JPH0373875A - Method for deciding deterioration of insulation in coil of rotating machine - Google Patents

Method for deciding deterioration of insulation in coil of rotating machine

Info

Publication number
JPH0373875A
JPH0373875A JP1209650A JP20965089A JPH0373875A JP H0373875 A JPH0373875 A JP H0373875A JP 1209650 A JP1209650 A JP 1209650A JP 20965089 A JP20965089 A JP 20965089A JP H0373875 A JPH0373875 A JP H0373875A
Authority
JP
Japan
Prior art keywords
state
insulation
resistance
dry
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1209650A
Other languages
Japanese (ja)
Other versions
JP2961756B2 (en
Inventor
Hisashi Suwahara
諏訪原 久
Takashi Tokuda
徳田 隆士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1209650A priority Critical patent/JP2961756B2/en
Publication of JPH0373875A publication Critical patent/JPH0373875A/en
Application granted granted Critical
Publication of JP2961756B2 publication Critical patent/JP2961756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PURPOSE:To accurately decide deterioration by checking whether a coil insulating layer based upon a resin insulating system is in a dry state or a hygroscopic state and specifying the inspection items of respective states. CONSTITUTION:In order to decide the deteriorated state of the insulating layer of the coil, whether the insulating layer is dry or hygroscopic is checked. At the time of the dry state, the insulation deteriorating state is decided based upon the following inspection items and the deteriorated state in the hygroscopic state is similarly decided based upon the following inspection items. Namely, the inspection items in the dry state are the ratio VBD/Pi2 of a dielectric breakdown voltage VBD to a 2nd current sudden increment point Pi2, a current increment rate I, partial discharge generation frequency (n), partial discharge starting voltage Vi, maximum discharging charge Qmax, and the product R.C. of an insulation resistance value R and electrostatic capacity C. On the other hand, the inspection items in the hygroscop ic state are insulation resistance R, the resistance ratio log (DDry/Dwet) of the resistance RDry of the steady state to the resistance Twet of the hygroscopic state, dielectric loss tangent tandelta0, electrostatic capacity C0, the product R.C of the insulation resistance R and electrostatic capacity C, the frequency characteristic of electrostatic capacity to be the ratio of electrostatic capacity values in two different frequency bands, and the ratio C(hygroscopic)/C(dry) of the electrostatic capacity C in the hygroscopic state to the electrostatic capacity C in the dry state.

Description

【発明の詳細な説明】 人、産業上の利用分野 本発明は回転機コイルの絶縁劣化判定方法に関し、レジ
ン絶縁方式により絶縁が施こされたコイルの絶縁劣化を
判定する方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining insulation deterioration of a rotating machine coil, and is a method for determining insulation deterioration of a coil insulated by a resin insulation method.

B9発明の概要 本発明は、レジン絶縁方式により絶縁が施こされたコイ
ル絶縁層が乾燥しているか吸湿しているかを調べ、乾燥
時における検査項目と、吸湿時における検査項目を特定
してコイルの絶縁劣化を判定する方法である。
B9 Summary of the Invention The present invention examines whether a coil insulating layer insulated using a resin insulation method is dry or absorbs moisture, specifies inspection items when dry and inspection items when moisture is absorbed, and insulates the coil. This is a method for determining insulation deterioration.

C0従来の技術 高圧回転機コイルの絶縁方式は、昭和30年代前前半上
り、コンパウンド絶縁方式に代わり合成レジンを用いた
レジン絶縁方式が採用されてきている。コンパウンド絶
縁方式では、マイカテープを導体に巻回した後にアスフ
ァルトコンパウンドを高温で圧入して絶縁を施こしてい
る。これに対しレジン絶縁方式では、マイカテープを導
体に巻回した後に無溶剤レジンを真空含浸してから加熱
硬化させて絶縁を施こしている。レジン絶縁方式はコン
パウンド絶縁方式に比べ耐熱性が優れ電気的・1[的な
性能も優れているため、レジン絶縁方式を採用して以来
、機器の使用温度や使用電界の強さなどが著しく向上し
てきている。
C0 Conventional Technology The insulation method for high-voltage rotating machine coils was introduced in the first half of the 1950s, and resin insulation methods using synthetic resin have been adopted instead of compound insulation methods. In the compound insulation method, after wrapping mica tape around the conductor, asphalt compound is press-fitted at high temperature to provide insulation. On the other hand, in the resin insulation method, after winding mica tape around a conductor, the conductor is vacuum impregnated with a solvent-free resin and then heated and cured to provide insulation. The resin insulation method has superior heat resistance and electrical performance compared to the compound insulation method, so since adopting the resin insulation method, the operating temperature of equipment and the strength of the electric field used have significantly improved. I've been doing it.

しかしその一方で特に近年において、機器の小型・軽量
化に伴い絶縁層厚が縮小され、更に高機能化に伴い絶縁
層に加わる電圧・熱・機械力などのストレスが強まって
いる。この結果、レジン絶縁方式を高圧回転機に採用し
た当初では絶縁劣化による損傷が小さかったにもかかわ
らず、むしろ近年において絶縁劣化による損傷が大きく
なってきている。
On the other hand, especially in recent years, the thickness of the insulating layer has been reduced as devices have become smaller and lighter, and as devices have become more sophisticated, the stresses such as voltage, heat, and mechanical force applied to the insulating layer have become stronger. As a result, although damage caused by insulation deterioration was small when the resin insulation method was first adopted for high-voltage rotating machines, damage caused by insulation deterioration has actually become larger in recent years.

D、 発明が解決しようとする課題 上述したように近年になって絶縁劣化損傷が問題になっ
てきているが、絶縁劣化の度合いを知りそれに基づいて
劣化の判定を行う絶縁劣化判定基準は、旧来のフンパウ
ンド絶縁方式については電力中央研究所が提唱した統一
基準が確立されているが、現在の主流であるレジン絶縁
方式については有効な基準がないというのが現状である
D. Problems to be Solved by the Invention As mentioned above, insulation deterioration damage has become a problem in recent years, but the insulation deterioration judgment standard, which involves knowing the degree of insulation deterioration and determining the deterioration based on that, has not been used in the past. Although a unified standard proposed by the Central Research Institute of Electric Power Industry has been established for the foam pound insulation method, there are currently no valid standards for the resin insulation method, which is currently the mainstream.

本発明は、かかる実状に鑑み、レジン絶縁方式を施こし
た高圧回転機コイルの絶縁劣化度合を知り、精度良くそ
の劣化判定を行うことのできる回転機コイルの絶縁劣化
判定方法を提供するものである。
In view of the above circumstances, the present invention provides a method for determining insulation deterioration of a rotating machine coil, which allows knowing the degree of insulation deterioration of a high-voltage rotating machine coil using a resin insulation method and accurately determining the deterioration. be.

80課題を解決するための手段 上記課題を解決する本発明は、 レジン絶縁方式により絶縁が施こされた回転機コイルの
絶縁層が、乾燥しているか吸湿しているかを調べ、 乾燥時には、 (1)第2電流急増点P12と絶縁破壊電圧V、。
80 Means for Solving the Problems The present invention solves the above problems by checking whether the insulation layer of a rotating machine coil insulated using a resin insulation method is dry or absorbing moisture, and when dry, ( 1) Second current rapid increase point P12 and dielectric breakdown voltage V.

との比V、。/P、2、 (2)電流増加率Δ11 (3)部分放電発生頻度n1 (4)部分放電開始電圧vl、 (5)最大放電電荷Qlllll)l、(6)絶縁抵抗
値Rと静電容量Cの積R−C。
The ratio with V,. /P, 2, (2) Current increase rate Δ11 (3) Partial discharge occurrence frequency n1 (4) Partial discharge starting voltage vl, (5) Maximum discharge charge Qllllll)l, (6) Insulation resistance value R and capacitance The product of C is R-C.

を基に絶縁劣化を判定し、 吸湿時には、 (7)絶縁抵抗R1 (8)常態時の抵抗R0,,と吸湿時の抵抗札、との抵
抗比log (RO,、/ R,□)、(9)誘電正接
ムδ。、 01  静電容量C0、 (11J  絶縁抵抗Rと静電容量Cの積R−C。
Insulation deterioration is determined based on, and when moisture is absorbed, (7) Insulation resistance R1 (8) Resistance ratio between resistance R0, during normal state and resistance tag when moisture is absorbed, log (RO,, / R, □), (9) Dielectric loss tangent δ. , 01 Capacitance C0, (11J Product R-C of insulation resistance R and capacitance C.

(1乃 異なる2つの周波数における静電容量の比であ
る静電容量の周波数特性、 (11吸湿時の静電容量C/ (吸湿)と乾燥時の静電
容量C/ (乾燥)との比C’(吸湿)/C′(乾燥)
、 を基に絶縁層の絶縁劣化を判定することを特徴とする。
(1. Frequency characteristics of capacitance, which is the ratio of capacitance at two different frequencies. C' (moisture absorption) / C' (drying)
It is characterized by determining the insulation deterioration of the insulating layer based on , .

F、実施例 本発明方法では、コイルの絶縁層の劣化状態を判定する
のに、まずはじめに絶縁層が乾燥しているか吸湿してい
るかを調べ、乾燥時には次に示す(1)〜(6)の検査
項目を基に絶縁劣化状態を判定し、吸湿時には次に示す
(7)〜(11の検査項目を基に絶縁劣化状態を判定す
る。
F. Example In the method of the present invention, to determine the deterioration state of the insulating layer of the coil, first check whether the insulating layer is dry or absorbs moisture, and when dry, perform the following (1) to (6). The state of insulation deterioration is determined based on the inspection items (7) to (11) shown below at the time of moisture absorption.

なお11[KV]級のコイルでは検査項目のカッコ内に
示した値になると劣化が進んだ危険領域と判定する。こ
の判定において、検査項目のうち1つの項目での値が危
険となった、たとえ他の項目の値が安全領域になっても
、劣化が進んで危険と判定する。
For 11 [KV] class coils, if the value shown in the parentheses of the inspection item is reached, it is determined that the coil is in a dangerous area where deterioration has progressed. In this determination, even if the value of one of the inspection items becomes dangerous, even if the values of the other items are in the safe range, the deterioration has progressed and it is determined to be dangerous.

(1)第2電流急増点P12と絶縁破壊電圧V、。(1) Second current rapid increase point P12 and dielectric breakdown voltage V.

どノ比V、。/P、  (1,8〜2.2)(2)電流
増加率ΔI  (1,25E/l−のときは4.0%以
上、Eのときは8.0%以上)(3)部分放電発生頻度
n (4)部分放電開始電圧V (5)最大放電電荷Qや、。
Donobi V. /P, (1,8~2.2) (2) Current increase rate ΔI (4.0% or more when 1,25E/l-, 8.0% or more when E) (3) Partial discharge Occurrence frequency n (4) Partial discharge starting voltage V (5) Maximum discharge charge Q.

(6)絶縁抵抗値Rと静電容量Cの積R−C(600Ω
F以下) (7)絶縁抵抗R (8)常態時の抵抗R0,,yと吸湿時の抵抗札。
(6) Product R-C of insulation resistance value R and capacitance C (600Ω
F or less) (7) Insulation resistance R (8) Resistance R0,,y during normal conditions and resistance tag during moisture absorption.

との抵抗比log(R,、、/ RL、1.) (3,
0以上)(9)誘電正接−δ。(8,0%以上)α呻 
静電容量C0 (2)絶縁抵抗Rと静電容量Cの積R−C(3ΩF以下
) 04  静電容量の周波数特性 C12゜H−/CL。、(1,5以上)圓 吸湿時の静
電容量C(吸湿)と乾燥時の静電容量C(乾燥)との比
C(吸湿) /C(乾燥)(1kHzのとき1.6以上)上述した結
果を得るに至った実験を以下に説明する。
The resistance ratio log(R,,,/RL,1.) (3,
0 or more) (9) Dielectric loss tangent −δ. (8.0% or more) α groan
Capacitance C0 (2) Product of insulation resistance R and capacitance C RC (3ΩF or less) 04 Frequency characteristic of capacitance C12°H-/CL. , (1.5 or more) Ratio of capacitance C during moisture absorption (moisture absorption) to capacitance C during drying (dry) C (moisture absorption) /C (dry) (1.6 or more at 1kHz) The experiments that led to the above results will be described below.

まず第1図を基に実験に用いた試料を説明する。試料と
なるコイル1では、長さ600閣の棒導体を複数束ねて
なる導体la上に、マイカテープ(フレークマイカテー
プとIllママイカテープ混用)を巻回して絶縁層1b
を形成し、絶縁層1bに樹脂レジン(ポリエステルレジ
ン)を含浸して加熱硬化している。
First, the sample used in the experiment will be explained based on FIG. In the sample coil 1, mica tape (mixed flake mica tape and Ill mica tape) is wound around the conductor la, which is made by bundling a plurality of rod conductors with a length of 600 mm, to form an insulating layer 1b.
The insulating layer 1b is impregnated with resin (polyester resin) and cured by heating.

コイル1の中央には、長さ160閤の低抵抗層2を絶縁
層lb上に巻回して取り付け、コイル1をモデルスロッ
ト3に収めた。このモデルスロット3が、後に述べる実
験において、低圧側電極として用いられ、導体1aには
高圧倒電極が取り付けられる。
At the center of the coil 1, a low resistance layer 2 having a length of 160 layers was attached by winding it on the insulating layer lb, and the coil 1 was housed in the model slot 3. This model slot 3 is used as a low-voltage side electrode in experiments described later, and a high-overwhelm electrode is attached to the conductor 1a.

試料となるコイル1は、炉中にて熱による劣化を受け、
その後、一端を固定した片持ちぼり形式として他端を加
振した振動劣化を受けている。更に環境的要因も含むよ
う吸湿させた。これら劣化条件は次のとおりである。
Coil 1, which is a sample, undergoes thermal deterioration in the furnace,
After that, it was placed in a cantilevered form with one end fixed and the other end subjected to vibration deterioration. Furthermore, moisture absorption was made to include environmental factors. These deterioration conditions are as follows.

熱ニヨル劣化条件  160℃(MAX100日)振動
による劣化条件 1500μ5train(量大ひずみ
量)吸 湿 条 件   相対湿度95%以上(2日間
)このようにして劣化させた試料コイル1を用いて、次
に説明するような直流電圧試験、誘電正接試験、交流電
流試験、部分放電試験、その他の試験を行なった。
Thermal deterioration conditions 160°C (MAX 100 days) Vibration deterioration conditions 1500μ5 train (large amount of strain) Moisture absorption conditions Relative humidity 95% or more (2 days) Using sample coil 1 degraded in this way, A DC voltage test, a dielectric loss tangent test, an AC current test, a partial discharge test, and other tests were conducted as described.

ここで試験と検査項目と残存絶縁耐力との相関性(相関
のあるものにOを付けている)を、表にして示しておく
。なお表中の数値は11KV級のコイルの危険値である
Here, the correlation between the test, inspection items, and residual dielectric strength (correlations are marked with O) is shown in a table. The values in the table are dangerous values for 11KV class coils.

第2図は直流電圧試験の回路を示す。この試験では試料
コイル1に直流電圧を印加し、絶縁層1bの絶縁抵抗R
を超絶縁計10で測定する。測定項目は電圧印加を開始
してから1分間目の絶縁抵抗値R1と、電圧印加を開始
してから100分間目絶縁抵抗値RIOである。また印
加電圧は100OVである。
Figure 2 shows the circuit for DC voltage testing. In this test, a DC voltage was applied to the sample coil 1, and the insulation resistance R of the insulating layer 1b was
is measured using a super megohmmeter 10. The measurement items are an insulation resistance value R1 for one minute after starting voltage application, and an insulation resistance value RIO for 100 minutes after starting voltage application. Further, the applied voltage was 100OV.

この直流電圧試験から成極指数P、Iを次式%式% このときP、I≧2.0であるならば乾燥していると判
定し、P、I<2.0であるならば吸湿していると判定
する。
From this DC voltage test, the polarization index P, I is determined by the following formula % formula % At this time, if P, I ≧ 2.0, it is determined that it is dry, and if P, I < 2.0, it is determined that it is dry. It is determined that the

第3図は直流電圧試験により得た、常態時の抵抗R8,
yと吸湿時の抵抗Ru、どの抵抗比log(Ro□/R
1,l、、)の実験データを示す。この実験から、抵抗
比を基に吸湿時における絶縁劣化を判定をすることがで
きることがわかる。
Figure 3 shows the resistance R8 under normal conditions, obtained by a DC voltage test.
y, the resistance Ru during moisture absorption, and which resistance ratio log (Ro□/R
1, l, , ) are shown. This experiment shows that insulation deterioration during moisture absorption can be determined based on the resistance ratio.

つまり、log (Ro、、/ R,、、)の値がある
値を越えると、運転上必要な耐力(2E+1)KVを保
持できなくなるのである。なおEは定格電圧である。
In other words, when the value of log (Ro, , / R, , ) exceeds a certain value, it becomes impossible to maintain the proof stress (2E+1) KV required for operation. Note that E is the rated voltage.

また絶縁抵抗Rを検査することによっても、吸湿時の絶
縁劣化を判定することができろ。
Insulation deterioration due to moisture absorption can also be determined by inspecting the insulation resistance R.

第4図は誘電正接試験や交流電流試験をする回路を示す
。誘電正接試験では試料コイル1に商用周波電圧を印加
し、検出部11により絶縁[1bの誘電正接−δ。及び
静電容量C8を検出する。検出データは、光フアイバケ
ーブル12で接続された表示部13に表示される。また
交流電流試験では試料コイル1に商用周波電圧を印加し
、検出部11により、第2電流急増点P、2と絶縁破壊
電圧V、。どの比”ao/” +2、印加電圧が1.2
5E/43のときの電流増加率Δ■1、印加電圧がEの
ときの電流増加率Δ■2、を検出する。
Figure 4 shows a circuit for conducting a dielectric loss tangent test and an alternating current test. In the dielectric loss tangent test, a commercial frequency voltage is applied to the sample coil 1, and the detection unit 11 detects the insulation [dielectric loss tangent of 1b - δ]. and detect capacitance C8. The detected data is displayed on a display section 13 connected via an optical fiber cable 12. In the alternating current test, a commercial frequency voltage is applied to the sample coil 1, and the detection unit 11 detects the second current rapid increase point P,2 and the dielectric breakdown voltage V,. Which ratio "ao/" +2, applied voltage is 1.2
The current increase rate Δ■1 when the applied voltage is 5E/43 and the current increase rate Δ■2 when the applied voltage is E are detected.

第5図は誘電正接試験により得た吸湿時の誘電正接−δ
。の実験データを示す。この実験から、吸湿時において
誘電正接−δ。を基に絶縁劣化を判定をすることができ
ることがわかる。
Figure 5 shows the dielectric loss tangent -δ during moisture absorption obtained from the dielectric loss tangent test.
. Experimental data is shown. From this experiment, the dielectric loss tangent −δ during moisture absorption. It can be seen that insulation deterioration can be determined based on this.

また静電容量C0を検査することによっても、吸湿時の
絶縁劣化を判定することができる。
Insulation deterioration during moisture absorption can also be determined by inspecting the capacitance C0.

第6図は交流電流試験により得た乾燥時におけろ第2電
流急増点P1□と絶縁破壊電圧v8゜との沈入。/P、
2の実験データを示す。この実験から、乾燥時において
比’+50 / Pl 2を基に絶縁劣化を判定するこ
とができることがわかる。
FIG. 6 shows the difference between the second current rapid increase point P1□ and the dielectric breakdown voltage v8° during drying obtained from an alternating current test. /P,
The experimental data of 2 is shown. This experiment shows that insulation deterioration can be determined based on the ratio '+50/Pl 2 when dry.

第7図は交流電流試験により得た乾燥時に13ける電流
増加率Δ11(印加電圧が1.25E/43のとき)と
電流増加率ΔI2(印加電圧がEのとき)の実験データ
を示す。この実験から乾燥時において電流増加率Δ!1
.ΔI2を基に絶縁劣化を判定をすることができること
がわかる。
FIG. 7 shows experimental data of the current increase rate Δ11 (when the applied voltage is 1.25E/43) and the current increase rate ΔI2 (when the applied voltage is E) during drying obtained by an alternating current test. From this experiment, the current increase rate Δ during drying! 1
.. It can be seen that insulation deterioration can be determined based on ΔI2.

第8図は部分放電試験をする回路を示す。FIG. 8 shows a circuit for performing a partial discharge test.

部分放電試験では試料コイル1に商用周波電圧を印加し
、検出部14及びコロナ測定器15により、部分放電発
生頻度n、部分放電開始電圧■及び最大放電電荷Q1.
8を検出する。
In the partial discharge test, a commercial frequency voltage is applied to the sample coil 1, and the detection unit 14 and corona measuring device 15 measure the partial discharge occurrence frequency n, the partial discharge inception voltage (■), and the maximum discharge charge Q1.
8 is detected.

第9図は部分放電試験により得た乾燥時にオ+f ル6
.4 KV級、B KV級、IIKV級ノ各コイルの部
分放電発生頻度nの実験データを示す。この実験から乾
燥時において部分放電発生頻度nを基に絶縁劣化を判定
することができることがわかる。
Figure 9 shows the o + f 6 during drying obtained from the partial discharge test.
.. 4 Experimental data on partial discharge occurrence frequency n of each coil of KV class, B KV class, and IIKV class is shown. This experiment shows that insulation deterioration can be determined based on the partial discharge occurrence frequency n during drying.

第10図は部分放電試験により得た乾燥時における部分
放電開始電圧V(32PCのときと100OPCのとき
)の実験データを示す。この実験から乾燥時において部
分放電開始電圧Vを基に絶縁劣化を判定することができ
ることがわかる。
FIG. 10 shows experimental data of the partial discharge inception voltage V (at 32 PC and at 100 OPC) during drying obtained from a partial discharge test. This experiment shows that insulation deterioration can be determined based on the partial discharge inception voltage V during drying.

第11図は部分放電試験により得た乾燥時における6、
4KV級、8KV級のコイルの最大放電電荷Q9.8の
実験データを示す。この実験から乾燥時において最大放
電電荷Q、、8を基に絶縁劣化を判定することができろ
ことがわかる。
Figure 11 shows 6 during drying obtained from the partial discharge test.
Experimental data of maximum discharge charge Q9.8 of 4KV class and 8KV class coils is shown. This experiment shows that insulation deterioration can be determined based on the maximum discharge charge Q, 8 during drying.

第12図は乾燥時における絶縁抵抗値R(直流1000
Vを印加して1分間経過したときのMeg値)と静電容
量C(IKHzのときの値)との積RCの実験データを
示す。このデータから乾燥時においてRCの値から絶縁
劣化を判定することができることがわかる。
Figure 12 shows the insulation resistance value R when dry (DC 1000
Experimental data of the product RC of the Meg value (Meg value when 1 minute has elapsed after applying V) and the capacitance C (value when IKHz is applied) are shown. This data shows that insulation deterioration can be determined from the RC value during drying.

第13図は吸湿時における絶縁抵抗値R(直流1000
Vを印加してから1分間経過したときのMeg値)と静
電容量C(IKHzと120 Hzのときの値)との積
RCの実験データを示す。このデータから吸湿時におい
てRCの値から絶縁劣化を判定することができることが
わかる。
Figure 13 shows the insulation resistance value R (DC 1000
Experimental data of the product RC of the Meg value (one minute after applying V) and the capacitance C (value at IKHz and 120 Hz) are shown. This data shows that insulation deterioration can be determined from the RC value during moisture absorption.

第14図は吸湿時において、絶縁層1bの静電容量C(
120Hzのときの値)と静電容量C8゜工(IKHz
のときの値)との比である周波数特性C82゜H□/C
IKH工の実験データを示す。このデータから吸湿時に
おいて周波数特性C42゜Ht/ CIK+4xを基に
絶縁劣化を判定することができることがわかる。
Figure 14 shows the capacitance C(
(value at 120Hz) and capacitance C8゜(IKHz
Frequency characteristic C82゜H□/C
Experimental data of IKH engineering is shown. This data shows that insulation deterioration can be determined based on the frequency characteristic C42°Ht/CIK+4x during moisture absorption.

第15図は吸湿時の静電容量C(吸湿)と乾燥時の静電
容量C(乾燥)との比C(吸湿)/C(乾燥)の実験デ
ータを示す。このデータから吸湿時においてC(吸湿)
 /C(乾燥)の値から絶縁劣化を判定することができ
ることがわかる。
FIG. 15 shows experimental data of the ratio C(moisture absorption)/C(dry) of the capacitance C during moisture absorption (moisture absorption) and the capacitance C during drying (dry). From this data, when moisture is absorbed, C (moisture absorption)
It can be seen that insulation deterioration can be determined from the value of /C (dry).

G9発明の詳細 な説明したように本発明によれば、レジン絶縁が施こさ
れたコイルの絶縁層の劣化状態を、特定項目の試験によ
り正確に判定することができる。
As described in detail of the G9 invention, according to the present invention, the deterioration state of the insulating layer of a coil insulated with resin can be accurately determined by testing specific items.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試料となるコイルを示す斜視図、第2図は直流
電圧試験を示す回路を示す回路図、 第3図は抵抗比log (Ro、、/ Ruet)の実
験データを示す特性図、 第4図は誘電正接試験及び交流電流試験をする回路を示
す回路図、 第5図は誘電正接−δ。の実験データを示す特性図、 第6図は比v6゜/P、2の実験データを示す特性図、 第7図は電流増加率Δ■の実験データを示す特性図、 第8図は部分放電試験をする回路を示す回路図、 第9図は部分放電発生頻度nの実験データを示す特性図
、 第10図は部分放電開始電圧■の実験データを示す特性
図、 第11図は最大放電電荷Qあ1、の実験データを示す特
性図、 第12図、第13図は積RCの実験データを示す特性図
、 第14図は静電容量の周波数特性の実験データを示す特
性図、 第15図は吸湿時と乾燥時の静電容量の比の実験データ
を示す特性図である。 図面中、 1はコイル、 1aは導体、 1bは絶縁層、 2は低抵抗層、 3はモデルスロット、 10は超絶縁計、 11.14は検出部、 12は光フアイバケーブル) 13は表示部である。
Fig. 1 is a perspective view showing a sample coil, Fig. 2 is a circuit diagram showing a circuit showing a DC voltage test, Fig. 3 is a characteristic diagram showing experimental data of resistance ratio log (Ro, , / Ruet), Fig. 4 is a circuit diagram showing a circuit for conducting a dielectric loss tangent test and an alternating current test, and Fig. 5 shows a dielectric loss tangent -δ. Figure 6 is a characteristic diagram showing experimental data for ratio v6°/P, 2, Figure 7 is a characteristic diagram showing experimental data for current increase rate Δ■, Figure 8 is partial discharge. A circuit diagram showing the circuit to be tested. Fig. 9 is a characteristic diagram showing experimental data of partial discharge occurrence frequency n. Fig. 10 is a characteristic diagram showing experimental data of partial discharge inception voltage ■. Fig. 11 is a maximum discharge charge. Figures 12 and 13 are characteristic diagrams showing experimental data of product RC. Figure 14 is a characteristic diagram showing experimental data of frequency characteristics of capacitance. The figure is a characteristic diagram showing experimental data on the ratio of capacitance during moisture absorption and drying. In the drawing, 1 is a coil, 1a is a conductor, 1b is an insulating layer, 2 is a low resistance layer, 3 is a model slot, 10 is a super megohmmeter, 11.14 is a detection part, 12 is an optical fiber cable) 13 is a display part It is.

Claims (1)

【特許請求の範囲】 レジン絶縁方式により絶縁が施こされた回転機コイルの
絶縁層が、乾燥しているか吸湿しているかを調べ、 乾燥時には、 (1)第2電流急増点P_i_2と絶縁破壊電圧V_B
_Dとの比V_B_D/P_i_2、 (2)電流増加率ΔI、 (3)部分放電発生頻度n、 (4)部分放電開始電圧V_i、 (5)最大放電電荷Q_m_a_x、 (6)絶縁抵抗値Rと静電容量Cの積R・C、を基に絶
縁劣化を判定し、 吸湿時には、 (7)絶縁抵抗R、 (8)常態時の抵抗R_D_r_yと吸湿時の抵抗R_
W_e_tとの抵抗比log(R_D_r_y/R_W
_e_t)、 (9)誘電正接tanδ_o、 (10)静電容量C_o、 (11)絶縁抵抗Rと静電容量Cの積R・C、 (12)異なる2つの周波数における静電容量の比であ
る静電容量の周波数特性、 (13)吸湿時の静電容量C(吸湿)と乾燥時の静電容
量C(乾燥)との比C(吸湿)/C(乾燥)、を基に絶
縁層の絶縁劣化を判定することを特徴とする回転機コイ
ルの絶縁劣化判定方法。
[Claims] It is checked whether the insulating layer of the rotating machine coil, insulated by the resin insulation method, is dry or absorbs moisture. Voltage V_B
_D ratio V_B_D/P_i_2, (2) current increase rate ΔI, (3) partial discharge occurrence frequency n, (4) partial discharge starting voltage V_i, (5) maximum discharge charge Q_m_a_x, (6) insulation resistance value R. Insulation deterioration is determined based on the product R・C of capacitance C, and when moisture is absorbed, (7) insulation resistance R, (8) resistance during normal state R_D_r_y and resistance during moisture absorption R_
Resistance ratio log(R_D_r_y/R_W
_e_t), (9) dielectric loss tangent tanδ_o, (10) capacitance C_o, (11) product R・C of insulation resistance R and capacitance C, (12) ratio of capacitance at two different frequencies. Frequency characteristics of capacitance, (13) Ratio of capacitance C during moisture absorption (moisture absorption) to capacitance C during drying (dry), C (moisture absorption)/C (dry), of the insulating layer. A method for determining insulation deterioration of a rotating machine coil, the method comprising determining insulation deterioration.
JP1209650A 1989-08-15 1989-08-15 Method for determining insulation deterioration of rotating machine coil Expired - Fee Related JP2961756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1209650A JP2961756B2 (en) 1989-08-15 1989-08-15 Method for determining insulation deterioration of rotating machine coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1209650A JP2961756B2 (en) 1989-08-15 1989-08-15 Method for determining insulation deterioration of rotating machine coil

Publications (2)

Publication Number Publication Date
JPH0373875A true JPH0373875A (en) 1991-03-28
JP2961756B2 JP2961756B2 (en) 1999-10-12

Family

ID=16576316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1209650A Expired - Fee Related JP2961756B2 (en) 1989-08-15 1989-08-15 Method for determining insulation deterioration of rotating machine coil

Country Status (1)

Country Link
JP (1) JP2961756B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430951B1 (en) 1991-04-26 2002-08-13 Denso Corporation Automotive airconditioner having condenser and evaporator provided within air duct
JP2012132767A (en) * 2010-12-21 2012-07-12 Mitsubishi Electric Corp Insulation characteristic evaluation method for coils
CN113092864A (en) * 2021-04-20 2021-07-09 清华珠三角研究院 Method for detecting degraded porcelain insulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148379U (en) * 1984-08-31 1986-04-01
JPH01150975A (en) * 1987-12-08 1989-06-13 Nippon Denso Co Ltd Map picture display device
JPH01153975A (en) * 1987-12-11 1989-06-16 Meidensha Corp Monitoring method for insulation deterioration of rotating machine coil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148379U (en) * 1984-08-31 1986-04-01
JPH01150975A (en) * 1987-12-08 1989-06-13 Nippon Denso Co Ltd Map picture display device
JPH01153975A (en) * 1987-12-11 1989-06-16 Meidensha Corp Monitoring method for insulation deterioration of rotating machine coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430951B1 (en) 1991-04-26 2002-08-13 Denso Corporation Automotive airconditioner having condenser and evaporator provided within air duct
JP2012132767A (en) * 2010-12-21 2012-07-12 Mitsubishi Electric Corp Insulation characteristic evaluation method for coils
CN113092864A (en) * 2021-04-20 2021-07-09 清华珠三角研究院 Method for detecting degraded porcelain insulator

Also Published As

Publication number Publication date
JP2961756B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
Farahani et al. Behavior of machine insulation systems subjected to accelerated thermal aging test
CN103105566B (en) Oil paper insulation electrical equipment aging state detection method based on universal relaxation law
WO2006073016A1 (en) Superconductive cable withstand voltage test method
Yousof et al. A new approach for estimating insulation condition of field transformers using FRA
Emery Partial discharge, dissipation factor, and corona aspects for high voltage electric generator stator bars and windings
JPH0373875A (en) Method for deciding deterioration of insulation in coil of rotating machine
Williamson et al. Investigation of equivalent stator-winding thermal resistance during insulation system ageing
Kim et al. Assessment of Insulation Deterioration in Stator Windings of High Voltage Motor
McNutt et al. Short-time failure mode considerations associated with power transformer overloading
Aakre et al. Review of partial discharge and dielectric loss tests for hydropower generator bars
Rushall et al. An examination of high-voltage dc testing applied to large stator windings
Moghadam et al. Dielectric parameters of unimpregnated mica tape under humid condition
Prasad et al. PD Measurement of Rotating Machine for Condition Monitoring
Prasad et al. PD Measurement of Rotating Machine for Condition Monitoring
Al-Ameri et al. Investigating the capacitive inter-winding response of power transformer
Moghadam et al. Effect of humidity on high voltage testing of VPI insulation systems before impregnation
Brncal et al. Analysing of insulating system oil-paper of power transformers by frequency dielectric spectroscopy
CN104267293B (en) High-voltage testing equipment and method
Mahvi et al. Power Auto-transformer Mechanical Faults Diagnosis‎ Using Finite Element based FRA
Dauksys et al. Investigation of partial discharges at the high voltage electric motor bars
Eberg et al. Multi-stress cyclic testing of Roebel Stator Bars for Hydropower
Dixit et al. Field Investigation for Application of Existing FDS Based Moisture Diagnostic Tool for Power Transformer Insulation System
Hayashida Influence of Oil Temperature on Repeatability of Measurements in Frequency Response Analysis of Power Transformers
Azpiazu et al. Comparison of Impedance Spectroscopy and Partial Discharge Analysis as Insulation Health Diagnosis Techniques
Jeong et al. Assessment of 23 kV Capacitive Coupler for On-line Partial Discharge Measurements

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees