JPH037369B2 - - Google Patents

Info

Publication number
JPH037369B2
JPH037369B2 JP25788087A JP25788087A JPH037369B2 JP H037369 B2 JPH037369 B2 JP H037369B2 JP 25788087 A JP25788087 A JP 25788087A JP 25788087 A JP25788087 A JP 25788087A JP H037369 B2 JPH037369 B2 JP H037369B2
Authority
JP
Japan
Prior art keywords
probe
probe body
sound
sound guide
dynamic characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25788087A
Other languages
Japanese (ja)
Other versions
JPH0199531A (en
Inventor
Hitoshi Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGASHIMA IKA KIKAI KK
Original Assignee
NAGASHIMA IKA KIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGASHIMA IKA KIKAI KK filed Critical NAGASHIMA IKA KIKAI KK
Priority to JP25788087A priority Critical patent/JPH0199531A/en
Publication of JPH0199531A publication Critical patent/JPH0199531A/en
Publication of JPH037369B2 publication Critical patent/JPH037369B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は中耳動特性の微細な変化を測定するこ
とのできる中耳動特性測定用プローブに関するも
のである。 「従来の技術」 従来、この種中耳動特性測定用プローブは外耳
道に挿入される外耳道挿入部の内部に3本のステ
ンレスのパイプを貫通固着し、これらのパイプの
突出端にそれぞれシリコンチユーブを連結し、そ
れぞれマイクロホン、プローブ用イヤホン、刺激
用イヤホンに連通し、また、刺激用イヤホンに連
通されたチユーブには圧力チユーブが分岐連通さ
れて構成されていた。 「発明が解決しようとする問題点」 しかるに、従来のプローブは外耳道挿入部から
マイクやイヤホンまでの間に15〜22cmのかなり長
いチユーブが使用されていた。一方端が閉じられ
た音響管での音圧の理論的特性は第3図実線特性
A1のように、周波数の変化に対し略平担で、ま
た位相差の理論的特性は第4図実線特性A2のよ
うに周波数の変化に対し直線的に増加することが
望ましい。ところが、前記従来のような長いチユ
ーブを連結したものでは、チユーブ内の音響的共
振が低いことにより音圧測定曲線は第3図の点線
特性C1のように、また位相差特性は第4図の点
線特性C2のように、可聴範囲内で周波数ととも
に大きく変化するという問題があつた。また、従
来、チユーブの長さを数cmまで短かくしたものも
一部見受けられるが、それでもチユーブの長さが
長いこと、チユーブがビニール等の軟質の材料で
あること、チユーブの肉厚が薄いこと、プローブ
本体がプラスチツクなどの軟質材であることなど
の理由から機械的共振点が低く、可聴周波数の範
囲で依然として音圧特性、位相差特性に大きなピ
ーク値がみられるという問題点があつた。したが
つて、従来のプローブでは、人間の鼓膜の微細な
周波数特性を測定することができなかつた。 「問題点を解決するための手段」 本発明は上述のような問題点を解決するために
なされたもので、プローブ本体内の2つの音導孔
のうちいずれか一方にエアポンプを結合して外耳
道を加圧または減圧し、可聴範囲の発振信号をイ
ヤホンで一定音圧の音に変換して前記プローブ本
体内の一方の音導孔を通り外耳道に供給し、プロ
ーブ本体内のマイクロホンにより外耳道の音圧変
化と、マイクロホンとイヤホンの位相差とを測定
するようにした中耳動特性測定用プローブにおい
て、前記プローブ本体は、硬質で、かつ肉厚の厚
い材料を用い、長さを外耳道に装着できる範囲内
で可及的に短かく形成し、このプローブ本体に直
接音導孔を穿設してなるものである。 「作用」 周波数0.1〜2.0KHzの範囲で変化する発振器か
らの正弦波の信号はアンプで増幅され、プローブ
本体内のイヤホンで一定音圧の音に変換され一方
の音導孔を通り外耳道内に導かれる。また、エア
ポンプをプローブ本体の一方また他方の音導孔を
通り外耳道内に連通して+20dapa〜−200dapaの
範囲で加圧または減圧する。そしてプローブ本体
内のマイクロホンにより外耳道内の音圧変化を測
定するとともに、イヤホンとマイクロホンの位相
差を測定する。 「実施例」 以下、本発明の実施例を図面に基づき説明す
る。 第1図において、1はプローブ本体で、このプ
ローブ本体1は、金属、セラミツクなどの硬質材
料からなり、先端の外耳道挿入部2が円筒形で、
途中から円錐部3となる形状をなし、全体で約19
mmの長さである。前記外耳道挿入部2の外径は、
約3〜4mmφをなし、内部に中心壁4で隔離され
た半円形の2個の音導孔5,6が形成され、この
音導孔5,6の内径は約2〜3mmφである。一方
の音導孔5は長さ約14mmの位置で、直角に屈折
し、円錐部3のマイクロホン取付孔7と連通し、
このマイクロホン取付孔7はマイクロホン8を取
付けた後、樹脂、ガラス等でモールド9される。
他方の音導孔6は基端部まで貫通してイヤホン1
0に連通するとともに、途中の円錐部3でエア孔
11が分岐穿設され、音響フイルタ15入りのエ
ア管12が連結されている。なお、エア孔11は
一方の音導孔5でもよい。 前記イヤホン10は全体をカバー13で被覆
し、かつモールド14されている。また、イヤホ
ン10とマイクロホン8は第5図にに示した音圧
と位相差の測定回路に接続され、エア管12はエ
アポンプに結合されている。 以上のように構成されたプローブ16は、外耳
道挿入部2の外周に耳詮17を取付け、被検者の
外耳道18に挿入されて測定する。19は鼓膜で
ある。測定するには、まず、第5図に示す測定回
路の発振器20から周波数fを調整手段(21)に
て0.1〜2.0KHzの範囲で変化せしめた正弦波形の
信号がパワーアンプ22を通してプローブ本体1
内のイヤホン10に送られ、このイヤホン10で
一定音圧の音に変換されプローブ本体1の一方の
音導孔6を通り外耳道18内に導びかれる。ま
た、エアポンプ23からのエアがエア管12、音
響フイルタ15、プローブ本体1内の音導孔6を
通して外耳道18へ供給され、この外耳道18内
部を+200dapaから−200dapaの範囲で加圧した
り減圧したりする。そして、プローブ本体1内の
マイクロホン8により外耳道18内の音圧変化を
検出し、プリアンプ24、フイルタ25を介して
容積検出回路26で測定するとともに、イヤホン
10とマイクロホン8の位相差を位相差計27で
測定する。これらの情報は一旦デジタルストレー
ジオシロスコプ28に記憶され、その後X−Yレ
コーダ29にに出力される。 なお、第5図中、30は圧力計、31は絶対音
圧変化(SPL)表示部、32は周波数表示部、3
3は圧力表示部、34は容積検出値表示部、35
は位相差表示部である。 つぎに、本発明によるプローブ本体1が何故第
1図に示すような形状で、かつ硬質の材料で形成
しなればならないか、この理論的裏付について説
明する。 外耳道挿入部であるプローブ本体1を、片持染
と考えると、この場合の固有1次周波数f1は、 となる。ここに、l、A、Iはそれぞれプローブ
本体1の長さ、断面積、断面2次モーメントであ
り、E、ρはそれぞれ材料のヤン率、密度であ
る。 上記式において、 とすると、kは定数であるから、f1が少なくとも
測定周数以上、具体的に2000Hz以上となるよう
に、
"Industrial Application Field" The present invention relates to a probe for measuring middle ear dynamic characteristics that can measure minute changes in middle ear dynamic characteristics. ``Prior art'' Conventionally, this type of probe for measuring middle ear dynamic characteristics has three stainless steel pipes inserted into the external auditory canal, which are inserted into the external auditory canal. They were connected and communicated with a microphone, a probe earphone, and a stimulation earphone, respectively, and a pressure tube was branched and communicated with the tube connected to the stimulation earphone. ``Problems to be Solved by the Invention'' However, conventional probes use a fairly long tube measuring 15 to 22 cm between the insertion part of the ear canal and the microphone or earphone. The theoretical characteristics of sound pressure in an acoustic tube with one end closed are the solid line characteristics in Figure 3.
It is desirable that the theoretical characteristic of the phase difference increases linearly with respect to frequency changes, as shown by the solid line characteristic A 2 in FIG . However, in the case of the conventional type in which long tubes are connected, the acoustic resonance inside the tubes is low, so the sound pressure measurement curve is as shown by the dotted line C1 in Figure 3, and the phase difference characteristic is as shown in Figure 4. There was a problem in that the dotted line characteristic C 2 of C 2 changes significantly with frequency within the audible range. In addition, some tube lengths have been shortened to several centimeters, but the length of the tube is still long, the tube is made of a soft material such as vinyl, and the wall thickness of the tube is thin. In addition, because the probe body is made of soft material such as plastic, the mechanical resonance point is low, and there is a problem that large peak values are still seen in the sound pressure characteristics and phase difference characteristics in the audible frequency range. . Therefore, conventional probes have not been able to measure the minute frequency characteristics of the human eardrum. "Means for Solving the Problems" The present invention has been made to solve the above-mentioned problems, and includes connecting an air pump to either one of the two sound guide holes in the probe body to connect the air pump to one of the two sound guide holes in the probe body. The oscillation signal in the audible range is converted into sound at a constant sound pressure using an earphone, and the sound is supplied to the external auditory canal through one of the sound guide holes in the probe main body. In a probe for measuring middle ear dynamic characteristics that measures pressure changes and phase differences between a microphone and an earphone, the probe body is made of a hard and thick material and has a length that can be attached to the ear canal. The probe body is formed to be as short as possible within the range, and a sound guide hole is directly drilled in the probe body. ``Operation'' The sine wave signal from the oscillator, which varies in the frequency range of 0.1 to 2.0 KHz, is amplified by an amplifier, converted into sound with a constant sound pressure by the earphone inside the probe body, and passes through one sound guide hole into the ear canal. be guided. Further, an air pump is communicated into the external auditory canal through one or the other sound guide hole of the probe body to pressurize or reduce the pressure in the range of +20 dapa to -200 dapa. The microphone inside the probe body measures changes in sound pressure within the ear canal, and also measures the phase difference between the earphone and the microphone. "Example" Hereinafter, an example of the present invention will be described based on the drawings. In FIG. 1, 1 is a probe body, and this probe body 1 is made of a hard material such as metal or ceramic, and the external auditory canal insertion part 2 at the tip is cylindrical.
It has a shape that becomes a conical part 3 from the middle, and the total length is about 19
The length is mm. The outer diameter of the external auditory canal insertion portion 2 is:
Two semicircular sound guide holes 5 and 6 are formed inside the sound guide hole 5 and 6, which have a diameter of about 3 to 4 mm and are separated by a center wall 4, and the inner diameter of the sound guide holes 5 and 6 is about 2 to 3 mm. One sound guide hole 5 is bent at a right angle at a position of about 14 mm in length, and communicates with the microphone mounting hole 7 of the conical part 3.
After the microphone 8 is attached to the microphone attachment hole 7, it is molded 9 with resin, glass, or the like.
The other sound guide hole 6 penetrates to the base end and connects the earphone 1.
0, and an air hole 11 is branched at the conical portion 3 in the middle, and an air pipe 12 containing an acoustic filter 15 is connected thereto. Note that the air hole 11 may be one of the sound guide holes 5. The earphone 10 is entirely covered with a cover 13 and molded 14. Further, the earphone 10 and the microphone 8 are connected to a sound pressure and phase difference measurement circuit shown in FIG. 5, and the air pipe 12 is connected to an air pump. The probe 16 configured as described above has an ear cuff 17 attached to the outer periphery of the external auditory canal insertion portion 2, and is inserted into the external auditory canal 18 of the subject for measurement. 19 is the eardrum. To perform the measurement, first, a sinusoidal waveform signal whose frequency f is varied in the range of 0.1 to 2.0 KHz by the adjusting means (21) is sent from the oscillator 20 of the measurement circuit shown in FIG. 5 to the probe body 1 through the power amplifier 22.
The sound is sent to the earphone 10 inside the earphone 10, where it is converted into sound at a constant sound pressure, and guided into the ear canal 18 through the sound guide hole 6 on one side of the probe body 1. Also, air from the air pump 23 is supplied to the external auditory canal 18 through the air tube 12, the acoustic filter 15, and the sound guide hole 6 in the probe body 1, and pressurizes or depressurizes the inside of the external auditory canal 18 in the range of +200 dapa to -200 dapa. do. Then, a change in sound pressure in the ear canal 18 is detected by the microphone 8 in the probe body 1, and measured by a volume detection circuit 26 via a preamplifier 24 and a filter 25, and the phase difference between the earphone 10 and the microphone 8 is measured by a phase difference meter. Measure at 27. This information is temporarily stored in the digital storage oscilloscope 28 and then output to the XY recorder 29. In Fig. 5, 30 is a pressure gauge, 31 is an absolute sound pressure change (SPL) display section, 32 is a frequency display section, and 3
3 is a pressure display section, 34 is a volume detection value display section, 35
is a phase difference display section. Next, the theoretical basis for why the probe body 1 according to the present invention must have the shape shown in FIG. 1 and be made of a hard material will be explained. If we consider the probe body 1, which is the insertion part of the ear canal, to be cantilevered, the natural primary frequency f 1 in this case is: becomes. Here, l, A, and I are the length, cross-sectional area, and second moment of area of the probe body 1, respectively, and E and ρ are the Young's modulus and density of the material, respectively. In the above formula, Then, since k is a constant, so that f 1 is at least the number of measurement cycles or more, specifically 2000Hz or more,

【式】をできるだけ大きい値 とすることが必要である。このことから、 (1) 1/l2が大きいこと、つまり長さができるだけ 短かいこと、 (2)It is necessary to set [Formula] to a value as large as possible. From this, (1) 1/l 2 is large, that is, the length is as short as possible, (2)

【式】が大きいこと、つまり密度ρが小 さく、かつヤング率Eが大きい硬質の材料であ
ること、 (3)
(3)

【式】が大きいこと、つまり肉厚が厚い こと、が要求される。 これらの要求を満足するように本発明のプロー
ブは構成されているものである。 「発明の効果」 本発明は上述のように構成したので、連続加振
周波数に対する人間の鼓膜の微細なな絶対音圧変
化を絶対位相差を測定できる。ちなみに、本発明
によるプローブの一方端が閉じられた音響管での
動特性は第3図の鎖線で示す音圧特性B1および
第4図の鎖線で示す位相差特性B2から明らかな
ように、理論値と極めてよく一致している。 また、第6図は、本発明のプローブを用いて正
常な鼓膜を有する人間の耳を測定した場合におけ
る音圧特性、第7図は同じく位相差特性である。
[Formula] is required to be large, that is, the wall thickness is required to be thick. The probe of the present invention is constructed to satisfy these requirements. "Effects of the Invention" Since the present invention is configured as described above, it is possible to measure minute absolute sound pressure changes in the human eardrum with respect to continuous excitation frequencies by measuring the absolute phase difference. Incidentally, the dynamic characteristics of the probe according to the present invention in an acoustic tube with one end closed are as clear from the sound pressure characteristic B 1 shown by the chain line in Fig. 3 and the phase difference characteristic B 2 shown by the chain line in Fig. 4. , which is in excellent agreement with the theoretical value. Further, FIG. 6 shows the sound pressure characteristics when a human ear with a normal eardrum is measured using the probe of the present invention, and FIG. 7 similarly shows the phase difference characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による中耳動特性測定用プロー
ブの一実施例を示す断面図、第2図は同上A−A
線断面図、第3図は音圧の片端が閉じられた音響
管での特性図、第4図は片端が閉じられた音響管
での位相差の特性図、第5図は測定回路図、第6
図は人間の耳での音圧特性図、第7図は人間の耳
での位相差特性図である。 1……プローブ本体、2……外耳道挿入部、3
……円錐部、4……中心壁、5,6……音導孔、
7……マイクロホン取付孔、8……マイクロホ
ン、9……モールド、10……イヤホン、11…
…エア孔、12……エア管、13……カバー、1
4……モールド、15……音響フイルタ、16…
…プローブ、17……耳栓、18……外耳道、1
9……鼓膜。
FIG. 1 is a sectional view showing an embodiment of the probe for measuring middle ear dynamic characteristics according to the present invention, and FIG.
Line sectional view, Figure 3 is a characteristic diagram of sound pressure in an acoustic tube with one end closed, Figure 4 is a characteristic diagram of phase difference in an acoustic tube with one end closed, Figure 5 is a measurement circuit diagram, 6th
The figure is a sound pressure characteristic diagram for the human ear, and FIG. 7 is a phase difference characteristic diagram for the human ear. 1... Probe body, 2... Ear canal insertion part, 3
... Conical part, 4 ... Center wall, 5, 6 ... Sound guide hole,
7...Microphone mounting hole, 8...Microphone, 9...Mold, 10...Earphone, 11...
...Air hole, 12...Air pipe, 13...Cover, 1
4...Mold, 15...Acoustic filter, 16...
...Probe, 17...Earplugs, 18...Earth canal, 1
9... Eardrum.

Claims (1)

【特許請求の範囲】 1 プローブ本体内の2つの音導孔のうちいずれ
か一方にエアポンプを結合して外耳道を加圧また
は減圧し、可聴範囲の発振信号をイヤホンで一定
音圧の音に変換して前記プローブ本体内の一方の
音導孔を通り外耳道に供給し、プローブ本体内の
マイクロホンにより外耳道の音圧変化とマイクロ
ホンとイヤホンの位相差とを測定するようにした
中耳動特性測定用プローブにおいて、前記プロー
ブ本体は、硬質で、かつ肉厚の厚い材料を用い、
長さを外耳道に装着できる範囲内で可及的に短か
く形成し、このプローブ本体に直接音導孔を穿設
してなることを特徴とする中耳動特性測定用プロ
ーブ。 2 イヤホンに連通する音導孔とマイクロホンに
連通する音導孔とは中央に隔壁をもつて対向する
半円孔からなる特許請求の範囲第1項記載の中耳
動特性測定用プローブ。 3 プローブ本体は、ステンレススチール、鉄ま
たはセラミツクからなる特許請求の範囲第1項記
載の中耳動特性測定用プローブ。 4 プローブ本体は、音導孔の長さを10〜30mmと
した特許請求の範囲第1項記載の中耳動特性測定
用プローブ。
[Claims] 1. An air pump is connected to either one of the two sound guide holes in the probe body to pressurize or depressurize the external auditory canal, and an oscillation signal in the audible range is converted into sound at a constant sound pressure using earphones. for measuring dynamic characteristics of the middle ear. In the probe, the probe body is made of a hard and thick material,
A probe for measuring dynamic characteristics of the middle ear, characterized in that the length is as short as possible within a range that can be installed in the external auditory canal, and a sound guide hole is directly bored in the probe body. 2. The probe for measuring middle ear dynamic characteristics according to claim 1, wherein the sound guide hole communicating with the earphone and the sound guide hole communicating with the microphone are semicircular holes facing each other with a partition wall in the center. 3. The probe for measuring middle ear dynamic characteristics according to claim 1, wherein the probe body is made of stainless steel, iron, or ceramic. 4. The probe for measuring middle ear dynamic characteristics according to claim 1, wherein the probe body has a sound guide hole having a length of 10 to 30 mm.
JP25788087A 1987-10-13 1987-10-13 Probe for measuring dynamic behavior of auris media Granted JPH0199531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25788087A JPH0199531A (en) 1987-10-13 1987-10-13 Probe for measuring dynamic behavior of auris media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25788087A JPH0199531A (en) 1987-10-13 1987-10-13 Probe for measuring dynamic behavior of auris media

Publications (2)

Publication Number Publication Date
JPH0199531A JPH0199531A (en) 1989-04-18
JPH037369B2 true JPH037369B2 (en) 1991-02-01

Family

ID=17312466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25788087A Granted JPH0199531A (en) 1987-10-13 1987-10-13 Probe for measuring dynamic behavior of auris media

Country Status (1)

Country Link
JP (1) JPH0199531A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112816940B (en) * 2020-12-23 2023-06-06 中国船舶重工集团有限公司第七一0研究所 Target distance estimation method and device based on sound pressure and particle vibration velocity

Also Published As

Publication number Publication date
JPH0199531A (en) 1989-04-18

Similar Documents

Publication Publication Date Title
US4378809A (en) Audio-telemetric pressure sensing systems and methods
JPH0337934B2 (en)
EP0014324B1 (en) Device for measuring the acoustical ear impedance
US6837857B2 (en) Method for the recording of acoustic parameters for the customization of hearing aids
US6312380B1 (en) Method and sensor for wireless measurement of physiological variables
US3846585A (en) Recording stethoscope
US3732532A (en) Ultrasonic doppler instrument
Stevens et al. Calibration of ear canals for audiometry at high frequencies
JP4571311B2 (en) Sound pickup sensor
US3294193A (en) Acoustic impedance measuring instrument
Wada et al. Relationship between evoked otoacoustic emissions and middle-ear dynamic characteristics
JPH037369B2 (en)
JPH07502670A (en) tonometer
Benson The Calibration and Use of Probe‐Tube Microphones
JPH0199532A (en) Measuring method of dynamic behavior of auris media
Stinson et al. Spatial distribution of sound pressure and energy flow in the ear canals of cats
US2571979A (en) Acoustic measuring apparatus
Ithell et al. The acoustical impedance of human ears and a new artificial ear
JPH0244723Y2 (en)
US2465468A (en) Testing system and method
Farre et al. Optical method for determining the frequency response of pressure-measurement systems in respiratory mechanics
US20040177675A1 (en) Gas gage utilizing internal resonance frequency
Olson et al. Nonlinearity in intracochlear pressure
Suzumura et al. Characteristics of the air cavities of phonocardiographic microphones and the effects of vibration and room noise
Grossman et al. Acoustic sound filtration and hearing aids

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 17