的に粉砕し、粒度を
整えたものが使用されている。しかしながら、このよう
な機械的粉砕物は個々の粒子形状が破砕状のものとなり
、かつ粒度分布が広いものとなり重合反応に用いたとき
生成重合体の形状が不均一で取扱い上に問題がある。
Currently, magnesium alcoholate is used as a catalyst carrier after mechanically crushing the magnesium alcoholate and adjusting the particle size. However, such a mechanically pulverized product has individual particles in a crushed shape and has a wide particle size distribution, and when used in a polymerization reaction, the shape of the resulting polymer is non-uniform, which poses a problem in handling.

一方、前記した機械的粉砕とは別に、球状(粒子状)の
マグネシウムアルコラート(マグネシウムアルコキシド
〉を製造する技術としては、例えば次のようなものが提
案されている。
On the other hand, apart from the above-mentioned mechanical pulverization, the following techniques have been proposed, for example, for producing spherical (particulate) magnesium alcoholate (magnesium alkoxide).

(i)  HQ (OR) 2をR’OH中に溶解して
溶液を調製し、次いで所定温度下で噴霧乾燥して固体粒
子を得る。次に該固体粒子をROH中に懸濁し、更に蒸
溜にまり液相から一般式Ng(OR)2.− (OR’
) aで示される球状粒子を’&!eする方法(特開昭
62−51633@)。
(i) Dissolve HQ (OR) 2 in R'OH to prepare a solution and then spray dry at a given temperature to obtain solid particles. The solid particles are then suspended in ROH and further distilled from the liquid phase with the general formula Ng(OR2. - (OR'
) The spherical particles indicated by a are '&! e method (Japanese Patent Application Laid-open No. 62-51633@).

(i1)金属Hgとアルコールを活性化剤(例えばヨウ
素、ハロゲン化アルキル、酢酸、ギ酸エステルなど)の
存在下に反応させるに際し、飽和炭化水素(例えばヘキ
ーリーン、ヘプタンなどの脂肪族あるいは脂環族の炭化
水素)を存在させる方法(特公昭63−4815B)。
(i1) When reacting metal Hg and alcohol in the presence of an activator (e.g. iodine, alkyl halide, acetic acid, formate, etc.), saturated hydrocarbons (e.g. aliphatic or alicyclic such as hekylene, heptane, etc.) (Japanese Patent Publication No. 63-4815B).

しかしながら、前記した球状のマグネシウムアルコラー
トの製造技術は、反応操作が煩雑であったり、金属?グ
ネシウムとアルコールとの直接反応ではなく、かつ製造
されるマグネシウムアルコラートの形状、粒径及び粒度
分布を制御づるという観点からみて満足のいくものでは
ない。
However, the above-mentioned production technology for spherical magnesium alcoholate requires complicated reaction operations, or is difficult to produce due to the presence of metal. This is not a direct reaction between magnesium and alcohol, and is not satisfactory from the viewpoint of controlling the shape, particle size, and particle size distribution of the produced magnesium alcoholate.

(発明が解決しようとする問題点) 本発明らは、金属マグネシウムとアルコールとの直接反
応によりマグネシウムアルコラートを製造するに際し、
その形状および粒径を制御できる方法を鋭意倹約した。
(Problems to be Solved by the Invention) In producing magnesium alcoholate by direct reaction of metallic magnesium and alcohol, the present inventors
We have spared no effort to find a way to control its shape and particle size.

その結果、合成反応時の金属マグネシウムとアルコール
の添カロ配合量および反応系にお【ブる両者の反応時間
を規定することにより、球形でかつ粒度分布範囲の狭い
マグネジ1クムアルコラートが合成できることを兄い出
し、本発明を完成するに至った。
As a result, it was found that by specifying the amount of magnesium metal and alcohol added during the synthesis reaction and the reaction time of both in the reaction system, it was possible to synthesize 1 cum Neji alcoholate that was spherical and had a narrow particle size distribution range. This led to the completion of this invention.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明を概説すれば、本発明は、金属マグネシウムと一
般式ROMで示されるアルコールとを無溶媒かつ触媒の
存在下に直接反応させてマグネシウムアルコラートを合
成する方法において、(i)金属マグネシウムとアルコ
ールの反応系への最終添加割合を金属マグネシウム/ア
ルコール(重量比)−1/9〜15  とし、 り11)前記最終添加割合の金属マグネシウムとアルコ
ールを、アルコールの還流下の反応系に連続的または断
続的に添加し、5〜80分間に亘り反応させ、 (i10次いでアルコールの還流下に熟成反応を行なう
こと、 を特徴とする球形で粒度分布の狭いマグネシウムアルラ
ードの合成方法に関するものである。
(Means for Solving the Problems) To summarize the present invention, the present invention synthesizes magnesium alcoholate by directly reacting metallic magnesium and an alcohol represented by the general formula ROM in the absence of a solvent and in the presence of a catalyst. In the method, (i) the final addition ratio of magnesium metal and alcohol to the reaction system is magnesium metal/alcohol (weight ratio) -1/9 to 15, and 11) the final addition ratio of magnesium metal and alcohol to the reaction system is Adding continuously or intermittently to a reaction system under refluxing alcohol, reacting for 5 to 80 minutes, (i10) Then carrying out an aging reaction under refluxing alcohol. The present invention relates to a method for synthesizing allulade.

以下、本発明の構成を具体的に説明する。Hereinafter, the configuration of the present invention will be specifically explained.

本発明の金属マグネシウムと一般式ROMで示されるア
ルコールとの直接反応によるマグネシウムアルコラート
の合成方法において、特徴とする点は、反応系に対する
金属マグネシウムとRollとの最終添加割合を規制す
るとともに、両成分の反応系にお(プる反応時間を規制
している点である。前記した反応条件が維持されないと
、球径で特に粒径が10〜50P1の均一なマグネシウ
ムアルコラートを製造することかできない。
The method for synthesizing magnesium alcoholate by direct reaction of magnesium metal and alcohol represented by the general formula ROM of the present invention is characterized by regulating the final addition ratio of magnesium metal and Roll to the reaction system, and controlling the final addition ratio of magnesium metal and Roll to the reaction system. The point is that the reaction time in the reaction system is regulated. If the above-mentioned reaction conditions are not maintained, it is not possible to produce a uniform magnesium alcoholate having a spherical diameter, especially a particle diameter of 10 to 50 P1.

本発明で使用する金属マグネシウム成分は、とのような
形状のものでも使用することができるが、反応性の良好
なものがよい。例えば、数十〜数百メツシュ、より具体
的には100メツシユ程度の粉末状の金属マグネシウム
が使用される。このような反応性(活性)の良好なもの
は、後述する反応時間との関連で十分な反応速度を確保
し、均一・な粒径のマグネシウムアルコラートを得るう
えで好ましいものである。金属マグネシウム粒子の反応
性は表面積に比例し、表面積は金属マグネシウム粒子の
粒径か小さいほど大ぎいことはいうまでもないことであ
る。
The metallic magnesium component used in the present invention can also be used in the following shapes, but it is preferable to use one with good reactivity. For example, several tens to hundreds of meshes, more specifically about 100 meshes of powdered metal magnesium are used. Such a material having good reactivity (activity) is preferable in order to ensure a sufficient reaction rate in relation to the reaction time described below and to obtain a magnesium alcoholate having a uniform particle size. It goes without saying that the reactivity of the metal magnesium particles is proportional to the surface area, and the smaller the particle size of the metal magnesium particles, the greater the surface area.

本発明で使用する一般式ROM1で示されるアルコール
成分も各種のものが使用される。前記一般式においで、
RはC7〜C2Gのアルキル基、シフ[」アルキル基、
アラルキル基を示す。本発明で使用されるアルコール類
としては、例えばメタノール、エタノール、プロパノー
ル、ブタノール、ヘキシルアルコールなどがあり、なか
でもエタノールか好ましく使用される。
Various types of alcohol components represented by the general formula ROM1 can be used in the present invention. In the general formula,
R is a C7-C2G alkyl group, Schiff [''alkyl group,
Indicates an aralkyl group. The alcohols used in the present invention include, for example, methanol, ethanol, propanol, butanol, hexyl alcohol, etc. Among them, ethanol is preferably used.

本発明の直接反応による7グネシウムアルコラートの合
成方法において、前記金属マグネシウム取分とアルコー
ル成分の両成分の反応系に対する添加割合が規制される
。粒径が数十Pの球形で、かつ粒度分布の狭いマグネシ
ウムアルコラートを製造するには、両者の反応系に対す
る最終添加割合は、金属マグネシウム/アルコール(重
量比〉−1/9〜15に規制される。
In the method for synthesizing 7gnesium alcoholate by direct reaction of the present invention, the proportions of both the metal magnesium fraction and the alcohol component added to the reaction system are regulated. In order to produce magnesium alcoholate with a spherical particle size of several tens of P and a narrow particle size distribution, the final addition ratio of both to the reaction system is regulated to be metallic magnesium/alcohol (weight ratio> -1/9 to 15). Ru.

本発明において、金属マグネシウム1に対するアルコー
ルの最終添加割合が9を下回る場合、反応生成物中の固
体くマグネシウムアルコラート)濃度が高くなり、粒径
の均一性や流動性か失われる。なお、流動性が消失して
くると反応生成物の取り出し等の操作性が悪くなること
はいうまでも0 ないことである。また、15を上回る場合も粒径と粒度
分布を制御できなくなり、不定形の粗大粒子や微粉が生
成し、目的とする球形で粒度分布の狭いマグネシウムア
ルコラートを得ることができなくなる。
In the present invention, if the final addition ratio of alcohol to 1 part of magnesium metal is less than 9, the concentration of solid magnesium alcoholate in the reaction product will increase, and the uniformity of particle size and fluidity will be lost. It goes without saying that when the fluidity disappears, the operability of taking out the reaction product becomes worse. Moreover, if it exceeds 15, it becomes impossible to control the particle size and particle size distribution, and amorphous coarse particles or fine powder are produced, making it impossible to obtain the desired spherical magnesium alcoholate with a narrow particle size distribution.

また本発明において、前記両反応成分の反応系に対する
最終添加割合のほかに、両反応成分の反応系におけるア
ルコール成分の還流下のもとで、両者の反応時間が規制
される。所望の微細な球形(粒径数十p程度〉のマグネ
シウムアルコラートを製造するには、使用するアルコー
ル成分の還流下において前記同成分の最終添加割合を連
続的または断続的に反応系に添加し、一定時間反応させ
なければならない。本発明において、前記同成分を反応
系へ連続的または継続的に添加するとともに、使用する
アルコール成分の還流下において、同成分を15〜80
分間を要して反応させなければならない。本発明におい
て、反応時間の規制は、前記した金属マグネシウムとア
ルコールとの反応系に対する最終添加割合の規制と連動
して反応生成1 物の性状を大きく左右する。反応時間が5分未満のとぎ
は微粉末のものが多く、また80分以上の長時間の場合
は亜球状の粒子は得られずかつ粒度分布が広いものとな
ってしまう。
Further, in the present invention, in addition to the final addition ratio of both reaction components to the reaction system, the reaction time of both reaction components is regulated under the reflux of the alcohol component in the reaction system. In order to produce a magnesium alcoholate with a desired fine spherical shape (particle size of about several tens of particles), the final addition ratio of the alcohol component to be used is continuously or intermittently added to the reaction system while the alcohol component is refluxing. The reaction must be carried out for a certain period of time.In the present invention, the same component is added continuously or continuously to the reaction system, and the same component is added at a rate of 15 to 80% under reflux of the alcohol component used.
The reaction must take several minutes. In the present invention, regulation of the reaction time greatly influences the properties of the reaction product 1 in conjunction with regulation of the final addition ratio to the reaction system of metallic magnesium and alcohol. When the reaction time is less than 5 minutes, most of the grains are finely powdered, and when the reaction time is longer than 80 minutes, subspherical particles cannot be obtained and the particle size distribution becomes wide.

本発明において、反応系に金属マグネシウムとアルコー
ルを添加する態様は任意のものでよい。
In the present invention, metal magnesium and alcohol may be added to the reaction system in any manner.

例えば、反応の初期に同成分の最終添加割合よりも金属
マグネシウムの添加割合を多くし、最終的に前記した最
終添加割合に到達させるようにしてもよいことはいうま
でもない。例えば、反応の初期条件として同成分の初期
添加割合を金属マグネシウム/アルコール(重量比)=
1/15〜25とし、次いで最終的に1/9〜1/15
になるように添加すればよい。本発明において、同成分
の反応系への添加の態様によりマグネシウムアルコラー
トの粒径を制御することができる。なお、粒径の制御は
、後)ホする触媒の使用量、触媒の反応系への添加のM
49によっても行なうことができるが、前記した反応系
に対する金属マグネシウムとアルコールとの添加の態様
により行なう方が確実である。
For example, it goes without saying that the addition ratio of metallic magnesium may be increased at the beginning of the reaction than the final addition ratio of the same component, and the above-mentioned final addition ratio may be finally reached. For example, as an initial reaction condition, the initial addition ratio of the same components is set as metal magnesium/alcohol (weight ratio) =
1/15 to 25, then finally 1/9 to 1/15
Just add it so that In the present invention, the particle size of the magnesium alcoholate can be controlled by the manner in which the component is added to the reaction system. The particle size can be controlled by adjusting the amount of catalyst used and the amount of catalyst added to the reaction system.
49, but it is more reliable to add metal magnesium and alcohol to the reaction system as described above.

2 本発明において、金属マグネシウム成分とアルコール成
分とを前記のようにして反応させるが、反応系に触媒を
存在させることはいうまでもないことである。
2 In the present invention, the metal magnesium component and the alcohol component are reacted as described above, but it goes without saying that a catalyst is present in the reaction system.

前記触媒と1ノでは、金属マグネシウムからグリニヤー
ル試薬を調製するとぎに使用されるハロゲン化アルキル
などがある。例えば、臭化メチル、塩化メチル、臭化エ
チル、塩化エチルなどのハロゲン化アルキル、塩化マグ
ネシウム、塩化アルミニウムなどのハロゲン化金属、マ
グネシウムエチラート自身、ヨウ素、酢酸エステルなど
が使用される。
Examples of the catalyst include alkyl halides, which are used in the preparation of Grignard reagents from magnesium metal. For example, alkyl halides such as methyl bromide, methyl chloride, ethyl bromide, and ethyl chloride, metal halides such as magnesium chloride and aluminum chloride, magnesium ethylate itself, iodine, acetic ester, and the like are used.

前記した触媒は、反応系に種々の態様で添加される。本
発明においては、アルコール成分が反応系に連続的にあ
るいは断続的に添加されるので、該アルコール成分に触
媒を溶解させてアルコール成分とともに反応系に添加し
てもよい。いずれにしても前記触媒を反応系に添加する
態様により、生成するマグネシウムアルコラートの粒径
を制御することができる。即ち、触媒量が多いはど粒径
3 が大きくなる傾向にある。しかしながら、触媒量が多い
と凝集が起り、少ないと微粉が増え、粒度分布が広くな
る。従って、前述したように、反応系への金属マグネシ
ウムとアルコール成分の添加割合の調整と添加の態様の
仕方による方が粒径を制御しやすい。
The catalyst described above is added to the reaction system in various ways. In the present invention, since the alcohol component is added continuously or intermittently to the reaction system, a catalyst may be dissolved in the alcohol component and added to the reaction system together with the alcohol component. In any case, the particle size of the produced magnesium alcoholate can be controlled by the manner in which the catalyst is added to the reaction system. That is, the particle size 3 tends to increase as the amount of catalyst increases. However, if the amount of catalyst is large, aggregation will occur, and if the amount is small, the amount of fine powder will increase and the particle size distribution will become wider. Therefore, as described above, it is easier to control the particle size by adjusting the proportion of magnesium metal and the alcohol component added to the reaction system and the mode of addition.

前記したように、触媒の存在下に、所定量の金属マグネ
シウムとアルコールを反応系に添加し、該アルコールの
還流下に5〜80分間反応させ、次いで両反応成分の反
応を完結させかつ生成粒子を熟成させるという観点から
、反応系をさらに所定時間、アルコールの還流下に維持
する。金属マグネシウムとアルコールとの反応は水素の
発生が停止することにより完結されるが、生成粒子の熟
成や経済的観点から、同成分を添7JDした後、反応系
をアルコールの還流下に数時間〜20時間前後、維持す
ればよい。
As described above, a predetermined amount of metallic magnesium and alcohol are added to the reaction system in the presence of a catalyst, and the reaction is allowed to occur for 5 to 80 minutes while the alcohol is refluxed, and then the reaction of both reaction components is completed and the generated particles are From the viewpoint of aging the reaction system, the reaction system is further maintained under reflux of alcohol for a predetermined period of time. The reaction between metallic magnesium and alcohol is completed when the generation of hydrogen stops, but from the viewpoint of ripening the generated particles and from an economic point of view, after adding the same component for 7JD, the reaction system is kept under reflux of alcohol for several hours. It should be maintained for around 20 hours.

(実施例) 以下、本発明を実施例により更に詳しく説明するが、本
発明はこれら実施例のものに限定されな4 い。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

(実施例1〉 積算型ガスメーターをつないだ留金冷却機、的化ロー1
〜をつ(ブた2I!三つロフラスコを十分乾燥、窒素置
換後、金属マグネシウム(−7()メツシュ)粉5gと
無水エタノール1009、ヨウ素0.59を仕込む。次
にオイルバスで加熱し、エタノールの留金温度で反応を
開始させる。
(Example 1) Clamp cooler connected to integrating gas meter, Target Low 1
After thoroughly drying a three-neck flask and purging it with nitrogen, add 5 g of metallic magnesium (-7 () mesh) powder, 1009 g of absolute ethanol, and 0.59 g of iodine. Next, heat in an oil bath, The reaction is initiated at the distillate temperature of ethanol.

反応開始後、町2.5g、エタノール25gを5分毎に
8回、40分間にわたって添加する。なお、添加終了時
の最終添加割合は、金属マグネシウム/エタノール−1
712であった。添加終了後、10時間加熱還留金続け
、反応を完結させる。
After the reaction has started, 2.5 g of alcohol and 25 g of ethanol are added every 5 minutes 8 times over 40 minutes. The final addition ratio at the end of addition is metallic magnesium/ethanol-1.
It was 712. After the addition was complete, heating and refluxing the gold was continued for 10 hours to complete the reaction.

反応完結後、ロータリーエバポレーターにて乾燥し、粉
体状のマグネシウムエチラートioogを1岑lこ。
After the reaction is completed, dry in a rotary evaporator and add 1 liter of powdered magnesium ethylate ioog.

得られたマグネシウムエヂラートは、光学顕微鏡にJ:
る形状観察で、若干表面に凹凸の見られる亜球状の粒子
であった。粒度分布は、エタノールに塩化リチウムを電
解質として加えた液を媒質に5 用いたコールタ−カウンター法により測定した。
The obtained magnesium edilate was subjected to optical microscopy.
When observing the shape, it was found to be subspherical particles with a slightly uneven surface. The particle size distribution was measured by the Coulter counter method using a solution prepared by adding lithium chloride as an electrolyte to ethanol as a medium.

測定の結果、平均粒径(体積比>21.9P、で、その
粒度分布は、図1(体積比%/累積体積比%〉に示すよ
うにシャープなものであった。
As a result of the measurement, the average particle diameter (volume ratio>21.9P) was found, and the particle size distribution was sharp as shown in FIG. 1 (volume ratio %/cumulative volume ratio %).

比較例1 実施例1と同じ操作で金属マグネシウム粉、エタノール
を5分毎に10回に分割して85分間か(ブて添加した
Comparative Example 1 In the same manner as in Example 1, metal magnesium powder and ethanol were added in 10 portions every 5 minutes for 85 minutes.

得られたマグネシウムエチラート粉体は、ガラスを割っ
たような不定形粒子で亜球状の粒子は得られなかった。
The obtained magnesium ethylate powder was amorphous particles that looked like broken glass, and no subspherical particles were obtained.

得られた粒子の平均粒径は28.6P。The average particle size of the obtained particles was 28.6P.

でその粒度分布は、図2のように広いものであっlこ。The particle size distribution is wide as shown in Figure 2.

実施例2 実施例1と同様の装置に金属マグネシウム粉59とエタ
ノール195gおよび塩化マグネシウム0.59を仕込
んだ。これをオイルバスでカロ熱し、エタノール遠留下
に反応を開始させた。反応開始後、金属マグネシウム粉
5g、エタノール45gを7分毎に9回に分けて力目え
、50分間で添加を終了6 させた。
Example 2 Into the same apparatus as in Example 1, 59 g of metal magnesium powder, 195 g of ethanol, and 0.59 g of magnesium chloride were charged. This was heated in an oil bath and the reaction was started under distillation of ethanol. After the start of the reaction, 5 g of metal magnesium powder and 45 g of ethanol were added in 9 portions every 7 minutes, and the addition was completed in 50 minutes.

ロータリーエバポレーターで乾燥し、粉状のマグネジ1
クム工ヂラート約200gを得た。得られた粉は、光学
顕微鏡で観察したところ、粒径が20〜30pnで球状
の粒子から成っていることが確認されlこ。
Dry in a rotary evaporator and powder magnetic screw 1
Approximately 200 g of Kumu Kojirat was obtained. When the obtained powder was observed with an optical microscope, it was confirmed that it consisted of spherical particles with a particle size of 20 to 30 pn.

比較例2 従来の粉砕によって作られたもの(ブナミート・ノーベ
ル社製の粒径50()〜1500/ffiのマグネシウ
ムアルラー1へ粉砕品)の粒度分布を第3図に示す。
Comparative Example 2 The particle size distribution of a product produced by conventional pulverization (a product pulverized to Magnesium Alura 1 with a particle size of 50( ) to 1500/ffi manufactured by Bunamito Nobel) is shown in FIG.

本発明のものは従来のものと比較して、極めて狭い粒度
分布を有していることがわかる。
It can be seen that the particles of the present invention have an extremely narrow particle size distribution compared to the conventional particles.

〔発明の効果] 本発明の金属マグネシウムとアルコールとの直接反応に
よるマグネシウムアルコラートの合成方法により、球、
形で粒度分布範囲の狭いものが効率的に製造される。
[Effects of the Invention] The method for synthesizing magnesium alcoholate by direct reaction of magnesium metal and alcohol of the present invention can produce spheres,
It is possible to efficiently produce particles with a narrow particle size distribution range.

そして、本発明のマグネシウムアルコラートの合成方法
により製造されるマグネシウムアルコラ1〜は、α−A
レフインの重合用触媒、アルコ−1フ ル等の脱水剤・乾燥剤、セラミックス原料などに有用な
ものである。
Magnesium alcoholates 1 to 1 produced by the method for synthesizing magnesium alcoholate of the present invention are α-A
It is useful as a polymerization catalyst for Refine, a dehydrating agent/drying agent for Alco-1Flu, etc., and a raw material for ceramics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例1で製造されたマグネシウム
アルコラートの粒度分布である。第2図、は比較例1で
製造されたマグネシウムアルコラートの粒度分布である
。第3図は、粉砕型の従来のマグネシウムアルコラート
の粒度分布である。
FIG. 1 shows the particle size distribution of the magnesium alcoholate produced in Example 1 of the present invention. FIG. 2 shows the particle size distribution of the magnesium alcoholate produced in Comparative Example 1. FIG. 3 shows the particle size distribution of a conventional pulverized magnesium alcoholate.

Claims (1)

【特許請求の範囲】 1、金属マグネシウムと一般式ROHで示されるアルコ
ールとを無溶媒かつ触媒の存在下に直接反応させてマグ
ネシウムアルコラートを合成する方法において、 (i)金属マグネシウムとアルコールの反応系への最終
添加割合を金属マグネシウム/アルコール(重量比)=
1/9〜15とし、 (ii)前記最終添加割合の金属マグネシウムとアルコ
ールを、アルコールの還流下の反応系に連続的または断
続的に添加し、5〜80分間に亘り反応させ、 (iii)次いでアルコールの還流下に熟成反応を行な
うこと、 を特徴とする球形で粒度分布の狭いマグネシウムアルコ
ラートの合成方法。 2、ROHのRがC_1〜C_2_0のアルキル基、シ
クロアルキル基、アラルキル基から選ばれたものである
請求項第1項に記載のマグネシウムアルコラートの合成
方法。 3、アルコールがエチルアルコールである請求項第2項
に記載のマグネシウムアルコラートの合成方法。 4、マグネシウムアルコラートの粒径が10〜50μm
のものである請求項第1項に記載のマグネシウムアルコ
ラートの合成方法。
[Claims] 1. A method for synthesizing magnesium alcoholate by directly reacting magnesium metal and an alcohol represented by the general formula ROH in the absence of a solvent and in the presence of a catalyst, comprising: (i) a reaction system of magnesium metal and alcohol; The final addition ratio to magnesium metal/alcohol (weight ratio) =
1/9 to 15, (ii) adding metal magnesium and alcohol in the final addition ratio continuously or intermittently to the reaction system under reflux of alcohol and reacting for 5 to 80 minutes; (iii) A method for synthesizing a magnesium alcoholate having a spherical shape and a narrow particle size distribution, which is characterized by carrying out an aging reaction under refluxing of alcohol. 2. The method for synthesizing magnesium alcoholate according to claim 1, wherein R in ROH is selected from C_1 to C_2_0 alkyl groups, cycloalkyl groups, and aralkyl groups. 3. The method for synthesizing magnesium alcoholate according to claim 2, wherein the alcohol is ethyl alcohol. 4. Particle size of magnesium alcoholate is 10 to 50 μm
The method for synthesizing magnesium alcoholate according to claim 1.
JP21017889A 1989-08-16 1989-08-16 A method for synthesizing spherical, narrow particle size distribution magnesium alcoholates. Expired - Lifetime JPH0720898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21017889A JPH0720898B2 (en) 1989-08-16 1989-08-16 A method for synthesizing spherical, narrow particle size distribution magnesium alcoholates.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21017889A JPH0720898B2 (en) 1989-08-16 1989-08-16 A method for synthesizing spherical, narrow particle size distribution magnesium alcoholates.

Publications (2)

Publication Number Publication Date
JPH0374341A true JPH0374341A (en) 1991-03-28
JPH0720898B2 JPH0720898B2 (en) 1995-03-08

Family

ID=16585071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21017889A Expired - Lifetime JPH0720898B2 (en) 1989-08-16 1989-08-16 A method for synthesizing spherical, narrow particle size distribution magnesium alcoholates.

Country Status (1)

Country Link
JP (1) JPH0720898B2 (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368391A (en) * 1991-06-18 1992-12-21 Idemitsu Petrochem Co Ltd Alkoxy group-containing magnesium compound and production thereof
WO1992022592A1 (en) * 1991-06-17 1992-12-23 Idemitsu Petrochemical Co., Ltd. Component of olefin polymerization catalyst and production of polyolefin
WO1993000370A1 (en) * 1991-06-28 1993-01-07 Idemitsu Petrochemical Co., Ltd. Process for producing olefin polymer
WO1993000371A1 (en) * 1991-06-25 1993-01-07 Idemitsu Petrochemical Co., Ltd. Solid catalyst composition and production of polyolefin
US6297188B1 (en) * 1998-10-27 2001-10-02 Degussa-Huels Aktiengesellschaft Magnesium ethoxide having a high coarse particle content, process for its preparation and its use
WO2003099749A1 (en) * 2002-05-24 2003-12-04 Idemitsu Kosan Co., Ltd Magnesium compound, solid catalyst component for olefin polymerization, catalyst for olefin polymerization and method for producing polyolefin
WO2004020480A1 (en) 2002-08-29 2004-03-11 Toho Catalyst Co., Ltd Solid catalyst component for olefin polymerization and catalyst
WO2005102973A1 (en) 2004-04-23 2005-11-03 Idemitsu Kosan Co., Ltd. Magnesium compound, catalyst for olefin polymerization and method for producing olefin polymer
WO2007116815A1 (en) 2006-04-07 2007-10-18 Colcoat Co., Ltd. Dialkoxymagnesium granular material and method for synthesis of the same
JP2007297371A (en) * 2006-04-07 2007-11-15 Colcoat Kk Dialkoxymagnesium granular material and synthesis and use thereof
JP2008056885A (en) * 2006-08-30 2008-03-13 Samsung Total Petrochemicals Co Ltd Method for producing spherical support for olefin polymerization catalyst
JP2008512542A (en) * 2004-09-23 2008-04-24 サムソン トータル ペトロケミカルズ カンパニー リミテッド Method for producing spherical support for olefin polymerization catalyst
WO2010005164A2 (en) 2008-07-11 2010-01-14 삼성토탈 주식회사 Method for controlling size of spherical carrier for olefin polymerization catalyst
WO2010079701A1 (en) 2009-01-07 2010-07-15 東邦チタニウム株式会社 Solid catalyst component for olefin polymerization, manufacturing method, and catalyst and olefin polymer manufacturing method
WO2010106888A1 (en) 2009-03-17 2010-09-23 東邦チタニウム株式会社 Solid catalyst component and catalyst for polymerization of olefins, and process for production of olefin polymers using same
DE102010007743A1 (en) 2009-05-22 2011-07-21 Samsung Total Petrochemicals Co. Ltd., Chungcheongnam Province A method of producing a dialkoxymagnesium carrier for an olefin polymerization catalyst, a method of producing a catalyst for olefin polymerization using the same, and a method of polymerizing olefin using the same
WO2011149153A1 (en) 2010-05-27 2011-12-01 삼성토탈 주식회사 Production method for a spherical carrier for an olefin polymerization catalyst, and a solid catalyst using the same and propylene polymers
WO2012034357A1 (en) 2010-09-16 2012-03-22 中国石油化工股份有限公司 Catalyst carrier for olefin polymerization, solid catalyst component and catalyst
WO2012060361A1 (en) 2010-11-04 2012-05-10 東邦チタニウム株式会社 Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and olefin polymers
WO2013005463A1 (en) 2011-07-06 2013-01-10 東邦チタニウム株式会社 Solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
WO2013027560A1 (en) 2011-08-25 2013-02-28 東邦チタニウム株式会社 Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
CN102992958A (en) * 2012-11-01 2013-03-27 济南大学 Preparation method of spherical magnesium ethylate
WO2013042400A1 (en) 2011-09-20 2013-03-28 東邦チタニウム株式会社 Solid catalyst component for polymerization of olefin, catalyst for polymerization of olefin, and method for producing olefin polymer
WO2013058193A1 (en) * 2011-10-19 2013-04-25 日本曹達株式会社 Method for producing magnesium alcoholate
WO2014013916A1 (en) 2012-07-18 2014-01-23 東邦チタニウム株式会社 Method for producing solid catalyst component for use in polymerization of olefin, catalyst for use in polymerization of olefin, and method for producing olefin polymer
WO2014050809A1 (en) 2012-09-28 2014-04-03 東邦チタニウム株式会社 Solid catalyst component for polymerization of olefins, catalyst for polymerization of olefins, and method for producing olefin polymer
WO2014132759A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Method for producing propylene block copolymer
WO2014132806A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Production method for solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
WO2014132777A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
WO2014132805A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Production method for solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
US9109056B2 (en) 2007-12-12 2015-08-18 Samsung Total Petrochemicals Co., Ltd. Method of preparation of spherical support for olefin polymerization catalyst
EP3141565A1 (en) * 2003-11-04 2017-03-15 Evonik Degussa GmbH Spherical particles
CN108017735A (en) * 2018-01-09 2018-05-11 为信(深圳)材料科技有限公司 A kind of component and preparation method of spherical alkoxyl magnesium particle
CN108017734A (en) * 2018-01-09 2018-05-11 为信(深圳)材料科技有限公司 The component of spherical alkoxyl magnesium particle, preparation method and application
US10113014B1 (en) 2017-06-27 2018-10-30 Toho Titanium Co., Ltd. Method for producing solid catalyst component containing vanadium compound for olefin polymerization, olefin polymerization catalyst, and method for producing olefin polymer
WO2019005261A1 (en) 2017-06-27 2019-01-03 Exxonmobil Chemical Patents Inc. High stiffness polypropylene impact copolymer
WO2019005262A1 (en) 2017-06-27 2019-01-03 Exxonmobil Chemical Patents Inc. High impact polypropylene impact copolymer
US10246530B2 (en) 2017-06-27 2019-04-02 Toho Titanium Co., Ltd. Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization and a process for propylene polymerization
WO2019064967A1 (en) 2017-09-29 2019-04-04 東邦チタニウム株式会社 CATALYST FOR OLEFIN POLYMERIZATION, METHOD FOR PRODUCING CATALYST FOR OLEFIN POLYMERIZATION, METHOD FOR PRODUCING OLEFIN POLYMER, AND PROPYLENE-α-OLEFIN COPOLYMER
WO2019202800A1 (en) 2018-04-20 2019-10-24 東邦チタニウム株式会社 Olefin polymer and method for producing olefin polymer
JP2020111631A (en) * 2019-01-08 2020-07-27 東邦チタニウム株式会社 Production method of dialkoxy magnesium, solid catalyst component for olefins polymerization, solid catalyst for olefins polymerization, and production method of olefins polymer
WO2020217628A1 (en) 2019-04-25 2020-10-29 住友化学株式会社 Method for producing propylene polymer
WO2021105373A1 (en) 2019-11-29 2021-06-03 Thai Polyethylene Co., Ltd. Catalyst composition for the polymerization of olefins
JP2021525295A (en) * 2018-06-01 2021-09-24 ダウ グローバル テクノロジーズ エルエルシー Ziegler-Natta catalyst system with treated magnesium chloride component
JP2021527160A (en) * 2018-10-01 2021-10-11 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Olefin polymerization precursors and catalyst components
WO2021220644A1 (en) 2020-04-28 2021-11-04 東邦チタニウム株式会社 Solid catalytic component for olefin polymerization and production method therefor, catalyst for olefin polymerization and production method therefor, and production method for olefin polymer
WO2021220645A1 (en) 2020-04-28 2021-11-04 東邦チタニウム株式会社 Solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
WO2021240956A1 (en) 2020-05-27 2021-12-02 東邦チタニウム株式会社 Olefin polymerization catalyst production method and olefin polymerization catalyst
WO2021240955A1 (en) 2020-05-27 2021-12-02 東邦チタニウム株式会社 Method for producing catalyst for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
WO2022094508A1 (en) 2020-10-30 2022-05-05 Exxonmobil Chemical Patents Inc. Polypropylene produced using modified styrenic internal electron donors
WO2022091867A1 (en) 2020-10-28 2022-05-05 東邦チタニウム株式会社 Solid catalytic component for olefin polymerization, method for producing solid catalytic component for olefin polymerization, catalyst for olefin polymerization, method for producing olefin polymer particles, and olefin polymer particles
CN114933320A (en) * 2022-04-29 2022-08-23 广东马车动力科技有限公司 Method for refining lithium chloride
WO2022250034A1 (en) 2021-05-26 2022-12-01 東邦チタニウム株式会社 Olefin polymerization solid catalyst component, olefin polymerization catalyst, manufacturing method for olefin polymer, olefin polymer, manufacturing method for propylene-based block copolymer, and propylene-based block copolymer
EP4155324A2 (en) 2021-09-22 2023-03-29 Sumitomo Chemical Company, Limited Method for producing solid catalyst component for olefin polymerization, method for producing catalyst for olefin polymerization, and method for producing olefin polymer
EP4212557A2 (en) 2022-01-14 2023-07-19 Sumitomo Chemical Company, Limited Heterophasic propylene polymerization material and olefin polymer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854986B2 (en) 2010-02-25 2016-02-09 コルコート株式会社 Method for synthesizing mixed magnesium dialkoxide granules and method for using the same
CN102453150B (en) * 2010-10-25 2013-08-14 中国石油化工股份有限公司 Support of olefinic polymerization catalyst and preparation method thereof, solid catalyst components for olefinic polymerization and olefinic polymerization catalyst
JP7162035B2 (en) * 2020-06-29 2022-10-27 東邦チタニウム株式会社 Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, method for producing catalyst for olefin polymerization, and method for producing olefin polymer

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022592A1 (en) * 1991-06-17 1992-12-23 Idemitsu Petrochemical Co., Ltd. Component of olefin polymerization catalyst and production of polyolefin
JP2505326B2 (en) * 1991-06-18 1996-06-05 出光石油化学株式会社 Method for producing magnesium dialkoxide
JPH04368391A (en) * 1991-06-18 1992-12-21 Idemitsu Petrochem Co Ltd Alkoxy group-containing magnesium compound and production thereof
WO1993000371A1 (en) * 1991-06-25 1993-01-07 Idemitsu Petrochemical Co., Ltd. Solid catalyst composition and production of polyolefin
WO1993000370A1 (en) * 1991-06-28 1993-01-07 Idemitsu Petrochemical Co., Ltd. Process for producing olefin polymer
US6297188B1 (en) * 1998-10-27 2001-10-02 Degussa-Huels Aktiengesellschaft Magnesium ethoxide having a high coarse particle content, process for its preparation and its use
JP2010202667A (en) * 1998-10-27 2010-09-16 Evonik Degussa Gmbh Magnesium ethoxide having coarse particle content, method for producing the same and its use
US7387979B2 (en) 2002-05-24 2008-06-17 Matsushita Electric Industrial Co., Ltd. Magnesium compound, solid catalyst component for olefin polymerization, catalyst for olefin polymerization and method for producing polyolefin
WO2003099749A1 (en) * 2002-05-24 2003-12-04 Idemitsu Kosan Co., Ltd Magnesium compound, solid catalyst component for olefin polymerization, catalyst for olefin polymerization and method for producing polyolefin
WO2004020480A1 (en) 2002-08-29 2004-03-11 Toho Catalyst Co., Ltd Solid catalyst component for olefin polymerization and catalyst
EP3141565A1 (en) * 2003-11-04 2017-03-15 Evonik Degussa GmbH Spherical particles
US7737069B2 (en) 2004-04-23 2010-06-15 Idemitsu Kosan Co., Ltd. Magnesium compound, catalyst for olefin polymerization and method for producing olefin polymer
WO2005102973A1 (en) 2004-04-23 2005-11-03 Idemitsu Kosan Co., Ltd. Magnesium compound, catalyst for olefin polymerization and method for producing olefin polymer
JP2008512542A (en) * 2004-09-23 2008-04-24 サムソン トータル ペトロケミカルズ カンパニー リミテッド Method for producing spherical support for olefin polymerization catalyst
JP2007297371A (en) * 2006-04-07 2007-11-15 Colcoat Kk Dialkoxymagnesium granular material and synthesis and use thereof
WO2007116815A1 (en) 2006-04-07 2007-10-18 Colcoat Co., Ltd. Dialkoxymagnesium granular material and method for synthesis of the same
US8632882B2 (en) 2006-04-07 2014-01-21 Colcoat Co., Ltd. Dialkoxymagnesium granules and method for their synthesis
JP2008056885A (en) * 2006-08-30 2008-03-13 Samsung Total Petrochemicals Co Ltd Method for producing spherical support for olefin polymerization catalyst
JP4662555B2 (en) * 2006-08-30 2011-03-30 サムソン トータル ペトロケミカルズ カンパニー リミテッド Method for producing spherical support for olefin polymerization catalyst
US9109056B2 (en) 2007-12-12 2015-08-18 Samsung Total Petrochemicals Co., Ltd. Method of preparation of spherical support for olefin polymerization catalyst
WO2010005164A2 (en) 2008-07-11 2010-01-14 삼성토탈 주식회사 Method for controlling size of spherical carrier for olefin polymerization catalyst
JP2011513576A (en) * 2008-07-11 2011-04-28 サムスン トータル ペトロケミカルズ カンパニー リミテッド Method for adjusting the size of a spherical support for an olefin polymerization catalyst
WO2010079701A1 (en) 2009-01-07 2010-07-15 東邦チタニウム株式会社 Solid catalyst component for olefin polymerization, manufacturing method, and catalyst and olefin polymer manufacturing method
WO2010106888A1 (en) 2009-03-17 2010-09-23 東邦チタニウム株式会社 Solid catalyst component and catalyst for polymerization of olefins, and process for production of olefin polymers using same
DE102010007743A1 (en) 2009-05-22 2011-07-21 Samsung Total Petrochemicals Co. Ltd., Chungcheongnam Province A method of producing a dialkoxymagnesium carrier for an olefin polymerization catalyst, a method of producing a catalyst for olefin polymerization using the same, and a method of polymerizing olefin using the same
WO2011149153A1 (en) 2010-05-27 2011-12-01 삼성토탈 주식회사 Production method for a spherical carrier for an olefin polymerization catalyst, and a solid catalyst using the same and propylene polymers
WO2012034357A1 (en) 2010-09-16 2012-03-22 中国石油化工股份有限公司 Catalyst carrier for olefin polymerization, solid catalyst component and catalyst
WO2012060361A1 (en) 2010-11-04 2012-05-10 東邦チタニウム株式会社 Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and olefin polymers
WO2013005463A1 (en) 2011-07-06 2013-01-10 東邦チタニウム株式会社 Solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
WO2013027560A1 (en) 2011-08-25 2013-02-28 東邦チタニウム株式会社 Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
WO2013042400A1 (en) 2011-09-20 2013-03-28 東邦チタニウム株式会社 Solid catalyst component for polymerization of olefin, catalyst for polymerization of olefin, and method for producing olefin polymer
WO2013058193A1 (en) * 2011-10-19 2013-04-25 日本曹達株式会社 Method for producing magnesium alcoholate
US9493586B2 (en) 2011-10-19 2016-11-15 Nippon Soda Co., Ltd. Method for producing magnesium alcoholate
JPWO2013058193A1 (en) * 2011-10-19 2015-04-02 日本曹達株式会社 Method for producing magnesium alcoholate
WO2014013916A1 (en) 2012-07-18 2014-01-23 東邦チタニウム株式会社 Method for producing solid catalyst component for use in polymerization of olefin, catalyst for use in polymerization of olefin, and method for producing olefin polymer
WO2014050809A1 (en) 2012-09-28 2014-04-03 東邦チタニウム株式会社 Solid catalyst component for polymerization of olefins, catalyst for polymerization of olefins, and method for producing olefin polymer
CN102992958A (en) * 2012-11-01 2013-03-27 济南大学 Preparation method of spherical magnesium ethylate
WO2014132805A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Production method for solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
WO2014132777A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
WO2014132806A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Production method for solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
WO2014132759A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Method for producing propylene block copolymer
WO2019005261A1 (en) 2017-06-27 2019-01-03 Exxonmobil Chemical Patents Inc. High stiffness polypropylene impact copolymer
US10113014B1 (en) 2017-06-27 2018-10-30 Toho Titanium Co., Ltd. Method for producing solid catalyst component containing vanadium compound for olefin polymerization, olefin polymerization catalyst, and method for producing olefin polymer
WO2019005262A1 (en) 2017-06-27 2019-01-03 Exxonmobil Chemical Patents Inc. High impact polypropylene impact copolymer
US10246530B2 (en) 2017-06-27 2019-04-02 Toho Titanium Co., Ltd. Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization and a process for propylene polymerization
WO2019064967A1 (en) 2017-09-29 2019-04-04 東邦チタニウム株式会社 CATALYST FOR OLEFIN POLYMERIZATION, METHOD FOR PRODUCING CATALYST FOR OLEFIN POLYMERIZATION, METHOD FOR PRODUCING OLEFIN POLYMER, AND PROPYLENE-α-OLEFIN COPOLYMER
CN108017734A (en) * 2018-01-09 2018-05-11 为信(深圳)材料科技有限公司 The component of spherical alkoxyl magnesium particle, preparation method and application
CN108017735B (en) * 2018-01-09 2020-07-21 为信(深圳)材料科技有限公司 Components and preparation method of spherical alkoxy magnesium particles
CN108017735A (en) * 2018-01-09 2018-05-11 为信(深圳)材料科技有限公司 A kind of component and preparation method of spherical alkoxyl magnesium particle
CN108017734B (en) * 2018-01-09 2020-08-28 为信(深圳)材料科技有限公司 Components, preparation method and application of spherical alkoxy magnesium particles
WO2019202800A1 (en) 2018-04-20 2019-10-24 東邦チタニウム株式会社 Olefin polymer and method for producing olefin polymer
JP2021525295A (en) * 2018-06-01 2021-09-24 ダウ グローバル テクノロジーズ エルエルシー Ziegler-Natta catalyst system with treated magnesium chloride component
JP2021527160A (en) * 2018-10-01 2021-10-11 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ Olefin polymerization precursors and catalyst components
JP2020111631A (en) * 2019-01-08 2020-07-27 東邦チタニウム株式会社 Production method of dialkoxy magnesium, solid catalyst component for olefins polymerization, solid catalyst for olefins polymerization, and production method of olefins polymer
WO2020217628A1 (en) 2019-04-25 2020-10-29 住友化学株式会社 Method for producing propylene polymer
WO2021105373A1 (en) 2019-11-29 2021-06-03 Thai Polyethylene Co., Ltd. Catalyst composition for the polymerization of olefins
WO2021220644A1 (en) 2020-04-28 2021-11-04 東邦チタニウム株式会社 Solid catalytic component for olefin polymerization and production method therefor, catalyst for olefin polymerization and production method therefor, and production method for olefin polymer
WO2021220645A1 (en) 2020-04-28 2021-11-04 東邦チタニウム株式会社 Solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
WO2021240956A1 (en) 2020-05-27 2021-12-02 東邦チタニウム株式会社 Olefin polymerization catalyst production method and olefin polymerization catalyst
WO2021240955A1 (en) 2020-05-27 2021-12-02 東邦チタニウム株式会社 Method for producing catalyst for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
WO2022091867A1 (en) 2020-10-28 2022-05-05 東邦チタニウム株式会社 Solid catalytic component for olefin polymerization, method for producing solid catalytic component for olefin polymerization, catalyst for olefin polymerization, method for producing olefin polymer particles, and olefin polymer particles
WO2022094508A1 (en) 2020-10-30 2022-05-05 Exxonmobil Chemical Patents Inc. Polypropylene produced using modified styrenic internal electron donors
WO2022250034A1 (en) 2021-05-26 2022-12-01 東邦チタニウム株式会社 Olefin polymerization solid catalyst component, olefin polymerization catalyst, manufacturing method for olefin polymer, olefin polymer, manufacturing method for propylene-based block copolymer, and propylene-based block copolymer
EP4155324A2 (en) 2021-09-22 2023-03-29 Sumitomo Chemical Company, Limited Method for producing solid catalyst component for olefin polymerization, method for producing catalyst for olefin polymerization, and method for producing olefin polymer
EP4212557A2 (en) 2022-01-14 2023-07-19 Sumitomo Chemical Company, Limited Heterophasic propylene polymerization material and olefin polymer
CN114933320A (en) * 2022-04-29 2022-08-23 广东马车动力科技有限公司 Method for refining lithium chloride
CN114933320B (en) * 2022-04-29 2024-03-29 广东马车动力科技有限公司 Lithium chloride refining method

Also Published As

Publication number Publication date
JPH0720898B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
JPH0374341A (en) Synthesis of spherical magnesium alcoholate having narrow particle size distribution
JP5038135B2 (en) Spherical catalyst component for olefin polymerization and catalyst containing the same
US6982237B2 (en) Spray-dried polymerization catalyst and polymerization processes employing same
CA2126796A1 (en) Use of lewis bases for activity reduction in metallocene catalyzed olefin polymerization process
JP3303239B2 (en) Supported catalyst
EP0219998B1 (en) Polymerisation of olefins using modified ziegler-natta catalyst
US4380507A (en) Catalysts for polymerizing ethylene
JPS63175009A (en) Manufacture of polyethylene by gas phase reaction
EP2657285B1 (en) moulded polypropylene with high content of beta form
JPS5948003B2 (en) Method for producing polyolefins
JPH04293912A (en) Production of stereoregular polyolefin
JPS634815B2 (en)
JP6633184B2 (en) Method for producing catalyst component for olefin polymerization
US7160833B2 (en) Spray-dried polymerization catalyst and polymerization process employing same
JP2897149B2 (en) Method for producing catalyst component for olefin polymerization, polymerization catalyst component produced by the production method and use thereof
KR101880643B1 (en) Mixed Magnesium Dialkoxide Particulate, Method for Synthesizing Same, and Method for Use Thereof
CN108250331A (en) A kind of composition of carrier for olefin polymerization catalyst, preparation method and application
JPH0730128B2 (en) Method for producing solid catalyst component for olefin polymerization
JPS6343406B2 (en)
JP3180305B2 (en) Gas phase polymerization of olefins
EP2004705A1 (en) Reduction of electrostatic charge in a polymerisation process
WO1992011296A1 (en) A method for the preparation of a polymerizing catalyst component, a polymerizing catalyst component prepared by the method and its use
EP0451214A1 (en) A new method of preparing a catalyst component for the polymerization of olefins
JPH0424361B2 (en)
EP0175475A2 (en) Polymerization catalyst

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 15