JPH0374126B2 - - Google Patents

Info

Publication number
JPH0374126B2
JPH0374126B2 JP62269484A JP26948487A JPH0374126B2 JP H0374126 B2 JPH0374126 B2 JP H0374126B2 JP 62269484 A JP62269484 A JP 62269484A JP 26948487 A JP26948487 A JP 26948487A JP H0374126 B2 JPH0374126 B2 JP H0374126B2
Authority
JP
Japan
Prior art keywords
flue gas
desulfurization
ions
absorption liquid
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62269484A
Other languages
Japanese (ja)
Other versions
JPH01115441A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62269484A priority Critical patent/JPH01115441A/en
Publication of JPH01115441A publication Critical patent/JPH01115441A/en
Publication of JPH0374126B2 publication Critical patent/JPH0374126B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は排煙の脱硝脱硫方法に関し、より詳細
には大部分のNOXを除去した後に、残存する
NOXの一部を酸化してNO2を形成せしめ、この
NO2の吸収によつて形成された硝酸イオンの存
在下に排煙の脱硫を行なつて塩素イオンによる孔
蝕を抑制する方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for denitrification and desulfurization of flue gas, and more particularly, to a method for denitrification and desulfurization of flue gas , and more particularly, to
Some of the NO X is oxidized to form NO 2 , and this
This invention relates to a method for suppressing pitting caused by chlorine ions by desulfurizing flue gas in the presence of nitrate ions formed by NO 2 absorption.

〔従来技術〕[Prior art]

石炭だきボイラーや石油系燃料だきボイラー等
の排ガス中に含まれる硫黄酸化物SOX(SO2
SO3)および窒素酸化物NOX(NO、NO2等)の除
去に関しては、すでに種々の方法が提案されてお
り、通常では排煙を脱硝した後に脱硫する方法が
採用されている。
Sulfur oxides SOx ( SO2 ,
Various methods have already been proposed for removing SO 3 ) and nitrogen oxides NO x (NO, NO 2, etc.), and the usual method is to denitrate flue gas and then desulfurize it.

ところで排煙のNOX含有量は、燃料の種類や
燃焼方法等によつて異なり、例えば石炭だきボイ
ラーでは通常150〜300ppmである。
By the way, the NOx content of flue gas varies depending on the type of fuel, combustion method, etc., and is usually 150 to 300 ppm in a coal-fired boiler, for example.

しかしながら、上記のように上流側に脱硝設備
を設け、下流側に脱硫設備を設置する方法では、
脱硝後の排ガスに含まれ、湿式脱硫設備内で吸収
され、吸収液中で硝酸イオンとなるNO2量は大
巾に減少し、脱硝後排煙のNOX量の0.5モル%程
度(0.5〜1.5ppm)、すなわち脱硝前の1/5程度に
低下する。
However, with the above method of installing denitrification equipment on the upstream side and desulfurization equipment on the downstream side,
The amount of NO 2 contained in the exhaust gas after denitrification, absorbed in the wet desulfurization equipment, and converted to nitrate ions in the absorption liquid, decreases significantly, and is approximately 0.5 mol% (0.5 to 0.5 mol %) of the amount of NO 1.5ppm), or about 1/5 of the level before denitrification.

一方、燃料中の塩素は燃焼によつて塩化水素と
され、補給水内の塩化物と共に実装置の系内吸収
液中にに溶解、蓄積される。
On the other hand, chlorine in the fuel is converted into hydrogen chloride through combustion, and is dissolved and accumulated in the absorption liquid in the system of the actual device along with the chloride in the make-up water.

すなわち石炭だきボイラー排煙中の塩化水素量
は重油だきボイラーの10〜50倍に達し、10〜
50ppmである。
In other words, the amount of hydrogen chloride in the flue gas of coal-fired boilers is 10 to 50 times that of heavy oil-fired boilers;
It is 50ppm.

そして塩化水素や弗化水素等の腐蝕性ガスは湿
式脱硫装置の系内に吸収、蓄積、濃縮されるの
で、SOX吸収装置は極めて厳しい腐蝕環境にさら
され、ステンレス鋼の孔蝕発生が無視できない問
題となる。
Corrosive gases such as hydrogen chloride and hydrogen fluoride are absorbed, accumulated, and concentrated within the wet desulfurization equipment system, so the SOx absorption equipment is exposed to an extremely harsh corrosive environment, and the occurrence of pitting in stainless steel is ignored. The problem is that it cannot be done.

また、孔蝕を防止するためには、腐蝕試験の結
果から、脱硫吸収液中の硝酸イオン濃度が
700ppmW以下になると、水酸化イオンの濃度に
も依存するが、通常使用される水酸化イオン濃度
においては、孔蝕電位が減少し、腐蝕電位との間
の使用安全域が狭くなるので、少なくとも硝酸イ
オンは700ppm程度が必要であり、かつ硝酸イオ
ン/塩素イオンのモル比が0.59以上、好ましくは
金属表面へのスケールまたは異物の付着を考慮す
ると、0.85以上必要であることが知られている。
In addition, in order to prevent pitting corrosion, the nitrate ion concentration in the desulfurization absorption liquid must be adjusted based on the results of corrosion tests.
Below 700 ppmW, depending on the concentration of hydroxide ions, the pitting potential decreases at the hydroxide ion concentration normally used, and the safe margin of use between the corrosion potential and the corrosion potential becomes narrower. It is known that about 700 ppm of ions is required, and the molar ratio of nitrate ions/chloride ions is 0.59 or more, preferably 0.85 or more considering the adhesion of scale or foreign matter to the metal surface.

しかしながら、上記のように排煙は脱硝後に脱
硫されるので、脱硫吸収液中の硝酸イオン量は著
しく減少し、硝酸イオンによる孔蝕防止を期待す
ることができない。
However, as mentioned above, since the flue gas is desulfurized after denitrification, the amount of nitrate ions in the desulfurization absorption liquid decreases significantly, and prevention of pitting due to nitrate ions cannot be expected.

そこで、炭素鋼へのガラスフレークライニング
やゴムライニング等の有機ライニング、モリブデ
ン含量を増加した、または窒素を含んだオーステ
ナイト系ステンレス鋼、或いはハステロイ、イン
コネル等の高級金属が吸収液条件に応じ装置材料
として使用されている。
Therefore, carbon steel with organic lining such as glass flake lining or rubber lining, austenitic stainless steel with increased molybdenum content or nitrogen, or high-grade metals such as Hastelloy and Inconel are used as equipment materials depending on the absorption liquid conditions. It is used.

しかしながら、有機ライニングは主としてハン
ドワークによるので、ランニングの品質保証の点
で問題があり、ライニングの保全性が金属に比較
して悪く、手間がかかり、一方、水蒸気拡散によ
るライニングの剥離、劣化、破損等の欠陥を本質
的に内臓しているので期待寿命が比較的短く、全
面張替えを必要とする等の欠点がある。
However, since organic linings are mainly hand-worked, there are problems in terms of quality assurance of running, and the maintainability of the lining is poor compared to metal, and it is time-consuming. Because they inherently have built-in defects, their expected lifespan is relatively short and they require full relining.

また、オーステナイト系ステンレス鋼では、上
記のように上流側に脱硝設備を、下流側に脱硫設
備を設置する方法では、脱硝後の排ガスに含ま
れ、湿式脱硫設備内で吸収され、吸収液中で硝酸
イオンとなるNO2が大巾に減少し、脱硫設備吸
収液中の硝酸イオン濃度が低下するので、吸収系
内の腐蝕環境に蓄積される塩素イオン濃度、共存
する硝酸イオン、水酸化イオン等の濃度如何によ
つては、孔蝕が発生し、設備材料として汎用性の
高いSUS−316L、SUS−317L等のオーステナイ
ト系ステンレス鋼を使用し得ない場合が多くなつ
ている。一方、ハステロイ、インコネル等の高級
金属の使用は、設備費の著しい増加を招く欠点が
あるので、経済性面より汎用材用として使用が困
難である。
In addition, in the case of austenitic stainless steel, in the method described above where denitrification equipment is installed on the upstream side and desulfurization equipment on the downstream side, it is contained in the exhaust gas after denitrification, absorbed in the wet desulfurization equipment, and in the absorption liquid. NO 2 , which becomes nitrate ions, decreases significantly, and the nitrate ion concentration in the desulfurization equipment absorption liquid decreases, which reduces the concentration of chlorine ions accumulated in the corrosive environment in the absorption system, coexisting nitrate ions, hydroxide ions, etc. Depending on the concentration of steel, pitting corrosion may occur, and in many cases, highly versatile austenitic stainless steels such as SUS-316L and SUS-317L cannot be used as equipment materials. On the other hand, the use of high-grade metals such as Hastelloy and Inconel has the drawback of causing a significant increase in equipment costs, so it is difficult to use them as general-purpose materials from an economic standpoint.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の欠点を解消し、ハステロ
イ、インコネル等の高級金属を使用せず、汎用性
の高いSUS−316Lステンレス鋼を使用すること
ができる排煙の脱硝脱硫方法を提供することを目
的とするものである。
The purpose of the present invention is to provide a method for denitrifying and desulfurizing flue gas, which eliminates the above-mentioned conventional drawbacks and allows the use of highly versatile SUS-316L stainless steel without using high-grade metals such as Hastelloy and Inconel. That is.

〔発明の構成〕[Structure of the invention]

上記目的を達成する本発明の排煙脱硝脱硫方法
は、SOXとNOXを含む排煙を接触還元して所定量
のNOXを除去し、該排煙中に残存するNOXを酸
化して下流の脱硫吸収液中の硝酸イオン濃度が少
なくとも70ppmWになるようにNO2を形成せし
め、次いで該NO2を含む排煙を脱硫することを
特徴とするものである。
The flue gas denitrification and desulfurization method of the present invention that achieves the above objects removes a predetermined amount of NO X by catalytic reduction of flue gas containing SO X and NO X , and oxidizes NO X remaining in the flue gas. The method is characterized in that NO 2 is formed so that the nitrate ion concentration in the downstream desulfurization absorption liquid becomes at least 70 ppmW, and then the flue gas containing the NO 2 is desulfurized.

ここで所定量とは、後述する脱硫工程での吸収
液に溶解する硝酸イオン濃度が700ppmW以下に
ならない程度の量を意味する。
Here, the predetermined amount means an amount such that the concentration of nitrate ions dissolved in the absorption liquid in the desulfurization step described later does not become less than 700 ppmW.

まず本願発明においてはSOXとNOXを含む排煙
を接触還元して所定量のNOXを除去する。
First, in the present invention, exhaust gas containing SO x and NO x is catalytically reduced to remove a predetermined amount of NO x .

排煙は、燃料の種類、燃焼条件等によつて異な
るが、通常では数百〜数千ppmのSOXと、数十〜
数百ppmのNOXを含み、NOXはその95%以上が
NOで残りがNO2である。
Exhaust smoke varies depending on the type of fuel, combustion conditions, etc., but usually contains several hundred to several thousand ppm of SO
Contains several hundred ppm of NO X , more than 95% of which is
NO and the rest is NO 2 .

NOXの還元については、すでに多くの提案が
なされており、各種金属酸化物、例えばV2O3
WO3、MoO3、Cr2O3、Mn2O3、Fe2O3、Co3O4
NiO、CuO、ZnO等をTiO2に担持した触媒の存
在下に200〜450℃程度の温度領域でアンモニアを
還元剤としてNOXを窒素に還元分解する方法が
知られている。
Many proposals have already been made for the reduction of NO X , and various metal oxides, such as V 2 O 3
WO3 , MoO3 , Cr2O3 , Mn2O3 , Fe2O3 , Co3O4 ,
A method is known in which NOx is reduced and decomposed into nitrogen using ammonia as a reducing agent in the presence of a catalyst in which NiO, CuO, ZnO, etc. are supported on TiO 2 in a temperature range of about 200 to 450°C.

本発明においては、特定の触媒を用いるアンモ
ニア還元法に限定されるものではなく、既知の方
法を適宜採用することができる。
The present invention is not limited to the ammonia reduction method using a specific catalyst, and any known method can be employed as appropriate.

この接触還元によつて、排煙中のNOXの大部
分は除去され、40〜200ppmVのNOXが残存する
排煙が得られる。
Through this catalytic reduction, most of the NOx in the flue gas is removed, resulting in flue gas in which 40 to 200 ppmV of NOx remains.

次に本発明においては、NOXの大部分が除去
された排煙中のNOを一部酸化して、残存する
NOX中のNOからNO2形成させ、排煙中のNO2
量を増加させる。
Next, in the present invention, NO in the flue gas from which most of the NO
NO2 is formed from NO in NOX , increasing the NO2 content in flue gas.

NOの酸化によるNO2の形成についてもすでに
幾つかの提案がなされており、接触酸化法および
オゾン酸化法が知られている。
Several proposals have already been made regarding the formation of NO 2 by oxidizing NO, and catalytic oxidation methods and ozone oxidation methods are known.

接触酸化法は、バナジウム、鉄、マンガン、コ
バルト、クロム、銅、アルカリ金属、アルカリ土
類金属等の金属または金属酸化物の単一または複
合系をシリカ、アルミナ、チタニア、ジルコニ
ア、珪藻土等に担持させた触媒を用い、250〜400
℃程度の温度で排煙と接触させてNO2を形成さ
せる方法である。
The catalytic oxidation method supports single or composite systems of metals or metal oxides such as vanadium, iron, manganese, cobalt, chromium, copper, alkali metals, and alkaline earth metals on silica, alumina, titania, zirconia, diatomaceous earth, etc. 250-400
This is a method in which NO 2 is formed by contacting with flue gas at a temperature of about °C.

オゾン酸化法についても、すでに提案がなされ
ており、例えば特公昭56−43771号ではオゾン含
有空気が排煙に添加されている。
Proposals have already been made regarding the ozone oxidation method, for example, in Japanese Patent Publication No. 56-43771, ozone-containing air is added to flue gas.

本発明におけるNOの酸化によるNO2の形成は
上記接触酸化法およびオゾン酸化法のいづれであ
つても良いが、酸化剤価格の点からすればオゾン
が高価であるので、接触酸化法の採用が好まし
い。
Formation of NO 2 by oxidation of NO in the present invention may be carried out by either the above-mentioned catalytic oxidation method or ozone oxidation method, but since ozone is expensive in terms of oxidizing agent price, it is preferable to adopt the catalytic oxidation method. preferable.

本発明において重要なことは、NOの酸化によ
つて形成されたNO2の排煙中の濃度を、脱硫装
置吸収液中の硝酸イオン濃度が少なくとも
700ppmW、硝酸イオンと塩素イオンのモル比が
好ましくは0.85以上に保持するように増加させる
ことである。
What is important in the present invention is that the concentration of NO 2 formed by the oxidation of NO in the flue gas is at least as low as the nitrate ion concentration in the desulfurization equipment absorption liquid.
700 ppmW, increasing the molar ratio of nitrate ions to chloride ions to preferably maintain it at 0.85 or higher.

NO2濃度をこの範囲に保持することによつて、
後述する脱硫工程において吸収液に溶解した
NO2から形成された硝酸イオン濃度を好ましく
は1000ppm以上に保持して、かつ硝酸イオンと塩
素イオン濃度をモル比で0.85以上に維持して塩素
イオンによる孔蝕を硝酸イオンによつて好適に防
止することができる。
By keeping the NO2 concentration within this range,
Dissolved in the absorption liquid in the desulfurization process described later
The concentration of nitrate ions formed from NO 2 is preferably maintained at 1000 ppm or higher, and the molar ratio of nitrate ions and chloride ions is maintained at a molar ratio of 0.85 or higher to suitably prevent pitting caused by chlorine ions by nitrate ions. can do.

最後に本発明においては、NOの酸化によつて
形成されたNO2を含む排煙中のNO2を脱硫吸収
液に吸収させて除去し、排煙処理システムの脱硝
率を増加させる共に、SOXを吸収、除去する。す
なわち本発明は排煙処理システムでの脱硝を2段
で行い、大部分の脱硝を接触還元法で行い、一部
の脱硝を、NOをNO2に酸化し、脱硫装置で行う
ものである。
Finally, in the present invention, NO 2 in the flue gas containing NO 2 formed by NO oxidation is absorbed and removed by the desulfurization absorption liquid, increasing the denitration rate of the flue gas treatment system and reducing SO Absorb and remove X. That is, the present invention performs denitration in a flue gas treatment system in two stages, most of the denitration is performed by catalytic reduction, and part of the denitration is performed by oxidizing NO to NO 2 and using a desulfurization device.

脱硫方法の様式および吸収液の組成は特に限定
されるものではなく、従来知られている種々の湿
式脱硫方法から選択することができる。
The type of desulfurization method and the composition of the absorption liquid are not particularly limited, and can be selected from various conventionally known wet desulfurization methods.

排煙中に含まれるNO2は比較的容易に脱硫吸
収液に溶解し、硝酸イオンが形成される。
NO 2 contained in flue gas is relatively easily dissolved in the desulfurization absorption liquid, and nitrate ions are formed.

そしてNO2の溶解によつて硝酸イオン濃度が
少なくとも700ppmWで、かつ硝酸イオンと塩素
イオンのモル比で好ましくは0.85以上に高めら
れ、塩素イオンによるSUS−316Lに対する孔蝕
が防止される。
By dissolving NO 2 , the nitrate ion concentration is increased to at least 700 ppmW, and the molar ratio of nitrate ions to chloride ions is preferably 0.85 or more, thereby preventing pitting of SUS-316L by chloride ions.

吸収液中の塩素イオン濃度は使用燃料および燃
焼条件、吸収塔上流側の冷却除塵塔設備の有無、
排水の量等によつて大巾に異なるが、通常では
500〜1000ppmWである。
The chlorine ion concentration in the absorption liquid depends on the fuel used, combustion conditions, presence or absence of cooling dust removal tower equipment upstream of the absorption tower,
It varies widely depending on the amount of drainage, etc., but usually
It is 500~1000ppmW.

なお、上記本発明の脱硝脱硫方法において、
NOXの接触酸化、次いでNOの酸化によつて形成
されたNO2を含み、NOX中のNO2を増加した排
煙を脱硫するに先立つて、熱を回収し、次いで電
気集塵器によつてダストを除去した後に脱硫工程
に供給することも可能である。
In addition, in the denitrification and desulfurization method of the present invention,
The heat is recovered and then sent to an electrostatic precipitator prior to desulfurization of the flue gas, which contains NO 2 formed by the catalytic oxidation of NO Therefore, it is also possible to supply the product to the desulfurization process after removing the dust.

NOのオゾン酸化を行う場合は、排ガスの低温
域が好ましく、冷却除塵後のダクト部において通
常行う。
When ozone oxidation of NO is performed, it is preferable to use the low temperature range of the exhaust gas, and it is usually performed in the duct section after cooling and dust removal.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、排煙が接触
還元によつて脱硝されてのちに、残存するNOX
中のNOの一部が酸化されてNO2が形成される。
As described above, according to the present invention, after the flue gas is denitrified by catalytic reduction, the remaining NO
Some of the NO in it is oxidized to form NO2 .

そして排煙中のNO2が吸収され、脱硫工程に
おいて硝酸イオンが形成されるので、脱硝効果が
得られ、かつ吸収液中の硝酸イオン濃度を所定レ
ベル、すなわち硝酸イオン濃度を少なくとも
700ppmWに制御することができる。
Then, NO 2 in the flue gas is absorbed and nitrate ions are formed in the desulfurization process, so a denitration effect is obtained and the nitrate ion concentration in the absorption liquid is kept at a predetermined level, that is, the nitrate ion concentration is at least
Can be controlled to 700ppmW.

従つて排煙中の塩素ガスの吸収によつて形成さ
れた塩素イオンによる孔蝕を硝酸イオンによつて
防止することができる。
Therefore, the nitrate ions can prevent pitting caused by chlorine ions formed by absorption of chlorine gas in flue gas.

すなわち本発明によれば、ハステロイ、インコ
ネル等の高級金属を脱硫装置の材質とする必要が
なくなり、汎用のSUS−316L等のステンレス鋼
を使用することが可能となり、脱硫装置コストを
著しく低下させることができる。
That is, according to the present invention, there is no need to use high-grade metals such as Hastelloy and Inconel as the material for the desulfurization equipment, and it is possible to use general-purpose stainless steel such as SUS-316L, which significantly reduces the cost of the desulfurization equipment. I can do it.

以下、本発明の実施例を述べる。 Examples of the present invention will be described below.

〔実施例〕〔Example〕

実施例 1 150〜300ppmのNOXを含む石炭だきボイラー
の排煙を、アンモニア接触還元法によつて脱硝
し、排煙中のNOXを窒素と水に分解除去した。
Example 1 Flue gas from a coal-fired boiler containing 150 to 300 ppm of NOx was denitrified by an ammonia catalytic reduction method, and NOx in the flue gas was decomposed and removed into nitrogen and water.

排煙中のNO2は脱硝前の1/5前後(0.5〜
1.0ppmW)程度に低下した。
NO 2 in flue gas is around 1/5 of that before denitrification (0.5~
1.0ppmW).

この脱硝排ガスをエアヒーターおよび電気集塵
器に供給した後に、排ガス冷却塔後流のダクト中
にオゾンを含む空気の供給によつて排煙中のNO
の一部をNO2に酸化し、このNO2を含む排煙を
脱硫装置に供給し、吸収液中の硝酸イオン濃度を
1000〜1200ppmWに維持した。
After this denitrified flue gas is supplied to the air heater and electric precipitator, the NO in the flue gas is
The flue gas containing this NO 2 is supplied to the desulfurization equipment to reduce the nitrate ion concentration in the absorption liquid.
It was maintained at 1000-1200ppmW.

また、硝酸イオン/塩素イオンモル比は0.85以
上であり、吸収液のPHは3.5〜4.5であつた。
Moreover, the nitrate ion/chloride ion molar ratio was 0.85 or more, and the pH of the absorption liquid was 3.5 to 4.5.

PHが3.5に満たない時には吸収液中のOHイオン
の影響によつて硝酸イオン/塩素イオンモル比が
厳しい方向に移動し、4.5を越える場合には緩和
される方向に移動する。
When the pH is less than 3.5, the nitrate ion/chloride ion molar ratio shifts toward a stricter direction due to the influence of OH ions in the absorption liquid, and when it exceeds 4.5, it shifts toward a more relaxed direction.

なお、オゾン供給量の略100%がNOからNO2
への酸化に使用された。
In addition, approximately 100% of the ozone supply is from NO to NO 2
used for oxidation to

かかる脱硫吸収液条件においては、SUS−
316Lのオーステナイト系ステンレスを脱硫装置
吸収系の缶体内部構造材料として使用することが
できることが判つた。
Under such desulfurization absorption liquid conditions, SUS-
It has been found that 316L austenitic stainless steel can be used as the internal structure material of the desulfurization equipment absorption system.

実施例 2 油だきポイラー排煙中のNOX量は油の種類、
燃焼方式等に依存するが、燃料中の塩素含有量は
石炭やアスフアルトに比較して著しく少ない。
Example 2 The amount of NOx in the exhaust gas of an oil-fired boiler depends on the type of oil,
Although it depends on the combustion method, the chlorine content in fuel is significantly lower than that of coal or asphalt.

しかしながら、この場合も熱交換、集塵後に排
ガス冷却塔後流ダクト中にオゾンを含む空気を注
入し、オゾン酸化によつてNOの酸化によるNO2
の増加を行い、吸収液中の硝酸イオンを増加させ
ることによつて汎用のSUS−316Lステンレス鋼
を脱硫設備の材料とすることができることが明ら
かとなつた。
However, in this case as well, air containing ozone is injected into the downstream duct of the exhaust gas cooling tower after heat exchange and dust collection, and NO 2 is removed by ozone oxidation.
It has become clear that general-purpose SUS-316L stainless steel can be used as a material for desulfurization equipment by increasing the amount of nitrate ions in the absorption liquid.

Claims (1)

【特許請求の範囲】[Claims] 1 SOXとNOXを含む排煙を接触還元して所定量
のNOXを除去し、該排煙中に残存するNOXを酸
化して下流の脱硫吸収液中の硝酸イオン濃度が少
なくとも700ppmWになるようにNO2を形成せし
め、次いで該NO2を含む排煙を脱硫することを
特徴とする排煙の脱硝脱硫方法。
1 Remove a predetermined amount of NO X by catalytic reduction of flue gas containing SO X and NO 1. A method for denitrification and desulfurization of flue gas, characterized in that NO 2 is formed so that the NO 2 is formed, and then the flue gas containing the NO 2 is desulfurized.
JP62269484A 1987-10-27 1987-10-27 Method for denitrating and desulfurizing stack gas Granted JPH01115441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62269484A JPH01115441A (en) 1987-10-27 1987-10-27 Method for denitrating and desulfurizing stack gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62269484A JPH01115441A (en) 1987-10-27 1987-10-27 Method for denitrating and desulfurizing stack gas

Publications (2)

Publication Number Publication Date
JPH01115441A JPH01115441A (en) 1989-05-08
JPH0374126B2 true JPH0374126B2 (en) 1991-11-26

Family

ID=17473083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62269484A Granted JPH01115441A (en) 1987-10-27 1987-10-27 Method for denitrating and desulfurizing stack gas

Country Status (1)

Country Link
JP (1) JPH01115441A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914747B1 (en) * 2010-04-23 2011-03-29 General Electric Company System and method for controlling and reducing NOx emissions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027763A (en) * 1973-07-16 1975-03-22
JPS5249974A (en) * 1975-10-20 1977-04-21 Mitsubishi Heavy Ind Ltd Treating method of exhaust gas from municipal garbage incidnerator
JPS52125469A (en) * 1976-04-15 1977-10-21 Ngk Insulators Ltd Desulfurization and denitration simultaneous removal
JPS5376970A (en) * 1976-12-21 1978-07-07 Mitsubishi Heavy Ind Ltd Removing mehod for mitrogen oxides and sulfur oxides contained in exhaust gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027763A (en) * 1973-07-16 1975-03-22
JPS5249974A (en) * 1975-10-20 1977-04-21 Mitsubishi Heavy Ind Ltd Treating method of exhaust gas from municipal garbage incidnerator
JPS52125469A (en) * 1976-04-15 1977-10-21 Ngk Insulators Ltd Desulfurization and denitration simultaneous removal
JPS5376970A (en) * 1976-12-21 1978-07-07 Mitsubishi Heavy Ind Ltd Removing mehod for mitrogen oxides and sulfur oxides contained in exhaust gas

Also Published As

Publication number Publication date
JPH01115441A (en) 1989-05-08

Similar Documents

Publication Publication Date Title
US8703080B2 (en) Method for removing mercury in exhaust gas and system therefor
US6913737B2 (en) Method for the treating in exhaust gas and exhaust gas treating system
US6117405A (en) Process for removing nitrogen oxides from flue gases
CN101932376A (en) Process and equipment for the treatment of exhaust gas
US4331639A (en) Process for removing SOx and NOx compounds from gas streams
CN204768246U (en) Semidry method desulfurization, dust removal and low temperature denitration combination purifier
CN101632897B (en) Method for simultaneously removing sulfur oxides and nitric oxides in flue gas
US20110262334A1 (en) SYSTEM AND METHOD FOR CONTROLLING AND REDUCING NOx EMISSIONS
EP2969131B1 (en) Cos and cs2 abatement method
US4386058A (en) Process for removing SOx and NOx compounds from gas streams
JPH0156816B2 (en)
JPH0374126B2 (en)
Matsuda et al. Selective reduction of nitrogen oxides in combustion flue gases
EP3515578B1 (en) Method of regenerating a denox catalyst
JP3366417B2 (en) Prevention method of ammonium sulfate precipitation in selective reduction denitration method
CA1047224A (en) Hydrogen cyanide destruction
KR102359124B1 (en) Method and system for removing hazardous compounds from flue gases using fabric filter bags with SCR catalyst
US10843132B2 (en) Method of reducing nitrogen oxide compounds
Nojima et al. Development of NOx Removal SCR Catalyst for Low SO~ 2 Oxidation
Zhang et al. Method of regenerating a deNO x catalyst
RU2791815C1 (en) Multiple pollutants flue gas joint cleaning method and plant
CN107890755A (en) With the production technology and processing system of system for preparing sulfuric acid processing activated coke method coke oven flue gas desulphurization denitration acid vapour
JPS6113060Y2 (en)
JPH07185338A (en) Dry flue gas desulfurizing agent and denitration catalyst and production thereof
JP2001070749A (en) Waste gas treatment system