JPH01153975A - Monitoring method for insulation deterioration of rotating machine coil - Google Patents

Monitoring method for insulation deterioration of rotating machine coil

Info

Publication number
JPH01153975A
JPH01153975A JP62312106A JP31210687A JPH01153975A JP H01153975 A JPH01153975 A JP H01153975A JP 62312106 A JP62312106 A JP 62312106A JP 31210687 A JP31210687 A JP 31210687A JP H01153975 A JPH01153975 A JP H01153975A
Authority
JP
Japan
Prior art keywords
insulating layer
rotating machine
capacitance
deterioration
electrostatic capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62312106A
Other languages
Japanese (ja)
Other versions
JPH0690256B2 (en
Inventor
Hisashi Suwahara
諏訪原 久
Takashi Tokuda
徳田 隆士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP62312106A priority Critical patent/JPH0690256B2/en
Publication of JPH01153975A publication Critical patent/JPH01153975A/en
Publication of JPH0690256B2 publication Critical patent/JPH0690256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To previously preclude a dielectric breakdown accident by inspecting the electrostatic capacity of the insulating layer of a rotating machine coil and detecting remaining dielectric strength from the quantity C''/C' of variation in electrostatic capacity C'' measured by using a couple of measured frequencies to the electrostatic capacity C'. CONSTITUTION:The insulating layer 2b of the high-voltage rotating machine coil 2 is formed of mica and resin. In this state, the electrostatic capacity of the insulating layer 2b between a conductor 2a and a model slot 1 is measured to obtain a constant value shown by a prescribed expression. Here, when the high-voltage rotating machine is used for a long time, composite stress is applied to the insulating layer 2b, a void and a cavity part 3 for control, etc., are produced between mica tapes in the insulating layer 2b and the conductor 2a and insulating layer 2b. The specific dielectric constant epsilon' of this cavity part 3 is nearly 1, so the electrostatic capacity of the insulating layer 2b at the time of deterioration is different from the value in the initial state. The deterioration like this causes the insulating layer 2b to decrease in dielectric strength and makes it difficult to absorb moisture.

Description

【発明の詳細な説明】 人、産業上の利用公費 本発明は回転機コイルの絶縁劣化監視方法に関し、絶縁
劣化を容易かつ正確に検出することができるように企図
したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for monitoring insulation deterioration of rotating machine coils, and is intended to enable easy and accurate detection of insulation deterioration.

B1発明の概要 本発明は、劣化したコイルの絶縁層が吸湿すると絶縁層
の静電容量に周波数依存性が現われ、測定周波数によっ
て静電容量が変化するという現象を応用し、その変化の
割合を計測することによし劣化・吸湿度合を把握し絶縁
層の残存破壊耐力を推定するものである。
B1 Summary of the Invention The present invention applies the phenomenon that when the insulating layer of a deteriorated coil absorbs moisture, the capacitance of the insulating layer becomes frequency dependent, and that the capacitance changes depending on the measurement frequency, and calculates the rate of change. Through measurement, the deterioration and moisture absorption ratio can be ascertained and the remaining breakdown strength of the insulating layer can be estimated.

C1従来の技術 高圧回転機は小型・軽量化する傾向にあり使用温度や使
用電圧が高くなっている。そこで機器の長期寿命を確保
すべく回転機コイルの絶縁に高い信頼性が要求されてい
る。
C1 Conventional technology High-voltage rotating machines tend to be smaller and lighter, and their operating temperatures and operating voltages are increasing. Therefore, in order to ensure the long life of the equipment, high reliability is required for the insulation of rotating machine coils.

高圧回転機では、運転時に、電気ストレスの他に導体の
温度上昇による熱的ストレス。
In high-voltage rotating machines, during operation, in addition to electrical stress, there is thermal stress due to the temperature rise of the conductor.

起動・停止に伴なうヒートサイクルによる熱応力、振動
・曲げによる機械的ストレスなどの複合ストレスがコイ
ルの絶縁層に加わる。
Combined stress, including thermal stress due to heat cycles associated with startup and shutdown, and mechanical stress due to vibration and bending, is applied to the coil's insulating layer.

D、 発明が解決しようとする問題点 信頼性向上の観点からは、長期運転中のコイル絶縁層の
劣化状態を把握し、絶縁破壊に至るのを未然に防ぐ必要
がある。しかし従来では、劣化状態を簡便で正確に検出
できる手段がなかった。そこで従来では、回転機の運転
前にヒータで回転機を暖め、絶縁破壊事故の原因となる
湿気を除いてから運転を開始するなどの対策をほどこし
ていた。
D. Problems to be Solved by the Invention From the viewpoint of improving reliability, it is necessary to understand the deterioration state of the coil insulating layer during long-term operation and prevent dielectric breakdown from occurring. However, in the past, there was no means for easily and accurately detecting the state of deterioration. Conventionally, countermeasures have been taken such as warming up the rotary machine with a heater before starting operation to remove moisture that can cause insulation breakdown accidents.

本発明は、上記実情に鑑み、運転中の高圧回転機の非破
壊特性を測定して絶縁劣化診断を行い、絶縁層の劣化状
態を把握し、残存耐力がどのくらいあるかを推定する絶
縁劣化監視方法を提供するものである。
In view of the above-mentioned circumstances, the present invention provides insulation deterioration monitoring that measures the nondestructive characteristics of a high-voltage rotating machine during operation, performs insulation deterioration diagnosis, grasps the deterioration state of the insulating layer, and estimates the remaining strength. The present invention provides a method.

E 問題点を解決するための手段 上記絶縁劣化を監視する本発明は、回転機コイルの絶縁
層の静電容量を検査し、コイル劣化吸湿後におけるある
測定周波数を用いて測定した静電容量C′に対する他の
測定周波C′ 数を用いて測定した静電容量C′の変化率−C′ の値から、残存破壊耐力を検出することを特徴とする。
E. Means for Solving Problems The present invention for monitoring insulation deterioration described above inspects the capacitance of the insulating layer of a rotating machine coil, and calculates the capacitance C measured using a certain measurement frequency after the coil deteriorates and absorbs moisture. The method is characterized in that the remaining breakdown strength is detected from the value of the rate of change -C' of the capacitance C' measured using another measurement frequency C' with respect to '.

F実施例 まずはじめに本発明の基礎原理を説明する。F example First, the basic principle of the present invention will be explained.

本願発明者は、第1図に示すように、モデルスロット1
に回転機コイル2を装着し、導体2aとモデルスロット
1を検出電極として絶縁層2bの静電容量をブリッジ回
路を用いて検査したところ、非劣化時、劣化非吸湿時。
As shown in FIG.
When the rotating machine coil 2 was attached to the , and the conductor 2a and the model slot 1 were used as detection electrodes, the capacitance of the insulating layer 2b was tested using a bridge circuit.

劣化吸湿時によって静電容量が異なることを突き止めた
。このことを次に説明する。
It was found that the capacitance differs depending on the state of deterioration and moisture absorption. This will be explained next.

高圧の回転機コイル2の絶縁層2bはマイカと樹脂で形
成されており、製造直後の初期状態では、マイカと樹脂
が緊密に一体となっているので、絶縁特性や寿命に悪影
響を与えるような絶縁層2b内部の剥離や空隙は生じて
おらず、また吸湿することもない。よって絶縁破壊耐力
も大きい。この初期状態(第2図(a)参照)で導体2
aとモデルスロット1との間の絶縁層2bの静電容量を
測ると次式のようにある一定値を示した。
The insulating layer 2b of the high-voltage rotating machine coil 2 is made of mica and resin, and in the initial state immediately after manufacturing, the mica and resin are tightly integrated, so there is no possibility that it will have a negative impact on the insulation properties and lifespan. No peeling or voids occur inside the insulating layer 2b, and no moisture absorption occurs. Therefore, the dielectric breakdown strength is also large. In this initial state (see Fig. 2(a)), the conductor 2
When the capacitance of the insulating layer 2b between a and the model slot 1 was measured, it showed a certain constant value as shown in the following equation.

C= −X 8.855 X 10−” [F ] ・
・・・・・(1)但し C:初期状態の静電容量 ε:初期状態での絶縁層2bの比誘電率(ε〉〉1) S:検出電極面積(モデルスロット1の内側溝面積) d:絶縁層(導体2aとモデルスロット間)高圧回転機
を長期使用すると、これに伴い前述したような複合スト
レスが絶縁層2bに加わり劣化が起こり、絶縁層2b内
部でマイカテープ間や導体2aと絶縁層2b間などにボ
イドや剥離などの空隙部3が発生する(第2図(b)参
照)。空隙部3の比誘電率ε′はほぼ1であるため、劣
化時の絶縁52bの静電容量は初期状態での値と異なっ
てくる。このような劣化が生じると絶縁層2bの破fa
耐力は低下し吸湿しやすくなる。また絶R耐力が低下す
る6なお劣化時においても、運転中は、導体2aの熱に
よる高温上昇により湿気は蒸散し吸湿は生じない。そこ
で劣化後で且つ非吸湿時の静電容量を測ると次式のよう
になった。
C= -X 8.855 X 10-" [F] ・
...(1) However, C: Capacitance in the initial state ε: Relative permittivity of the insulating layer 2b in the initial state (ε〉〉1) S: Area of the detection electrode (area of the inner groove of the model slot 1) d: Insulating layer (between conductor 2a and model slot) When a high-voltage rotating machine is used for a long period of time, the above-mentioned complex stress is applied to the insulating layer 2b, causing deterioration. A void 3 such as a void or peeling occurs between the insulating layer 2b and the insulating layer 2b (see FIG. 2(b)). Since the relative permittivity ε' of the cavity 3 is approximately 1, the capacitance of the insulation 52b when deteriorated differs from the value in the initial state. If such deterioration occurs, the insulating layer 2b will fail.
The yield strength decreases and moisture absorption becomes more likely. Furthermore, even during deterioration when the absolute R proof strength decreases, moisture evaporates during operation due to the rise in temperature caused by the heat of the conductor 2a, and moisture absorption does not occur. Therefore, when we measured the capacitance after deterioration and when no moisture was absorbed, we found the following equation.

但し C1:劣化後非吸湿時の静電容量 ε、:劣化後非吸湿時の絶縁層2bの比誘電率(空隙部
も含む) ε〉ε 〉〉ε′=1 劣化状態で運転を停止すると絶縁層2bは吸湿し、吸湿
すると絶縁層2bの絶縁耐力は大きく低下する。このよ
うに劣化・吸湿した状態で運転を開始すると絶縁破壊事
故が起こる危険性が高くなる。なお枠縁層2b全体の比
誘電率は、吸湿時の比誘電率ε2(第2図(e)参照)
が非吸湿時の゛比誘電率ε、に比べて大きい。そこで劣
化後で且つ吸湿時の静電容量を測ると次式のようになっ
た。
However, C1: Capacitance ε when not absorbing moisture after deterioration,: Relative permittivity of the insulating layer 2b (including voids) when not absorbing moisture after deterioration ε〉ε 〉〉ε′=1 If the operation is stopped in a deteriorated state The insulating layer 2b absorbs moisture, and when it absorbs moisture, the dielectric strength of the insulating layer 2b decreases significantly. If operation is started in such a deteriorated and moisture-absorbed state, there is a high risk of an insulation breakdown accident. The relative permittivity of the entire frame edge layer 2b is the relative permittivity ε2 at the time of moisture absorption (see FIG. 2(e)).
is larger than the relative dielectric constant ε when moisture is not absorbed. Therefore, when we measured the capacitance after deterioration and during moisture absorption, we found the following equation.

但し C2:劣化後膜湿時の静電容量 (C2>C,) C2:劣化後膜湿時の絶縁層2bの比誘電率(C2〉C
1) 更に劣化・吸湿した絶縁層2bの静電容量には周波数依
存性が現われ、測定周波数によって静電容量が変化する
ことを見いだした。
However, C2: Capacitance when the film is wet after deterioration (C2>C,) C2: Relative dielectric constant of the insulating layer 2b when the film is wet after deterioration (C2>C,
1) It has been found that the capacitance of the insulating layer 2b that has further deteriorated and absorbed moisture shows frequency dependence, and that the capacitance changes depending on the measurement frequency.

この周波数依存性の実験データを第3図に示す。この実
験では、複合ストレスによって劣化を受けたコイルにつ
いて、吸湿前の常態における静電容量の周波数特性と吸
湿後の静電容量の周波数特性を、インピーダンス測定器
を用いて70H2〜IOMH,の範囲にわたって測定し
た。測定データから、劣化・吸湿が起こると特に10 
K H2以下の比較的低周波側で静電容量が増加し周波
数依存性が現われることが判明した。
Experimental data on this frequency dependence is shown in FIG. In this experiment, the frequency characteristics of the capacitance in the normal state before moisture absorption and the frequency characteristics of the capacitance after moisture absorption were measured using an impedance measuring device over the range of 70H2 to IOMH for the coil that had deteriorated due to complex stress. It was measured. From the measurement data, especially when deterioration and moisture absorption occurs,
It has been found that the capacitance increases and frequency dependence appears on the relatively low frequency side below KH2.

次に、残存破壊耐力の異なる各コイルを吸湿させ、第1
図に示す実験装置を用いて測定周波数が1000 H2
での静電容量C4゜。。と測定周波数が120 H2で
の静電容量C12゜を検めると、第4図の実線で示す特
性となった。
Next, each coil with different residual fracture strength is allowed to absorb moisture, and the first
The measurement frequency was 1000 H2 using the experimental equipment shown in the figure.
The capacitance at C4°. . When the capacitance C12° was examined at a measurement frequency of 120 H2, the characteristics were as shown by the solid line in FIG.

るに伴なって残存破壊耐力が低下するのが判る。It can be seen that the residual fracture strength decreases as the strength increases.

なることがわかる。なおEは回転機の定格(KVI で
あり、耐力(2E+1)KVlf電力会社や各メーカ等
で採用している、電力中央研究所の「発電機巻線絶縁劣
化判定基準」(電中研報告&67001)に準拠したも
のである。
I know what will happen. Note that E is the rating (KVI) of the rotating machine, and the proof strength (2E + 1) KVlf is based on the "Generator Winding Insulation Deterioration Judgment Criteria" (Report & 67001) of the Central Research Institute of Electric Power Industry, which is adopted by electric power companies and manufacturers. It is compliant.

SKV級の実際の@転機を用いて静電容量っtこ。この
ことから、実際の回転機においても静電容量の周波数特
性を追跡し、例えばンドポイントと判断し、機器の運転
を中断して点検・調査や絶縁診断等を行い、絶縁を巻替
えることにより絶縁破壊事故を未然に防止することがで
きる。
Capacitance using an actual SKV class turning machine. From this, it is possible to track the frequency characteristics of capacitance in actual rotating machines, and determine, for example, that the capacitance is at a certain point. Dielectric breakdown accidents can be prevented.

G、 発明の詳細 な説明したように本発明によれば静電容量の周波数特性
の変化率の値から残存絶縁耐力を容易且つ正確に検出で
き、絶縁破壊事故を未然に防止することができる。
G. Detailed Description of the Invention As described above, according to the present invention, residual dielectric strength can be easily and accurately detected from the value of the rate of change of frequency characteristics of capacitance, and dielectric breakdown accidents can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回転機コイルの静電容量を測定する一例を示す
斜視図、第2図(a) (bl (clζよ絶縁層の各
種状態を示す断面図、第3図は劣化コイルの静電容量と
周波数の関係を示す特性図、第4図は残存破壊耐力と静
電容量の周波数特性の変化率との関係を示す特性図であ
る。 図  面  中、 1はモデルスロット) 2は回転機コイル、 2aは導体、 2bは絶縁層、 3は空隙部である。
Figure 1 is a perspective view showing an example of measuring the capacitance of a rotating machine coil, Figure 2 (a) is a sectional view showing various states of the insulating layer, and Figure 3 is a cross-sectional view showing various states of the insulating layer. Figure 4 is a characteristic diagram showing the relationship between capacitance and frequency, and Figure 4 is a characteristic diagram showing the relationship between residual breakdown strength and the rate of change in the frequency characteristics of capacitance.In the diagram, 1 is a model slot) 2 is a rotating machine 2a is a conductor, 2b is an insulating layer, and 3 is a gap.

Claims (1)

【特許請求の範囲】[Claims]  回転機コイルの絶縁層の静電容量を検査し、コイル劣
化吸湿後におけるある測定周波数を用いて測定した静電
容量C′に対する他の測定周波数を用いて測定した静電
容量C″の変化率C″/C′(値から、残存破壊耐力を
検出することを特徴とする回転機コイルの絶縁劣化監視
方法。
The capacitance of the insulating layer of the rotating machine coil was inspected, and the rate of change in capacitance C'' measured using another measurement frequency with respect to the capacitance C' measured using a certain measurement frequency after the coil deteriorated and absorbed moisture. A method for monitoring insulation deterioration of a rotating machine coil, characterized by detecting residual breakdown strength from the value C″/C′.
JP62312106A 1987-12-11 1987-12-11 Method for monitoring insulation deterioration of rotating machine coil Expired - Fee Related JPH0690256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312106A JPH0690256B2 (en) 1987-12-11 1987-12-11 Method for monitoring insulation deterioration of rotating machine coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312106A JPH0690256B2 (en) 1987-12-11 1987-12-11 Method for monitoring insulation deterioration of rotating machine coil

Publications (2)

Publication Number Publication Date
JPH01153975A true JPH01153975A (en) 1989-06-16
JPH0690256B2 JPH0690256B2 (en) 1994-11-14

Family

ID=18025309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312106A Expired - Fee Related JPH0690256B2 (en) 1987-12-11 1987-12-11 Method for monitoring insulation deterioration of rotating machine coil

Country Status (1)

Country Link
JP (1) JPH0690256B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373875A (en) * 1989-08-15 1991-03-28 Meidensha Corp Method for deciding deterioration of insulation in coil of rotating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373875A (en) * 1989-08-15 1991-03-28 Meidensha Corp Method for deciding deterioration of insulation in coil of rotating machine

Also Published As

Publication number Publication date
JPH0690256B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
EP1503218B1 (en) Method for diagnosing deterioration of coil and system for diagnosing deterioration of coil
JPH01153975A (en) Monitoring method for insulation deterioration of rotating machine coil
JP2004347523A (en) Method for testing insulating property of coil
JPH01150870A (en) Monitoring method for insulation deterioration of rotary machine coil
KR101253687B1 (en) Insulation Degradation Diagnosis Apparatus
JPH01217272A (en) Method for monitoring insulating deterioration of rotating machine coil
JPH0453378B2 (en)
KR100805872B1 (en) Method and device for estimating remaining service life of coil
Gutten et al. Analysis of insulating parameters of oil transformer by time and frequency methods
JPS6087646A (en) Method of monitoring deterioration of insulation of coil for rotary electric machine
JPH01126570A (en) Insulation deterioration diagnosis for high voltage rotary machine
JP2961756B2 (en) Method for determining insulation deterioration of rotating machine coil
JPH0113300B2 (en)
JPH09304467A (en) Method for diagnosing insulation deterioration of electric insulator
JPH02291976A (en) Diagnostic method for insulation of coil of rotary electric machine
JPH0618604A (en) Diagnostic method for insulation deterioration and defect detecting method for power cable
Maur et al. Estimation of Thermal Aging of Epoxy-Alumina Nano-Composites for Dry-Type High Voltage Insulation Using Dielectric Modulus
Phloymuk et al. Dielectric Properties Analysis of Gas Turbine Synchronous Generator by Polarization and Depolarization Current Measuremen
JP2683544B2 (en) Insulation diagnosis method for windings of rotating electrical machines
Jeong et al. Assessment of 23 kV Capacitive Coupler for On-line Partial Discharge Measurements
JPS5855768A (en) Insulation diagnosing method
JP2795983B2 (en) Degradation diagnosis method for gas insulated transformer
JPH068852B2 (en) Electrical insulation diagnosis method
JP2012042256A (en) Method for diagnosing deterioration of motor winding
JPH09103050A (en) Method for diagnosing insulation in winding of low-volt dynamo electric machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees