JPH0373914A - Optical axis adjusting device - Google Patents

Optical axis adjusting device

Info

Publication number
JPH0373914A
JPH0373914A JP21084489A JP21084489A JPH0373914A JP H0373914 A JPH0373914 A JP H0373914A JP 21084489 A JP21084489 A JP 21084489A JP 21084489 A JP21084489 A JP 21084489A JP H0373914 A JPH0373914 A JP H0373914A
Authority
JP
Japan
Prior art keywords
optical axis
photodetector
adjustment
convex lens
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21084489A
Other languages
Japanese (ja)
Inventor
Kenji Kasai
笠井 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21084489A priority Critical patent/JPH0373914A/en
Publication of JPH0373914A publication Critical patent/JPH0373914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE:To easily maintain the accuracy of a photodetector and to improve the accuracy of optical axis adjustment, and to reduce the overall size of the device by adjusting an angle deviation and a position shift for the optical axis adjustment by one photodetector. CONSTITUTION:This device is equipped with the photodetector 16 which is arranged on an ideal optical axis for photodetecting a light beam to be adjusted after it is passed through a convex lens 15 arranged at right angles to the ideal optical axis and a detection driving means 22 which drives the photodetector 16 linearly along the ideal optical axis. When the angle deviation is adjusted, driving control is so performed that the detection surface of the photodetector 16 is positioned at the focus of the convex lens 15, but when only the position shift is adjusted, driving control is so performed that the detection surface of the convex lens 15 is positioned at a specific distance from the focus of the convex lens 15. Therefore, the angle deviation adjustment and position shift adjustment which are required for the optical axis adjustment are performed by using one photodetector 16. Consequently, the accuracy of the photodetector is easily maintained, the optical axis adjustment accuracy is improved, and the device is reduced in size on the whole.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、2点を通るレーザ光等の被調整光線の光軸を
2枚のミラー(平面鏡)を自動調整することにより他の
2点を通る理想光軸に合せるようにした光軸jl!l整
装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is directed to automatically adjusting the optical axis of a light beam to be adjusted, such as a laser beam, that passes through two points using two mirrors (plane mirrors). The optical axis jl! is aligned with the ideal optical axis passing through the other two points. lRelating to a conditioning device.

(従来の技術) 2点を通るレーザ光等の被調整光線の光軸を他の2点を
通る理想光軸に合せるようにした光軸調整が、2枚のミ
ラーを回転調整することによって実現できることは従来
から良く知られている。
(Prior art) Optical axis adjustment in which the optical axis of a light beam to be adjusted, such as a laser beam, passing through two points is aligned with an ideal optical axis passing through two other points is achieved by rotating and adjusting two mirrors. What can be done has been well known for a long time.

以下、その先軸調整の原理を角度ずれ調整と位置ずれ調
整とに分けて説明する。
Hereinafter, the principle of the front axis adjustment will be explained separately for angle shift adjustment and position shift adjustment.

「角度ずれ調整」 この調整は理想光軸に平行となる光軸を有する被調整光
線を作り出す調整であって、その基本構成を第3図に示
す。同図に示すように、角度ずれ調整を行なう上で次の
■〜■の基本条件が要求される。
"Angle Shift Adjustment" This adjustment is an adjustment to create an adjusted light beam having an optical axis parallel to the ideal optical axis, and its basic configuration is shown in FIG. As shown in the figure, the following basic conditions (1) to (2) are required for adjusting the angle deviation.

■ 理想光軸1と垂直さなるように凸レンズ2を設置す
る。
■ Place the convex lens 2 so that it is perpendicular to the ideal optical axis 1.

■ 理想光軸1上に凸レンズ2の中心が位置するように
設置する。
■ Install the convex lens 2 so that its center is located on the ideal optical axis 1.

■ 凸1/ンズ2の中心からそのレンズ2の焦点距離f
だけ離れた位置に光検出器3を設置する。
■ Focal length f of lens 2 from the center of convex 1/lens 2
The photodetector 3 is installed at a position separated by

■ 凸レンズ2の焦点位置に光検出器3の検出面の中心
が位置するように設置する。
(2) Install the photodetector 3 so that the center of its detection surface is located at the focal point of the convex lens 2.

■ 光検出器3の検出面が理想光軸1と垂直となるよう
に設置する。
■ Install the photodetector 3 so that its detection surface is perpendicular to the ideal optical axis 1.

■ ミラー4をその回転中心が理想光軸1上に位置する
ように設置する。
(2) Install the mirror 4 so that its center of rotation is located on the ideal optical axis 1.

しかして、上記基本条件■〜■のもとでは理想光軸1に
平行な任意の被調整光線は全て光検出器3の検出面中心
に点として結像することを利用して角度ずれ調整を行な
うものである。
Therefore, under the above basic conditions (■ to ■), the angular shift can be adjusted by utilizing the fact that any light beam to be adjusted parallel to the ideal optical axis 1 is imaged as a point at the center of the detection surface of the photodetector 3. It is something to do.

すなわち、上記基本条件を満足する光学系では、第4図
からも明らかなように、光検出器3で検出された結像の
検出面中心からの距離(ΔX、Δy)と、理想光軸1と
の角度ずれ(θX、θy)との関係は、 Δx−ftanθx          −(1)Δy
−ftanθy          ・(2)で与えら
れる。
That is, in an optical system that satisfies the above basic conditions, as is clear from FIG. The relationship between the angular deviation (θX, θy) is Δx−ftanθx −(1)Δy
-ftanθy (2).

したがって、上記(1)、 (2)式を用いて光検出器
3で検出した変位(ΔX、Δy)から被調整光線の光軸
の角度ずれ(θX、θy)を算出することができるので
、この角度ずれ(θX、θy)に基いてミラー4を(θ
X/2.θy/2)だけ回転させることにより被調整光
線の光軸が理想光軸1と平行となるように調整すること
が可能である。
Therefore, the angular deviation (θX, θy) of the optical axis of the adjusted light beam can be calculated from the displacement (ΔX, Δy) detected by the photodetector 3 using equations (1) and (2) above. Based on this angular deviation (θX, θy), mirror 4 is adjusted to (θ
X/2. By rotating it by θy/2), it is possible to adjust the optical axis of the adjusted light beam to be parallel to the ideal optical axis 1.

実際の角度ずれ:A整の制御手順では、前記基本条件に
基く構成の微少なずれによって生じる誤差や光検出器3
の検出誤差のため、第5図に示すように、変位ΔXを例
にして所定の許容範囲内に収まるまで角度ずれ測定およ
びミラー4の回転調整を繰返し行なう、いわゆるアイテ
レーシ3ン調整を用いている。
Actual angle deviation: In the A adjustment control procedure, errors caused by minute deviations in the configuration based on the basic conditions and the photodetector 3
Due to the detection error, as shown in Fig. 5, so-called eye precision adjustment is used, in which the angular deviation measurement and rotation adjustment of the mirror 4 are repeated until the displacement ΔX falls within a predetermined tolerance range, as shown in Fig. 5. .

「位置ずれ調整」 この調整は角度ずれ調整を行なった後に理想光軸との位
置ずれを測定し、その結果から位置ずれをなくす調整で
あって、その基本構成を第6図に示す。同図に示すよう
に、位置ずれ調整を行なう上で次の■〜■の基本条件が
要求される。
"Positional Misalignment Adjustment" This adjustment is an adjustment in which the misalignment with the ideal optical axis is measured after the angular misalignment adjustment, and the misalignment is eliminated from the results.The basic configuration is shown in FIG. As shown in the figure, the following basic conditions (1) to (2) are required for positional deviation adjustment.

■ 理想光軸1と垂直となるように凸レンズ2を設置す
る。
■ Install the convex lens 2 so that it is perpendicular to the ideal optical axis 1.

■ 理想光軸1上に凸レンズ2の中心が位置するように
設置する。
■ Install the convex lens 2 so that its center is located on the ideal optical axis 1.

■ 凸レンズ2の中心からそのレンズ2の焦点距離fに
所定距離dを加算した距離だけ離れた位置に光検出器3
を設置する。
■ A photodetector 3 is located at a distance from the center of the convex lens 2 by a distance equal to the focal length f of the lens 2 plus a predetermined distance d.
Set up.

■ 理想光軸1上に光検出器3の検出面の中心が位置す
るように設置する。
(2) Install the photodetector 3 so that the center of its detection surface is located on the ideal optical axis 1.

■ 光検出器3の検出面が理想光軸1と垂直となるよう
に設置する。
■ Install the photodetector 3 so that its detection surface is perpendicular to the ideal optical axis 1.

■ 第1のミラー4をその回転中心が理想光軸1上に位
置するように設置する。
(2) Install the first mirror 4 so that its center of rotation is located on the ideal optical axis 1.

■ 第1のミラー4と回転方向(θ、ψ)が一致するよ
うに第2のミラー5を設置する。(ここでθは紙面と平
行な面での回転角、ψは紙面と垂直な面での回転角を示
す) しかして、上記基本条件を満足する光学系では、第7図
からも明らかなように、光検出器3で検出された結像の
検出面中心からの変位(ΔX、Δy)と、理想光軸1と
被調整光線6との位置ずれ(Lx、Ly)との関係は、 L x / f−Δx / d         ・・
・(3〉L y / f−Δy/d        ・
・・(4)で与えられる。
(2) Install the second mirror 5 so that the rotation direction (θ, ψ) matches that of the first mirror 4. (Here, θ is the angle of rotation in a plane parallel to the plane of the paper, and ψ is the angle of rotation in a plane perpendicular to the plane of the paper.) Therefore, in an optical system that satisfies the above basic conditions, as is clear from Fig. 7, The relationship between the displacement (ΔX, Δy) of the image detected by the photodetector 3 from the detection surface center and the positional deviation (Lx, Ly) between the ideal optical axis 1 and the adjusted light beam 6 is L x/f-Δx/d...
・(3>L y / f−Δy/d ・
... is given by (4).

また、第8図からも明らかなように、位置ずれ(Lx、
Ly)とこの位置ずれをなくすための第1、第2のミラ
ー4.5の回転角度(θX、θy)との関係は、 Lxi−?fltanθx          −(5
)LV今fl tanθy          ・・・
(6)(はミラー4.5の回転中心間の距M)で与えら
れる。
Furthermore, as is clear from Fig. 8, the positional deviation (Lx,
The relationship between Ly) and the rotation angles (θX, θy) of the first and second mirrors 4.5 to eliminate this positional shift is Lxi-? fltanθx −(5
) LV now fl tanθy...
(6) (is the distance M between the rotation centers of the mirrors 4.5).

したがって、上記(3)式と(5〉式とにより光検出器
3で測定した変位ΔXと位置ずれ調整のためのミラー4
.5の回転角度θXとの関係は、f!  tanθx/
f−Δx / d         −(7)で与えら
れる。同様に上記(4〉式と(6)式とにより光検出器
3で測定した変位Δyε位置ずれ調整のためのミラー4
.5の回転角度θyとの関係は、l  tanθy/f
−Δy/d      −(8)で与えられる。
Therefore, according to the above equations (3) and (5>), the displacement ΔX measured by the photodetector 3 and the mirror 4 for adjusting the positional deviation
.. The relationship between rotation angle θX of 5 is f! tanθx/
It is given by f-Δx/d-(7). Similarly, the mirror 4 for adjusting the displacement Δyε position shift measured by the photodetector 3 using the above equations (4> and (6))
.. The relationship between rotation angle θy of 5 is l tanθy/f
−Δy/d −(8).

かくして、上記(7)、(8)式を用いて光検出器3で
測定した変位(ΔX、Δy)から被調整光線の位置ずれ
をなくすためのミラー4,5の回転角度(θX、θy)
が求められ、この回転角度(θX、θy)に基いて先ず
第2のミラー5を(θx72.θy/2)だけ回転させ
るこεにより第2のミラー5の出射光線を第1のミラー
4の回転中心に当てることができる。続いて第1のミラ
ー4を(θX/2.θy/2)だけ回転させることによ
り被調整光線6を理想光軸1との平行を保ちつつ位置ず
れをなくす調整が可能となる。
Thus, using equations (7) and (8) above, the rotation angles (θX, θy) of the mirrors 4 and 5 are calculated to eliminate the positional deviation of the adjusted light beam from the displacement (ΔX, Δy) measured by the photodetector 3.
is determined, and based on this rotation angle (θX, θy), the second mirror 5 is first rotated by (θx72.θy/2). By ε, the output beam of the second mirror 5 is transferred to the first mirror 4. It can be placed on the center of rotation. Subsequently, by rotating the first mirror 4 by (θX/2.θy/2), it becomes possible to adjust the adjusted light beam 6 while keeping it parallel to the ideal optical axis 1 and eliminating positional deviation.

実際の位置ずれ調整の制御手順でも、前記基本条件に基
く構成の微少なずれによって生じる誤差や光検出器3の
検出誤差のため、第9図に示すように、変位ΔXを例に
とり所定の許容範囲内に収まるまで位置ずれ測定および
ミラー4,5の回転調整を繰返し行なう、いわゆるアイ
テレ−ジョン調整を用いている。
Even in the actual positional deviation adjustment control procedure, due to errors caused by minute deviations in the configuration based on the basic conditions and detection errors of the photodetector 3, as shown in FIG. A so-called eye-television adjustment is used in which positional deviation measurement and rotational adjustment of the mirrors 4 and 5 are repeated until the deviation is within the range.

第10図は上述した原理に基いて構成された従来の光軸
調整装置の模式図である。同図に示すようにこの従来装
置は、レーザ発振器1,0から出射されたレーザ光11
を第2の全反射ミラー12および第1の全反射ミラー1
3で全反射し、ハーフミラ−14で2方向に分割して、
一方を凸レンズ15を介して角度ずれm整層光検出器1
6に結像させ、他方を凸レンズ17を介して位置ずれ調
整用光検出器18に結像させるようにしている。ここで
、第1の全反射ミラー13.凸レンズ15および角度ず
れ調整用光検出器16は前記角度ずれ調整の基本条件を
満足するように配置されており、第2の全反射ミラー1
2.第1の全反射ミラー13、凸レンズ17および位置
ずれ調整用光検出器18は前記位置ずれ調整の基本条件
を満足するように配置されている。
FIG. 10 is a schematic diagram of a conventional optical axis adjustment device constructed based on the above-mentioned principle. As shown in the figure, this conventional device has laser beams 11 emitted from laser oscillators 1 and 0.
The second total reflection mirror 12 and the first total reflection mirror 1
3 for total reflection, half mirror 14 to split into two directions,
An angular shift m-aligned photodetector 1 is connected to one side through a convex lens 15.
6, and the other image is formed on a positional deviation adjustment photodetector 18 via a convex lens 17. Here, the first total reflection mirror 13. The convex lens 15 and the angular shift adjustment photodetector 16 are arranged so as to satisfy the basic conditions for angular shift adjustment, and the second total reflection mirror 1
2. The first total reflection mirror 13, the convex lens 17, and the positional deviation adjustment photodetector 18 are arranged so as to satisfy the basic conditions for positional deviation adjustment.

しかして、先ず角度ずれ調整用光検出器16の検出出力
を計算機からなる自動制御部19に取込み、前記(1)
 、 (2)式よりレーザ光11の光軸の角度ずれ(θ
X、θy)を算出し、この角度ずれ(θX、θy)に基
いてミラー駆動装置20により第1の全反射ミラー13
を(θx72.θy/2)だけ回転調整することにより
、レーザ光11の光軸が理想光軸と平行となるように調
整する。
Therefore, first, the detection output of the angular shift adjustment photodetector 16 is taken into the automatic control section 19 consisting of a computer, and the above-mentioned (1) is carried out.
, From equation (2), the angular deviation of the optical axis of the laser beam 11 (θ
X, θy), and based on this angular deviation (θX, θy), the mirror driving device 20 moves the first total reflection mirror 13.
By rotating and adjusting by (θx72.θy/2), the optical axis of the laser beam 11 is adjusted to be parallel to the ideal optical axis.

次いで、位置ずれ調整用光検出器18の検出出力を自動
制御部19に取込み、前記(7) 、 (8)式よりレ
ーザ光11の光軸の位置ずれ調整のためのミラー回転角
度(θX、θy)を算出する。そして、し、この回転角
度(θX、θy)に基いて先ずミラー駆動装置21によ
り第2の全反射ミラー12を(θx/2.θy/2)だ
け回転調整し、続いてミラー駆動装置20により第1の
全反射ミラー13を(θx/2.θy/2)だけ回転調
整することによって、レーザ光11を理想光軸と平行を
保ちつつ位置ずれをなくすように調整する。
Next, the detection output of the photodetector 18 for positional deviation adjustment is taken into the automatic control unit 19, and the mirror rotation angle (θX, θy) is calculated. Then, based on this rotation angle (θX, θy), the second total reflection mirror 12 is first rotated by (θx/2.θy/2) by the mirror drive device 21, and then by the mirror drive device 20. By rotating and adjusting the first total reflection mirror 13 by (θx/2.θy/2), the laser beam 11 is adjusted so as to be kept parallel to the ideal optical axis and to eliminate positional deviation.

(発明が解決しようこする課題) しかるに上記従来装置においては、2台の光検出器16
.18を用いるため検出器の精度維持に手間がかかり光
軸:A整精度の低下を招き易い上、被調整光線を略直角
の2方向に分割するためスペースを必要とし小型化が困
難であった。
(Problem to be solved by the invention) However, in the above conventional device, two photodetectors 16
.. 18, it takes time to maintain the accuracy of the detector, which tends to result in a decrease in the precision of adjusting the optical axis: A. Furthermore, since the adjusted light beam is divided into two directions at approximately right angles, space is required, making it difficult to downsize. .

そこで本発明は、1台の光検出器で光軸調整に必要な角
度ずれ調整と位置ずれ調整とを行なうことができ、光検
出器の精度維持を簡易化して光軸調整精度の向上をはか
り得、かつ装置全体の小型化をはかり得る光軸調整装置
を提供しようとするものである。
Therefore, the present invention makes it possible to perform the angular shift adjustment and position shift adjustment necessary for optical axis adjustment with a single photodetector, thereby simplifying the maintenance of the accuracy of the photodetector and improving the optical axis adjustment accuracy. The object of the present invention is to provide an optical axis adjustment device that can achieve a high efficiency and reduce the size of the entire device.

[発明の構成] (課題を解決するための手段と作用) 複数毎のミラーを配置してそのミラーの回転調整を行な
うことにより被調整光線の光軸を任意の2点で形成され
る理想光軸に合せる光軸調整装置において、理想光軸に
対して垂直にかつこの理想光軸上にその中心が位置する
ように配置された凸レンズと、この凸レンズを通過した
被調整光線を受光すべく前記理想光軸上に配置された光
検出器と、この光検出器を理想光軸に沿って直線駆動さ
せる検出器駆動手段とを備え、角度ずれ調整を行なう場
合には光検出器の検出面が凸レンズの焦点に位置するよ
うに駆動制御し、位置ずれ調整を行なう場合には光検出
器の検出面が凸レンズの焦点から所定距離だけ離れた位
置に位置するように駆動制御するようにしたちの゛であ
る。
[Structure of the invention] (Means and effects for solving the problem) Ideal light whose optical axis of the adjusted light beam is formed at two arbitrary points by arranging a plurality of mirrors and adjusting the rotation of the mirrors. In an optical axis adjusting device for adjusting the optical axis, a convex lens is arranged perpendicularly to the ideal optical axis and its center is located on the ideal optical axis, and the above-mentioned lens is arranged to receive the adjusted light beam that has passed through the convex lens. It is equipped with a photodetector placed on the ideal optical axis and a detector driving means for linearly driving the photodetector along the ideal optical axis, and when adjusting the angle, the detection surface of the photodetector is The drive is controlled so that it is located at the focal point of the convex lens, and when adjusting the position, the drive is controlled so that the detection surface of the photodetector is located at a predetermined distance from the focal point of the convex lens. It is.

したがって、1台の光検出器を用いて光軸R整に必要な
角度ずれ調整と位置ずれ調整とが可能となる。
Therefore, using one photodetector, it is possible to adjust the angle and position required for adjusting the optical axis R.

(実施例) 以下、本発明の一実施例を図面を参照しながら説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図はこの実施例の全体構成を示す模式図である。な
お第10図と同一部分には同一符号を付し、詳しい説明
は省略する。第1図において22は検出器駆動装置であ
って、計算機からなる自動制御部23からの指令にした
がって光検出器16を理想光軸に沿って直線駆動制御す
るものである。
FIG. 1 is a schematic diagram showing the overall configuration of this embodiment. Note that the same parts as in FIG. 10 are given the same reference numerals, and detailed explanations will be omitted. In FIG. 1, reference numeral 22 denotes a detector driving device, which linearly drives and controls the photodetector 16 along the ideal optical axis in accordance with instructions from an automatic control section 23 consisting of a computer.

ここで、駆動袋fi!22により光検出器16を第1図
中実線で示す位置に設定したとき、第1の全反射ミラー
13.凸レンズ15および光検出器16は前記角度ずれ
調整の基本条件を満足するように配置され、駆動装置2
2により光検出器16を第1図中−点鎖線で示す位置に
設定したとき、第2の全反射ミラー12.第1の全反射
ミラー13゜凸レンズ15および光検出器16は前記位
置ずれ調整の基本条件を満足するように配置される。
Here, the driving bag fi! 22, when the photodetector 16 is set at the position shown by the solid line in FIG. 1, the first total reflection mirror 13. The convex lens 15 and the photodetector 16 are arranged so as to satisfy the basic conditions for angular shift adjustment, and the driving device 2
2, when the photodetector 16 is set at the position shown by the dotted chain line in FIG. 1, the second total reflection mirror 12. The first total reflection mirror 13° convex lens 15 and the photodetector 16 are arranged so as to satisfy the basic conditions for adjusting the positional deviation.

上記自動制御部23は、第2図に示すように演算回路、
メモリなどを内蔵したマイクロプロセッサ31、光軸調
整の開始指令を入力する操作スイッチや光軸調整結果を
出力する表示部等が設けられた操作パネル32、光検出
器16からの光検出信号を入力する信号入力回路33、
検出器駆動装置22への駆動信号を出力する信号出力回
路34、第1の全反射ミラー13の駆動装置20に対し
て駆動信号を出力する信号出力回路35、第2の全反射
ミラー12の駆動装置21に対して駆動信号を出力する
信号出力回路36から構成されている。
The automatic control section 23 includes an arithmetic circuit, as shown in FIG.
A microprocessor 31 with a built-in memory, etc., an operation panel 32 equipped with operation switches for inputting a command to start optical axis adjustment, a display unit for outputting optical axis adjustment results, etc., and inputting a light detection signal from the photodetector 16. a signal input circuit 33,
A signal output circuit 34 that outputs a drive signal to the detector drive device 22, a signal output circuit 35 that outputs a drive signal to the drive device 20 of the first total reflection mirror 13, and a drive of the second total reflection mirror 12. It is comprised of a signal output circuit 36 that outputs a drive signal to the device 21.

そして、上記マイクロプロセッサ31は、次の如く動作
するようにプログラム制御されている。
The microprocessor 31 is program-controlled to operate as follows.

すなわち、操作パネル32による光軸調整開始操作によ
って起動し、先ず角度ずれ調整を行なうために検出器駆
動信号出力回路34を介して駆動指令を検出器駆動袋r
It22に与え、光検出器16の検出面を凸レンズ15
の焦点位置fに位置させる。
That is, it is activated by the optical axis adjustment start operation on the operation panel 32, and first, in order to adjust the angle deviation, a drive command is sent to the detector drive signal output circuit 34.
It22 and the detection surface of the photodetector 16 is connected to the convex lens 15.
the focal point f.

次いで、光検出信号入力回路33を介して光検出器16
の出力を取込み、前記(1)、(2)式よりレーザ光1
1の光軸の角度ずれ(θX、θy)を算出し、この角度
ずれ(θX、θy)に基いて第1ミラー駆動信号出力回
路35を介して駆動指令をミラー駆動装置i!20に与
え、第1の全反射ミラー13を(θx/2.θy/2)
だけ回転調整する。
Next, the photodetector 16 is connected to the photodetector 16 via the photodetection signal input circuit 33.
The output of laser beam 1 is taken in, and from equations (1) and (2) above,
The angular deviation (θX, θy) of the optical axis of 1 is calculated, and based on this angular deviation (θX, θy), a drive command is sent to the mirror drive device i! via the first mirror drive signal output circuit 35. 20, and the first total reflection mirror 13 is (θx/2.θy/2)
Adjust the rotation only.

その後、同様にして第1のミラー13の回転調整を繰返
すことによりレーザ光11の光軸が理想光軸と平行とな
るように調整する。
Thereafter, by repeating the rotational adjustment of the first mirror 13 in the same manner, the optical axis of the laser beam 11 is adjusted to be parallel to the ideal optical axis.

角度ずれ調整終了後、位置ずれ調整を行なうために検出
器駆動信号出力回路34を介して駆動指令を検出器駆動
装置22に与え、光検出器16の検出面を凸レンズ15
の焦点位置fから所定距離dだけ離れた位置に位置させ
る。次いで、光検出信号入力口′833を介して光検出
器16の出力を取込み、前記(7)、(8)式よりレー
ザ光11の光軸の位置ずれ調整のためのミラー回転角度
(θX。
After the angle shift adjustment is completed, a drive command is given to the detector drive device 22 via the detector drive signal output circuit 34 in order to adjust the position shift, and the detection surface of the photodetector 16 is moved to the convex lens 15.
is located a predetermined distance d from the focal point f. Next, the output of the photodetector 16 is taken in through the photodetection signal input port '833, and the mirror rotation angle (θX) for adjusting the positional deviation of the optical axis of the laser beam 11 is determined from equations (7) and (8) above.

θy)を算出し、この回転角度(θX、θy)に基いて
先ず第2ミラー駆動信号出力回路36.を介して駆動信
号をミラー駆動装置21に与え、第2の全反射ミラー1
2を(θx/2.θy/2)だけ回転調整し、続いて第
1ミラー駆動信号出力回路35を介して駆動信号をミラ
ー駆動装置20に与え、第1の全反射ミラー13を(θ
x72゜θy/2)だけ回転調整する。その後、同様に
して第2のミラー12と第1のミラー13の回転調整を
繰返すことにより、レーザ光11を理想光軸と平行を保
ちつつ位置ずれをなくすように調整する。
θy), and based on this rotation angle (θX, θy), the second mirror drive signal output circuit 36. A drive signal is applied to the mirror drive device 21 via the second total reflection mirror 1.
2 by (θx/2.θy/2), and then a drive signal is given to the mirror drive device 20 via the first mirror drive signal output circuit 35, and the first total reflection mirror 13 is rotated by (θx/2.θy/2).
Adjust the rotation by x72°θy/2). Thereafter, by repeating the rotational adjustment of the second mirror 12 and the first mirror 13 in the same manner, the laser beam 11 is adjusted so as to remain parallel to the ideal optical axis and eliminate positional deviation.

このように構成された本実施例においては、レーザ発振
器10から出射されたレーザ光11は第2の全反射ミラ
ー12および第1の全反射ミラー13で全反射され、凸
レンズ15を介して光検出器]6に結像する。この状態
でレーザ光11の光軸調整が指令されると、先ず検出器
駆動袋f!22によって光検出器16が凸レンズ15の
焦点位置fに位置するように駆動制御される。こうする
ことにより、第1のミラー13.凸レンズ15および光
検出器16の配置関係が角度ずれ調整を行なうのに必要
な条件を満足し、光検出器16の検出出力に基いて自動
制御部23が第1のミラー13を回転調整することによ
り、レーザ光11の角度ずれ調整が行なわれる。
In this embodiment configured in this way, the laser beam 11 emitted from the laser oscillator 10 is totally reflected by the second total reflection mirror 12 and the first total reflection mirror 13, and is optically detected via the convex lens 15. 6. When the optical axis adjustment of the laser beam 11 is commanded in this state, first the detector driving bag f! 22 controls the drive of the photodetector 16 so that it is located at the focal point f of the convex lens 15. By doing this, the first mirror 13. The arrangement relationship between the convex lens 15 and the photodetector 16 satisfies the conditions necessary for adjusting the angle deviation, and the automatic control unit 23 rotationally adjusts the first mirror 13 based on the detection output of the photodetector 16. Accordingly, the angle shift adjustment of the laser beam 11 is performed.

次に角度ずれ調整終了後、検出器駆動装置22によって
光検出器16が凸レンズ15の焦点位置fから所定距離
dだけ離れた位置に位置するように駆動制御される。こ
うすることにより、第2のミラー12.第1のミラー1
3.凸レンズ15および光検出器16の配置関係が位置
ずれ調整を行なうのに必要な条件を満足し、光検出器1
6の検出出力に基いて自動制御部23が第2のミラー1
2と第1のミラー13を回転g整することにより、レー
ザ光11の位置ずれ調整が行なわれる。
Next, after the angular shift adjustment is completed, the photodetector 16 is driven and controlled by the detector driving device 22 so that it is positioned a predetermined distance d from the focal point f of the convex lens 15. By doing this, the second mirror 12. first mirror 1
3. The arrangement relationship between the convex lens 15 and the photodetector 16 satisfies the conditions necessary for positional shift adjustment, and the photodetector 1
Based on the detection output of 6, the automatic control unit 23 controls the second mirror 1
By adjusting the rotation g of the mirror 2 and the first mirror 13, the positional deviation of the laser beam 11 is adjusted.

このように本実施例によれば、光検出器16を理想光軸
に沿って直線駆動させる検出器駆動装置22を設け、角
度ずれ調整時には光検出器16を凸レンズ15の焦点位
置に位置決めし、位置ずれ調整時には凸レンズ15の焦
点位置から所定距離dだけ離れた位置に位置決めするよ
うにしたので、1つの光検出器16で光軸調整に必要な
角度ずれ調整と位置ずれ調整とを実施できる。したがっ
て、光検出器の精度維持が簡易化され、精度が不安定な
ままに光軸調整が行なわれることがなくなるので、光軸
調整精度の向上をはかり得る。また、レーザ光11を垂
直な2方向に分割する必要がなく1方向のみで光軸調整
を行なえるので、狭スペースでシステムを構築でき小型
化をはかり得る。
As described above, according to the present embodiment, the detector drive device 22 that linearly drives the photodetector 16 along the ideal optical axis is provided, and the photodetector 16 is positioned at the focal position of the convex lens 15 when adjusting the angle deviation. When adjusting the positional deviation, the lens is positioned a predetermined distance d from the focal position of the convex lens 15, so that one photodetector 16 can perform the angular deviation adjustment and the positional deviation adjustment necessary for optical axis adjustment. Therefore, maintaining the accuracy of the photodetector is simplified, and the optical axis adjustment is not performed while the accuracy is unstable, so that the optical axis adjustment accuracy can be improved. Furthermore, since it is not necessary to divide the laser beam 11 into two perpendicular directions and the optical axis can be adjusted in only one direction, the system can be constructed in a narrow space and downsized.

なお、前記実施例ではレーザ光11の光軸調整を示した
が、被調整光線としてレーザ光に限定されないのは勿論
である。
In addition, although the optical axis adjustment of the laser beam 11 was shown in the said Example, it goes without saying that the light beam to be adjusted is not limited to a laser beam.

[発明の効果〕 以上詳述したように、本発明によれば、1台の光検出器
で光軸調整に必要な角度ずれ調整と位置ずれ調整とを行
なうことができ、光検出器の精度維持を簡易化して光軸
調整精度の向上をはかり得、かつ装置全体の小型化をは
かり得る光軸調整装置を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to perform the angular shift adjustment and position shift adjustment necessary for optical axis adjustment with one photodetector, and the accuracy of the photodetector can be improved. It is possible to provide an optical axis adjustment device that can be easily maintained, improve optical axis adjustment accuracy, and downsize the entire device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示す図であっ
て、第1図は装置全体構成を示す模式図、第2図は自動
制御部のブロック構成図、第3図ないし第5図は角度ず
れ調整の原理説明図、第6図ないし第9図は位置ずれ調
整の原理説明図、第10図は従来装置の全体構成を示す
模式図である。 10・・・レーザ発振器、11・・・レーザ光、12・
・・第2の全反射ミラー 13・・・第1の全反射ミラ
ー 15・・・凸レンズ、16・・・光検出器、22・
・・検出器駆動装置、23・・・自動制御部。 3 第1r11
1 and 2 are diagrams showing one embodiment of the present invention, in which FIG. 1 is a schematic diagram showing the overall configuration of the device, FIG. 2 is a block diagram of the automatic control section, and FIGS. FIG. 5 is a diagram explaining the principle of angular shift adjustment, FIGS. 6 to 9 are diagrams explaining the principle of position shift adjustment, and FIG. 10 is a schematic diagram showing the overall configuration of a conventional device. 10... Laser oscillator, 11... Laser light, 12.
...Second total reflection mirror 13...First total reflection mirror 15...Convex lens, 16...Photodetector, 22.
...detector drive device, 23... automatic control section. 3 1st r11

Claims (1)

【特許請求の範囲】[Claims] 複数毎のミラーを配置してそのミラーの回転調整を行な
うことにより被調整光線の光軸を任意の2点で形成され
る理想光軸に合せる光軸調整装置において、前記理想光
軸に対して垂直にかつ上記理想光軸上にその中心が位置
するように配置された凸レンズと、この凸レンズを通過
した前記被調整光線を受光すべく前記理想光軸上に配置
された光検出器と、この光検出器を前記理想光軸に沿っ
て直線駆動させる検出器駆動手段とを備え、角度ずれ調
整を行なう場合には前記光検出器の検出面が前記凸レン
ズの焦点に位置するように駆動制御し、位置ずれ調整を
行なう場合には前記光検出器の検出面が前記凸レンズの
焦点から所定距離だけ離れた位置に位置するように駆動
制御することを特徴とする光軸調整装置。
In an optical axis adjustment device that aligns the optical axis of a light beam to be adjusted with an ideal optical axis formed by arbitrary two points by arranging a plurality of mirrors and adjusting the rotation of the mirrors, a convex lens disposed vertically so that its center is located on the ideal optical axis; a photodetector disposed on the ideal optical axis to receive the adjusted light beam that has passed through the convex lens; and a detector driving means for linearly driving the photodetector along the ideal optical axis, and when performing angular shift adjustment, the drive is controlled so that the detection surface of the photodetector is located at the focal point of the convex lens. . An optical axis adjustment device, characterized in that when performing positional deviation adjustment, drive control is performed so that the detection surface of the photodetector is located at a position separated by a predetermined distance from the focal point of the convex lens.
JP21084489A 1989-08-16 1989-08-16 Optical axis adjusting device Pending JPH0373914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21084489A JPH0373914A (en) 1989-08-16 1989-08-16 Optical axis adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21084489A JPH0373914A (en) 1989-08-16 1989-08-16 Optical axis adjusting device

Publications (1)

Publication Number Publication Date
JPH0373914A true JPH0373914A (en) 1991-03-28

Family

ID=16596051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21084489A Pending JPH0373914A (en) 1989-08-16 1989-08-16 Optical axis adjusting device

Country Status (1)

Country Link
JP (1) JPH0373914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119895B2 (en) 2000-11-28 2006-10-10 Honda Giken Kogyo Kabushiki Kaisha Method of and apparatus for adjusting optical component, and optical unit
JP2009176934A (en) * 2008-01-24 2009-08-06 Semiconductor Energy Lab Co Ltd Laser annealing apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119895B2 (en) 2000-11-28 2006-10-10 Honda Giken Kogyo Kabushiki Kaisha Method of and apparatus for adjusting optical component, and optical unit
JP2009176934A (en) * 2008-01-24 2009-08-06 Semiconductor Energy Lab Co Ltd Laser annealing apparatus and method

Similar Documents

Publication Publication Date Title
US6873421B2 (en) Method and apparatus for measuring the three-dimensional shape of an object using a moire equipment
US7473867B2 (en) Laser machining apparatus
JP2510457B2 (en) Michelson interferometer
JP3647608B2 (en) Surveyor automatic tracking device
US5045679A (en) Optical path adjusting system with dual-axis wedge prisms
JPS6313015A (en) Controller for beam position of optical deflector
JPS6119003B2 (en)
JPH0373914A (en) Optical axis adjusting device
US4818879A (en) Positioning and machining apparatus having a scanner for circularly scanning an object by a light beam
JP3356104B2 (en) Method and apparatus for measuring rolling angle of moving stage
JPH01193711A (en) Laser beam optical axis adjusting device
JP4079531B2 (en) Optical transmission apparatus and adjustment method thereof
US4852106A (en) Optical system for producing controlled beat frequency
JPH0634918A (en) Optical axis controller
JP3176734B2 (en) Optical position measuring device
JPH0323883B2 (en)
JP2000046930A (en) Optical sensor
JPH0996767A (en) Spacial optical communicating device
JPH0694415A (en) Optical measuring device
JPS63127104A (en) Alignment apparatus
JPS63106717A (en) Laser beam transmitter
JPS6032651Y2 (en) Laser light introduction device
JPH07218220A (en) Fast tracking type laser interference length measuring apparatus
JPH11119073A (en) Automatic optical axis controller
JP2758420B2 (en) Reflection type laser microscope imaging device