JPH0374279A - Auxiliary steering device of vehicle - Google Patents

Auxiliary steering device of vehicle

Info

Publication number
JPH0374279A
JPH0374279A JP20484389A JP20484389A JPH0374279A JP H0374279 A JPH0374279 A JP H0374279A JP 20484389 A JP20484389 A JP 20484389A JP 20484389 A JP20484389 A JP 20484389A JP H0374279 A JPH0374279 A JP H0374279A
Authority
JP
Japan
Prior art keywords
change
vehicle
standard model
model
target behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20484389A
Other languages
Japanese (ja)
Inventor
Hiroaki Hashigaya
橋ケ谷 浩昭
Takeshi Ito
健 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20484389A priority Critical patent/JPH0374279A/en
Publication of JPH0374279A publication Critical patent/JPH0374279A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the rapid change of the behavior of a vehicle just after change of standard model by starting the calculation of a target behavior based on the standard model after the change with the target behavior just before the change as an initial value at the time of the change of standard model. CONSTITUTION:A rear wheel steering angle calculating part 6 inputs vehicle speed V and front wheel steering angle, calculates a target behavior of the vehicle according a standard model 21 at the time of steering front wheels, and conducts auxiliary steering of rear wheels 2 to obtain this target behavior by a rear wheel steering angle control part 14 through a self vehicle model 12. When a control constant changing command of the standard model 21 is outputted from a control constant setting part 22, a standard model change control part 23 makes the standard model 21 execute the change content, and also informs a state variable holding part 24 to hold the state variable before the change in the standard model 21. The standard model 21 starts the calculation of the target behavior after the change with the target behavior just before the change as an initial value. Hence, the rapid change of the vehicle behavior just after the change can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は前輪操舵時、前輪及び後輪の少なくとも一方を
補助操舵する車両の補助操舵装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an auxiliary steering device for a vehicle that performs auxiliary steering of at least one of a front wheel and a rear wheel during front wheel steering.

(従来の技術) この種装置は、前輪操舵時車両の挙動(ヨーレート等)
が狙い通りのものとなるように補助操舵を行うものであ
るが、この際狙いとする目標挙動を好みや走行条件に応
じ手動や自動で変更可能にしたものが特開昭61115
776号公報により提案されている。
(Prior art) This type of device is capable of controlling vehicle behavior (yaw rate, etc.) during front wheel steering.
This system performs auxiliary steering so that the desired behavior is achieved, and Japanese Patent Laid-Open No. 61115 discloses a system that allows the target behavior to be changed manually or automatically depending on preference and driving conditions.
This method has been proposed in Publication No. 776.

これは第7図に示す如きもので、LL、 IRは左右前
輪、2L、 2Rは左右後輪、を示し、前輪はステアリ
ングホイール3によりステアリングギヤ4を介して操舵
し、後輪はアクチュエータ5により操舵する。後輪の舵
角制御のために、後輪舵角計算部6を設け、これにはス
テアリングホイール操舵角θを検出する操舵角センサ7
からの信号及び車速Vを検出する車速センサ8からの信
号を人力する。
This is as shown in Fig. 7, where LL and IR represent left and right front wheels, 2L and 2R represent left and right rear wheels, and the front wheels are steered by a steering wheel 3 via a steering gear 4, and the rear wheels are steered by an actuator 5. Steering. In order to control the steering angle of the rear wheels, a rear wheel steering angle calculating section 6 is provided, which includes a steering angle sensor 7 that detects the steering wheel steering angle θ.
The signals from the vehicle speed sensor 8 and the vehicle speed sensor 8 which detects the vehicle speed V are manually generated.

計算部6は、車両の目標挙動を決める第1.第2規範モ
デル9.10と、これらを選択する切換部11と、目標
挙動を得るための後輪舵角δ、を求めるための自車モデ
ル12とで構成し、切換部11の切り換えは摘み13で
これを行う。両規範モデル9゜■0は夫々操舵角θ及び
車速Vから異なった目標挙動を演算し、切換部11はこ
れら目標挙動のうち摘み13で指令した方の目標挙動を
選択する。自重モデル12はこの目標挙動を得るための
後輪舵角δ。
The calculation unit 6 includes a first calculation unit that determines the target behavior of the vehicle. It consists of a second reference model 9.10, a switching unit 11 for selecting these models, and an own vehicle model 12 for determining the rear wheel steering angle δ to obtain the target behavior. Do this in 13. Both reference models 9°■0 calculate different target behaviors from the steering angle θ and vehicle speed V, and the switching unit 11 selects the target behavior commanded by the knob 13 from among these target behaviors. The dead weight model 12 is the rear wheel steering angle δ to obtain this target behavior.

を演算し、後輪舵角制御部14でアクチュエータ5を介
し後輪をδ、だけ操舵することにより車両の目標挙動を
達成する。
is calculated, and the rear wheel steering angle control unit 14 steers the rear wheels by δ via the actuator 5, thereby achieving the target behavior of the vehicle.

(発明が解決しようとする課題〉 ところでかかる従来の構成によれば、摘み13による規
範モデルの切り換えを走行中に行うと、切り換え前の規
範モデルに基づく後輪舵角から切り換え後の規範モデル
に基づく後輪舵角へと後輪舵角が急変し、車両挙動の変
化が滑らかに行われず、不自然なものとなる。
(Problem to be Solved by the Invention) However, according to the conventional configuration, when the reference model is switched using the knob 13 while driving, the rear wheel steering angle is changed from the rear wheel steering angle based on the reference model before switching to the reference model after switching. The rear wheel steering angle suddenly changes to the base rear wheel steering angle, and the change in vehicle behavior does not occur smoothly and becomes unnatural.

例えば第6図に実線で示す如く、V=150 km/h
、θ−30度を保って瞬時1+ に規範モデルの切り換
えを行った場合について述べると、瞬時tl の直後に
後輪舵角の急変を生じ、車両のヨーレート(挙動)も滑
らかに切り換え後の目標挙動とならず不自然である。
For example, as shown by the solid line in Figure 6, V = 150 km/h
, the reference model is switched at instant 1+ while maintaining θ-30 degrees. Immediately after instant tl, a sudden change in the rear wheel steering angle occurs, and the vehicle's yaw rate (behavior) also smoothly changes to the target after switching. It is not a behavior and is unnatural.

そこで特開昭64−43468号公報に示されているよ
うに、車両の平面運動に関する状態変数(挙動変化)が
小さく、後輪舵角の急変を生じない時だけ、上記の切り
換えを許可する技術も従来提案された。
Therefore, as shown in Japanese Patent Application Laid-Open No. 64-43468, a technology is proposed that allows the above switching only when the state variable (behavior change) related to the planar motion of the vehicle is small and does not cause a sudden change in the rear wheel steering angle. has also been proposed previously.

しかしこの場合、上記の許可条件が満たされない限り切
り換えが実行されないこととなり、指令通りの車両挙動
が直ちに得られないという問題があった。
However, in this case, the switching will not be executed unless the above-mentioned permission conditions are met, and there is a problem in that the vehicle behavior as instructed cannot be immediately obtained.

本発明は、規範モデルの変更時、変更直前の目標挙動を
初期値として以後の目標挙動の演算を行わせるようにす
ることで、補助舵角の急変を生ずることなしに当該変更
を直ちに実行させ得るようにし、上述の問題を悉く解決
することを目的とする。
According to the present invention, when changing the reference model, the target behavior immediately before the change is used as an initial value to calculate the subsequent target behavior, so that the change can be executed immediately without causing a sudden change in the auxiliary steering angle. The purpose is to obtain the above-mentioned problems and to solve all the problems mentioned above.

(課題を解決するための手段) この目的のため本発明の補助操舵装置は、前輪操舵時、
種々に変更可能な規範モデルを基に演算した目標挙動が
得られるよう、前輪及び後輪の少なくとも一方を補助操
舵する車両において、前記規範モデルの変更指令を検知
するモデル変更指令検知手段と、 この変更指令時、変更直前の目標挙動を、変更された規
範モデルに目標挙動演算初期値として与える演算初期値
設定手段とを設けて構成したものである。
(Means for Solving the Problems) For this purpose, the auxiliary steering device of the present invention provides:
A model change command detection means for detecting a change command of the reference model in a vehicle that performs auxiliary steering of at least one of a front wheel and a rear wheel so as to obtain a target behavior calculated based on a reference model that can be changed in various ways; The present invention is constructed by providing calculation initial value setting means for providing the target behavior immediately before the change to the changed reference model as the target behavior calculation initial value when a change is commanded.

(作 用) 前輪操舵時、規範モデルを基に車両の目標挙動が演算さ
れ、この目標挙動が得られるよう前輪及び後輪を補助操
舵する。なお、規範モデルを変更すると、これに対応し
て車両の目標挙動も変化し、補助操舵により種々の車両
挙動を得ることができる。
(Function) When steering the front wheels, the target behavior of the vehicle is calculated based on the reference model, and the front and rear wheels are auxiliary steered to achieve this target behavior. Note that when the reference model is changed, the target behavior of the vehicle changes accordingly, and various vehicle behaviors can be obtained by auxiliary steering.

規範モデルの変更に当りその指令が発せられると、この
指令を検知するモデル変更指令検知手段に応答して演算
初期値設定手段は、変更直前の目標挙動を、変更された
規範モデルに目標挙動演算初期値として与える。よって
当該変更された規範モデルは、目標挙動を規範モデル変
更直前の値から変更後の所定値へ徐々に変化させること
となり、補助舵角の急変を生ずることなしに規範モデル
の変更を直ちに実行させることができる。
When a command is issued to change the reference model, in response to the model change command detection means that detects this command, the calculation initial value setting means calculates the target behavior immediately before the change into the changed reference model. Give as initial value. Therefore, the changed reference model gradually changes the target behavior from the value immediately before the reference model change to the predetermined value after the change, and the reference model change is immediately executed without causing a sudden change in the auxiliary steering angle. be able to.

(実施例) 以下、本発明の実施例を図面に基づき詳細に説明する。(Example) Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は後輪を補助操舵するようにした本発明装置の一
実施例で、図中第7図におけると同様部分を同一符号に
て示す。しかして本例では、規範モデルの変更を複数モ
デルの選択切り換えによらず、1個の規範モデル21内
の制御定数(定常ゲイン及び時定数等)を変えて規範モ
デルの変更を行うものとする。
FIG. 1 shows an embodiment of the present invention apparatus which performs auxiliary steering of the rear wheels, in which the same parts as in FIG. 7 are designated by the same reference numerals. Therefore, in this example, the reference model is changed by changing the control constants (steady-state gain, time constant, etc.) within one reference model 21, rather than by switching the selection of multiple models. .

これがため、制御定数設定部22を設け、これにより手
動又は自動で規範モデル21の制御定数変更指令を出力
するようになす。この指令を入力されて規範モデル変更
制御部23は、変更内容を規範モデル21に実行させる
と同時に、変更指令があったことを状態変数(ヨーレー
ト等の目標挙動)保持部24に知らせる。この状態変数
保持部24は、変更指令があった時、規範モデル21内
における変更前の状態変数(目標挙動)を保持する。規
範モデル21は上記の通り変更された内容に基づき、状
態変一 数保持部における変更直前の目標挙動を初期値として変
更後における目標挙動の演算を開始する。
For this reason, a control constant setting section 22 is provided to output a command to change the control constants of the reference model 21 manually or automatically. Upon receiving this command, the reference model change control unit 23 causes the reference model 21 to execute the change, and at the same time notifies the state variable (target behavior such as yaw rate) holding unit 24 that there is a change command. The state variable holding unit 24 holds the state variables (target behavior) in the reference model 21 before the change when a change command is issued. Based on the content changed as described above, the reference model 21 starts calculating the target behavior after the change, using the target behavior immediately before the change in the state variable number holding unit as an initial value.

勿論以後は、状態変数保持部24は演算の終了の度にこ
の演算結果を次の演算のために保持しておく。
Of course, thereafter, the state variable holding unit 24 holds the calculation result for the next calculation every time the calculation is completed.

上記実施例の作用を第2図のフローチャートに基づき次
に説明する。
The operation of the above embodiment will now be explained based on the flowchart of FIG.

後輪舵角計算部6はステップ31で操舵角θ及び車速V
を読み込み、ステップ32でこれらから規範モデル21
を基に目標とするヨーレート(目標挙動〉ψを次式 ト乞を得るための後輪舵角δ□ する。
In step 31, the rear wheel steering angle calculation unit 6 calculates the steering angle θ and the vehicle speed V.
, and in step 32 create a normative model 21 from these.
Based on the target yaw rate (target behavior) ψ, calculate the rear wheel steering angle δ□ to obtain the following equation.

を次式により演算 ・・・(2) v、 =、f LVy −dt Cp =eKp (θ/ N −(Vy+Lp ・ψ)
/V)−(3)CR=(2Lp−Cp   I□ ・ 
ψ)/2LR(2CF+2C++) / M −V ・
tpδR= CR/ KR+(V、−L1ψ)N・・・
(6) ・・・(5) ・・・(4) にセットする。次のステップ33では、上記目標ヨーレ
ート方から自車モデル12を基に目標ヨーレーこのよう
にして求めた与えるべき後輪舵角δ、をステップ34で
後輪舵角制御部14に出力する。これにより後輪舵角制
御部14はアクチュエータ5を介し後輪を上記δ1だけ
操舵し、目標とするヨーレートψを生じさせる。
Calculate using the following formula... (2) v, =, f LVy - dt Cp = eKp (θ/ N - (Vy+Lp ・ψ)
/V)-(3)CR=(2Lp-Cp I□ ・
ψ) / 2LR (2CF + 2C++) / M −V ・
tpδR=CR/KR+(V, -L1ψ)N...
(6) ...(5) ...(4) Set. In the next step 33, the target yaw rate and the rear wheel steering angle δ to be given, which are determined in this way based on the vehicle model 12 from the target yaw rate, are outputted to the rear wheel steering angle control section 14 in step 34. As a result, the rear wheel steering angle control section 14 steers the rear wheels by the above-mentioned amount δ1 via the actuator 5 to generate the target yaw rate ψ.

ステップ35では、上記のループが一定時間△を毎に処
理されるようにし、他の時間中はステップ36〜39を
実行する。
In step 35, the above loop is processed every fixed time Δ, and steps 36 to 39 are executed during other times.

ステップ36では、制御定数設定部22による規範モデ
ル21の変更〔前記(1)式中のτ、  C(V)の変
更〕指令が有ったか否かをチエツクし、変更指令がなけ
ればステップ37〜39を実行しない。
In step 36, it is checked whether there is a command to change the reference model 21 by the control constant setting unit 22 [to change τ and C(V) in the above equation (1)], and if there is no change command, step 37 is performed. Do not execute steps 39 to 39.

規範モデルの変更指令があると、ステップ37で現時点
、つまり変更直前の目標ヨーレートψを状態変数保持部
24に保持させる。次のステップ38では規範モデル2
1を、前記(1)式中の制御定数部τ。
When there is a command to change the reference model, the current target yaw rate ψ, that is, immediately before the change, is held in the state variable holding unit 24 in step 37. In the next step 38, the normative model 2
1 is the control constant part τ in the above formula (1).

C(V)が制御定数設定部22で変更した通りのものと
なるよう書き換える。そしてステップ39では、ステッ
プ37において保持した規範モデル変更直前の目標ヨー
レート会を、次の目標ヨーレートの(1)式による演算
に用いる初期値ψ(0)に代入する。
C(V) is rewritten to be as changed by the control constant setting section 22. Then, in step 39, the target yaw rate value immediately before the reference model change held in step 37 is substituted into the initial value ψ(0) used in the calculation of the next target yaw rate using equation (1).

従って、当該規範モデルの変更時は当初ステップ32が
、ステップ38で書き換えた規範モデル21に基づき、
又ステップ39で設定した変更直前の目標ヨーレートψ
を用いて前記(1)式により、変更当初の目標ヨーレー
トを求め、ステップ33.34でこの目標ヨーレートが
得られるよう後輪を操舵する。
Therefore, when changing the norm model, initially step 32 is based on the norm model 21 rewritten in step 38.
Also, the target yaw rate ψ immediately before the change set in step 39
Using Equation (1) above, the target yaw rate at the beginning of the change is determined, and in steps 33 and 34 the rear wheels are steered so as to obtain this target yaw rate.

これがため、次表 − 0 における諸元の車両を車速V=150 km/hで走行
させている間、規範モデル21の制御定数C(V) 。
Therefore, while the vehicle with the specifications shown in Table 0 is running at a vehicle speed of V=150 km/h, the control constant C(V) of the reference model 21.

τを次表 の如くに変更した場合のシュミレーション結果を示す第
6図の点線から明らかように、規範モデル変更指令瞬時
t、以後において後輪舵角及び車両ヨーレートが共に変
更直前の値を初期値として変更後の所定値へ滑らかに落
ち着く。よって、当該変更時も後輪舵角の急変を生ずる
ことはなく、不自然な車両挙動が発生するのを防止し得
る。又、後輪舵角を変更指令瞬時tlから無条件に変更
後の所定値に向かわせて、規範モデルの変更を直ちに実
行することから、当該変更に従った目標挙動の得られな
い状態が何時までも続くといった問題を生ずることもな
い。
As is clear from the dotted line in Figure 6, which shows the simulation results when τ is changed as shown in the table below, after the reference model change command instant t, both the rear wheel steering angle and the vehicle yaw rate are changed from the values immediately before the change to the initial values. It smoothly settles to the predetermined value after the change. Therefore, even at the time of the change, the rear wheel steering angle does not suddenly change, and it is possible to prevent unnatural vehicle behavior from occurring. In addition, since the reference model is immediately changed by unconditionally directing the rear wheel steering angle from the change command instantaneous tl to the predetermined value after the change, it is difficult to know when the target behavior according to the change cannot be obtained. There is no problem that the process continues for a long time.

第3図は本発明の他の例で、図中第1図と同様の部分を
同一符号にて示す。第1図及び第2図の例では、第2図
中ステップ32.33.35における△t+δ、計算時
間+ψ計算時間以上の時間が規範モデル2■の変更にか
かると、δ8の演算を設定通りの△を時間毎に行い得ず
、結果として車両の挙動が不自然になることがある。第
3図の例はこの問題を解消するため、第1規範モデル2
1aと、第2規範モデル21bとの2個の規範モデルを
設け、状態変数保持部もこれらモデルに対する状態変数
保持部24aと、自車モデル12に対する状態変数保持
部24bとに2分し、規範モデル21a、 21bから
の目標ヨーレートψ1.ψ2の選択を行って選択目標ヨ
ーレートψとする切換部25を設ける。この切換部25
は状態変数保持部24a、 24bと共に規範モデル変
更制御部23により制御する。そして上記の目的のため
に、一方の規範モデル21a又は21bがψの演算を行
っている間は、当該演算中の規範モデルの変更を書換禁
止部26が、規範モデル変更制御部23からの信号に応
じて禁止するようになす。
FIG. 3 shows another example of the present invention, in which the same parts as in FIG. 1 are designated by the same reference numerals. In the examples shown in Figures 1 and 2, if the time required to change the standard model 2■ is longer than △t + δ, calculation time + ψ calculation time in steps 32, 33, and 35 in Figure 2, the calculation of δ8 will be performed as set. △ cannot be performed every time, and as a result, the behavior of the vehicle may become unnatural. The example in Figure 3 solves this problem by using the first normative model 2.
1a and a second reference model 21b are provided, and the state variable holding section is also divided into two, a state variable holding section 24a for these models and a state variable holding section 24b for the own vehicle model 12, and the state variable holding section 24b for the own vehicle model 12 is divided into two. Target yaw rate ψ1. from models 21a, 21b. A switching unit 25 is provided that selects ψ2 and sets the selected target yaw rate ψ. This switching section 25
is controlled by the reference model change control section 23 together with the state variable holding sections 24a and 24b. For the above purpose, while one of the reference models 21a or 21b is calculating ψ, the rewriting prohibition unit 26 prevents changes in the reference model during the calculation using a signal from the reference model change control unit 23. It will be prohibited accordingly.

本実施例の作用を第4図及び第5図のフローチャートに
基づき次に説明する。
The operation of this embodiment will now be explained based on the flowcharts of FIGS. 4 and 5.

第4図は一定時間Δを毎の割り込みにより繰り返し実行
される目標後輪舵角の演算処理を示し、ステップ41で
操舵角θ及び車速Vを読み込む。次のステップ42では
フラグFLGから切換部25が第1規範モデル21aを
選択しているのか、第2規範モデル21bを選択してい
るのかをチエツクする。
FIG. 4 shows the calculation process of the target rear wheel steering angle which is repeatedly executed by interrupting every predetermined time Δ, and in step 41, the steering angle θ and the vehicle speed V are read. In the next step 42, it is checked from the flag FLG whether the switching section 25 has selected the first reference model 21a or the second reference model 21b.

第1規範モデル選択中であれば、ステップ43でこれを
基に操舵角θ及び車速Vから目標ヨーレートφ、を求め
、第2規範モデル選択中であれば、ステップ44でこれ
を基に操舵角θ及び車速Vから目標ヨーレート必2を求
める。これらφ1.ψ2をステップ45.46で切換部
12が選択して今回使用すべき目標ヨーレートψとする
。次のステップ47では、上記のようにして求めた目標
ヨーレートψが得られるような後輪舵角δ、を自車モデ
ル12を基に演算し、これをステップ48で後輪舵角制
御部14に出力する。以上の処理を行った後、制御は第
5図のメインルーチンに戻る。
If the first reference model is being selected, the target yaw rate φ is calculated from the steering angle θ and the vehicle speed V based on this in step 43, and if the second reference model is being selected, the steering angle is determined based on this in step 44. The target yaw rate is determined from θ and the vehicle speed V. These φ1. The switching unit 12 selects ψ2 in steps 45 and 46 to set it as the target yaw rate ψ to be used this time. In the next step 47, the rear wheel steering angle δ that provides the target yaw rate ψ obtained as described above is calculated based on the own vehicle model 12, and in step 48, the rear wheel steering angle control unit Output to. After performing the above processing, control returns to the main routine shown in FIG.

第5図のメインルーチンでは、先ずステップ51におい
て規範モデルの変更指令があったか否か、つまり制御定
数設定部22の操作で規範モデル変更制御部23へ規範
モデルの変更を指令したか否かを判別する。変更指令が
あるまでこの判別を継続し、変更指令があった時、以下
の如くに規範モデルの書き換えを行う。
In the main routine shown in FIG. 5, first, in step 51, it is determined whether or not there is a command to change the standard model, that is, whether or not the control constant setting unit 22 has been operated to instruct the standard model change control unit 23 to change the standard model. do. This determination is continued until a change command is issued, and when a change command is issued, the reference model is rewritten as follows.

即ち先ずステップ52で、フラグFLGから切換部25
が第1規範モデル21a又は第2規範モデル21bのど
ちらを選択しているかを判別する。第1規範モデル選択
中であればステップ53において、書換禁止部26を経
由する規範モデル変更制御部23(制御定数設定部22
)からの指令通りに非選択中の第2規範モデル21bを
書き換え、実質上第1規範モデル21aの書き換えを禁
止する。そして、このようにして書き換えた第2規範モ
デルに基づく目標ヨーレートψ2の演算をステップ54
.55で開始させるが、この際ステップ54では規範モ
デル変3 4 更直前の目標ヨーレートψ、つまりφ1を保持して当該
演算の初期値φ2(0)となす。次のステ1.プ56で
は、かかる演算の開始をふまえて切換部25が第2規範
モデル21bを選択するようフラグFLGをOにリセッ
トする。
That is, first in step 52, from the flag FLG to the switching unit 25
It is determined whether the user selects the first reference model 21a or the second reference model 21b. If the first reference model is being selected, in step 53, the reference model change control unit 23 (control constant setting unit 22
), the unselected second reference model 21b is rewritten, and rewriting of the first reference model 21a is substantially prohibited. Then, in step 54, the target yaw rate ψ2 is calculated based on the second reference model rewritten in this way.
.. At this time, in step 54, the target yaw rate ψ immediately before the standard model change, that is, φ1, is held and set as the initial value φ2(0) of the calculation. Next step 1. At step 56, the flag FLG is reset to O so that the switching unit 25 selects the second reference model 21b based on the start of the calculation.

ステップ52で第2規範モデル選択中と判別する場合は
、ステップ57〜59で非選択中の第1規範モデル21
Hに対する上述したと同様の処理、及び選択中の第2規
範モデル21bの書き換え禁止がなされ、ステップ60
で切換部25が当該第1規範モデル21aを選択するよ
うフラグFLGを1にセットする。
If it is determined in step 52 that the second reference model is being selected, in steps 57 to 59 the first reference model 21 that is not selected is
The same process as described above is performed on H, and rewriting of the second reference model 21b being selected is prohibited, and step 60
Then, the switching unit 25 sets the flag FLG to 1 so that the first reference model 21a is selected.

よって本例でも前述した例と同様に、規範モデルの変更
指令時、この変更を直ちに実行開始させ得るど共に、変
更時の急な挙動変化を防止し得るという作用効果を遠戚
することができる。加えて本例では、2個の規範モデル
21a、 21bを選択的に目標ヨーレートの演算に用
い、規範モデルの変更指令があった時は非選択中の規範
モデルに対して変更指令に応じた書き換えを行い、選択
中の規範モデルの書き換えを禁止することから、目標ヨ
ーレートに対応した後輪舵角の演算を確実に第4図の演
算サイクルΔを毎に行わせることができ、車両の挙動が
不自然になるのを防止し得る。
Therefore, in this example, as in the above-mentioned example, when a reference model change command is issued, execution of the change can be started immediately, and sudden changes in behavior can be prevented when the change is made. . In addition, in this example, the two reference models 21a and 21b are selectively used to calculate the target yaw rate, and when a reference model change command is issued, the unselected reference models are rewritten in accordance with the change command. Since the selected reference model is prohibited from being rewritten, the calculation of the rear wheel steering angle corresponding to the target yaw rate can be reliably performed every calculation cycle Δ in Figure 4, and the behavior of the vehicle can be improved. It can prevent it from becoming unnatural.

(発明の効果) かくして本発明の補助操舵装置は上述の如く、規範モデ
ルの変更時、変更直前の目標挙動を初期値として変更後
の規範モデルに基づく目標挙動の演算を開始させる構成
としたから、変更直後に車両挙動が急変するのを防止す
ることができ、又これがためこの急変が生じなくなるの
を待って当該変更を実行させる必要がなく、この変更を
指令時直ちに開始させることができる。
(Effects of the Invention) Thus, as described above, the auxiliary steering system of the present invention is configured so that when the reference model is changed, the calculation of the target behavior based on the changed reference model is started using the target behavior immediately before the change as the initial value. It is possible to prevent the vehicle behavior from suddenly changing immediately after the change, and therefore there is no need to wait until the sudden change stops occurring before executing the change, and the change can be started immediately upon command.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明補助操舵装置の一実施例を示すシステム
図、 第2図は同例の機能フローチャート、 第3図は本発明の他の例を示す第1図と同様なシステム
図、 第4図及び第5図は同例の機能フローチャート、第6図
は本発明装置と従来装置による後輪舵角及びヨーレート
を比較して示すタイムチャート、第7図は従来装置のシ
ステム図である。 LL、 IR・・・前輪     2L、2R・・・後
輪3・・・ステアリングホイール 4・・・ステアリングギヤ 5・・・後輪操舵アクチュエータ 6・・・後輪舵角計算部  7・・・操舵角センサ8・
・・車速センサ   12・・・自車モデル21、21
a、 21b−・・規範モデル22・・・制御定数設定
部 23・・・規範モデル変更制御部 24、24a、 24b・・・状態変数保持部25・・
・切換部     26・・・書換禁止部7 @3 図 特開平 74279 (7) 特開平 3 74279 (8) 第7図
Fig. 1 is a system diagram showing one embodiment of the auxiliary steering device of the present invention; Fig. 2 is a functional flowchart of the same example; Fig. 3 is a system diagram similar to Fig. 1 showing another example of the present invention; 4 and 5 are functional flowcharts of the same example, FIG. 6 is a time chart showing a comparison of the rear wheel steering angle and yaw rate between the device of the present invention and the conventional device, and FIG. 7 is a system diagram of the conventional device. LL, IR...front wheel 2L, 2R...rear wheel 3...steering wheel 4...steering gear 5...rear wheel steering actuator 6...rear wheel steering angle calculation unit 7...steering Angle sensor 8・
...Vehicle speed sensor 12... Own vehicle model 21, 21
a, 21b - Normative model 22... Control constant setting section 23... Normative model change control section 24, 24a, 24b... State variable holding section 25...
・Switching part 26... Rewriting prohibited part 7 @3 Figure 74279 (7) Figure 7

Claims (1)

【特許請求の範囲】 1、前輪操舵時、種々に変更可能な規範モデルを基に演
算した目標挙動が得られるよう、前輪及び後輪の少なく
とも一方を補助操舵する車両において、 前記規範モデルの変更指令を検知するモデル変更指令検
知手段と、 この変更指令時、変更直前の目標挙動を、変更された規
範モデルに目標挙動演算初期値として与える演算初期値
設定手段とを具備することを特徴とする車両の補助操舵
装置。
[Claims] 1. In a vehicle that performs auxiliary steering of at least one of the front wheels and rear wheels so that a target behavior calculated based on a variously changeable standard model is obtained when the front wheels are steered, the standard model is changed. The present invention is characterized by comprising a model change command detection means for detecting a command, and a calculation initial value setting means for giving the target behavior immediately before the change to the changed reference model as the target behavior calculation initial value when the change command is issued. Vehicle auxiliary steering device.
JP20484389A 1989-08-09 1989-08-09 Auxiliary steering device of vehicle Pending JPH0374279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20484389A JPH0374279A (en) 1989-08-09 1989-08-09 Auxiliary steering device of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20484389A JPH0374279A (en) 1989-08-09 1989-08-09 Auxiliary steering device of vehicle

Publications (1)

Publication Number Publication Date
JPH0374279A true JPH0374279A (en) 1991-03-28

Family

ID=16497313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20484389A Pending JPH0374279A (en) 1989-08-09 1989-08-09 Auxiliary steering device of vehicle

Country Status (1)

Country Link
JP (1) JPH0374279A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214663A (en) * 2008-03-10 2009-09-24 Honda Motor Co Ltd Rear wheel toe angle control device of vehicle
JP2010188978A (en) * 2009-02-20 2010-09-02 Nissan Motor Co Ltd Vehicle steering angle control device and vehicle steering angle control method
JP2015021403A (en) * 2013-07-17 2015-02-02 日立オートモティブシステムズ株式会社 Drive control device for fuel pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341279A (en) * 1986-08-07 1988-02-22 Japan Electronic Control Syst Co Ltd Steering control device for vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341279A (en) * 1986-08-07 1988-02-22 Japan Electronic Control Syst Co Ltd Steering control device for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214663A (en) * 2008-03-10 2009-09-24 Honda Motor Co Ltd Rear wheel toe angle control device of vehicle
JP2010188978A (en) * 2009-02-20 2010-09-02 Nissan Motor Co Ltd Vehicle steering angle control device and vehicle steering angle control method
JP2015021403A (en) * 2013-07-17 2015-02-02 日立オートモティブシステムズ株式会社 Drive control device for fuel pump

Similar Documents

Publication Publication Date Title
EP1510442B1 (en) Parking assist apparatus
JP2000108914A (en) Steering control device
US6523638B1 (en) Steering apparatus for vehicle
JP2000205015A (en) Acceleration/deceleration control system
JP3322826B2 (en) Pressurization control method and apparatus by servo motor
JPH0374279A (en) Auxiliary steering device of vehicle
JPH0374280A (en) Auxiliary steering device of vehicle
JP3409323B2 (en) Vehicle steering control device
JPH03125668A (en) Steering angle control device of vehicle
JP3160365B2 (en) Attitude control device
JPH07104807A (en) Pv switching type two-degree of freedom pid controller
US20240101194A1 (en) Driving assistance system
JPH08150949A (en) Travel control device of vehicle
JP2850568B2 (en) Positioning operation method
JP3673774B2 (en) OPTICAL DEVICE, OPTICAL DEVICE DRIVE UNIT, AND CAMERA SYSTEM
KR100436509B1 (en) Method for improving response of main motor, by simplifying current controller and decreasing calculation time of feedback loop, in hot finish rolling mill
JP2647888B2 (en) Robot operating position correction method
JPH06222807A (en) Motor controller
JPH0651826A (en) Teaching device for robot
JP2003280742A (en) Motor controller
JPH06241084A (en) Engine revolving speed control device
JP2000242318A (en) Electronic gear ratio setting method and positioning controller
JPH09226693A (en) Automatic operating device for aircraft
JPH0253111A (en) Robot controller
JPH01149101A (en) Control method for controller