JPH0199531A - Probe for measuring dynamic behavior of auris media - Google Patents

Probe for measuring dynamic behavior of auris media

Info

Publication number
JPH0199531A
JPH0199531A JP25788087A JP25788087A JPH0199531A JP H0199531 A JPH0199531 A JP H0199531A JP 25788087 A JP25788087 A JP 25788087A JP 25788087 A JP25788087 A JP 25788087A JP H0199531 A JPH0199531 A JP H0199531A
Authority
JP
Japan
Prior art keywords
probe
external auditory
sound
main body
earphone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25788087A
Other languages
Japanese (ja)
Other versions
JPH037369B2 (en
Inventor
Hitoshi Wada
仁 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGASHIMA IKA KIKAI KK
Original Assignee
NAGASHIMA IKA KIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGASHIMA IKA KIKAI KK filed Critical NAGASHIMA IKA KIKAI KK
Priority to JP25788087A priority Critical patent/JPH0199531A/en
Publication of JPH0199531A publication Critical patent/JPH0199531A/en
Publication of JPH037369B2 publication Critical patent/JPH037369B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To measure a minute change for absolute acoustic pressure and an absolute phase difference of a human eardrum against a continuous vibration frequency by a method wherein, a hard and thick material is used as a main body, the length thereof is so set as being capable to be attached to an external auditory meatus but as short as possible, while boring acoustic conduction hole directly on the main body. CONSTITUTION:A sinusoidal wave signal from an oscillator 20 which frequency changes in the range 0.1-2.0kHz is amplified at an amplifier 22, converted into a sound of constant sound pressure by a earphone 10 located within a main probe body 1, passes through one side acoustic conduction hole 6, and is conducted into an external auditory meatus 10. In the meanwhile, an air pump 23 is communicated to the inside of the external auditory meatus through a one side or the other side acoustic conduction hole of the probe main body, and the pressure is boosted or reduced within the range of +200--200dapa. While the change of the acoustic pressure within the external auditory meatus is measured through a microphone 8 positioned inside the probe main body, the phase difference between the earphone and the microphone is measured. If considering the probe main body being an insertion part for the external auditory meatus as a cantilever, it is found necessary that the primary natural frequency f1, in this case, should be a measured frequency or more at least. From this, it is required that the length of the main body is as short as possible, with small density rhoand sufficient thick thickness.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は中耳動特性の微細な変化を測定することのでき
る中耳動特性測定用プローブに関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a probe for measuring middle ear dynamic characteristics that can measure minute changes in middle ear dynamic characteristics.

「従来の技術」 従来、この種中耳動特性測定用プローブは外耳道に挿入
される外耳道挿入部の内部に3本のステンレスのパイプ
を貫通固着し、これらのパイプの突出端にそれぞれシリ
コンチューブを連結し、それぞれマイクロホン、プロー
ブ用イヤホン、刺激用イヤホンに連通し、また、刺激用
イヤホνに連通されたチューブには圧力チューブが分岐
連通されて構成されていた。
``Prior art'' Conventionally, this type of probe for measuring middle ear dynamic characteristics has three stainless steel pipes that penetrate and are fixed inside the external auditory canal insertion part that is inserted into the external auditory canal, and a silicon tube is attached to the protruding end of each of these pipes. They were connected and communicated with a microphone, a probe earphone, and a stimulation earphone, respectively, and a pressure tube was branched and communicated with the tube connected to the stimulation earphone ν.

「発明が解決しようとする問題点」 しかるに、従来のプローブは外耳道挿入部からマイクや
イヤホンまでの間に15〜22aaのかなり長いチュー
ブが使用されていた。−万端が閉じられた音響管での音
圧の理論的特性は第3図実線特性(A1)のように、周
波数の変化に対し略平担で、また位相差の理論的特性は
第4図実線特性(A2)のように周波数の変化に対し直
線的に増加することが望ましい。ところが、前記従来の
ような長いチューブを連結したものでは、チューブ内で
の音響的共振が低いことにより音圧測定曲線は第3図の
点線特性(C工)のように、また位相差特性は第4図の
点線特性(C2)のように、可聴範囲内で周波数ととも
に大きく変化するという問題があった。また。
``Problems to be Solved by the Invention'' However, in the conventional probe, a fairly long tube of 15 to 22 aa was used between the insertion part of the ear canal and the microphone or earphone. - The theoretical characteristics of the sound pressure in a closed acoustic tube are almost flat against changes in frequency, as shown by the solid line characteristics (A1) in Figure 3, and the theoretical characteristics of the phase difference are shown in Figure 4. It is desirable that the frequency increases linearly with respect to changes in frequency, as shown in the solid line characteristic (A2). However, in the case of the conventional type in which long tubes are connected, due to the low acoustic resonance within the tubes, the sound pressure measurement curve becomes like the dotted line characteristic (C) in Figure 3, and the phase difference characteristic becomes As shown in the dotted line characteristic (C2) in FIG. 4, there is a problem in that the characteristic changes greatly with frequency within the audible range. Also.

従来、チューブの長さを数1まで短かくしたものも溝部
見受けられるが、それでもチューブの長さが長いこと、
チューブがビニール等の軟質の材料であること、チュー
ブの肉厚が薄いこと、プローブ本体がプラスチックなど
の軟質材であることなどの理由から機械的共振点が低く
、可聴周波数の範囲内で依然として音圧特性、位相差特
性に大きなピーク値がみられるという問題があった。し
たがって、従来のプローブでは、人間の鼓膜の微細な周
波数特性は測定することができなかった。
Conventionally, grooves can be seen in tubes whose length has been shortened to several digits, but the length of the tube is still long.
Because the tube is made of a soft material such as vinyl, the wall thickness of the tube is thin, and the probe body is made of a soft material such as plastic, the mechanical resonance point is low and the sound still remains within the audible frequency range. There was a problem in that large peak values were observed in the pressure characteristics and phase difference characteristics. Therefore, conventional probes cannot measure the minute frequency characteristics of the human eardrum.

r問題点を解決するための手段」 本発明は上述のような問題点を解決するためになされた
もので、プローブ本体内の2つの音導孔のうちいずれか
一方にエアポンプを結合して外耳道を加圧または減圧し
、可聴範囲の発振信号をイヤホンで一定音圧の音に変換
して前記プローブ本体内の一方の音導孔を通り外耳道に
供給し、プローブ本体内のマイクロホンにより外耳道の
音圧変化と、マイクロホンとイヤホンの位相差とを測定
するようにした中耳動特性測定用プローブにおいて、前
記プローブ本体は、硬質で、かつ肉厚の厚い材料を用い
、長さ、を外耳道に装着できる範囲内で可及的に短かく
形成し、このプローブ本体に直接音導孔を穿設してなる
ものである。
"Means for Solving the Problems" The present invention was made to solve the above-mentioned problems, and it connects an air pump to either one of the two sound guide holes in the probe body to connect the air pump to one of the two sound guide holes in the probe body. The oscillation signal in the audible range is converted into sound at a constant sound pressure using an earphone, and the sound is supplied to the external auditory canal through one of the sound guide holes in the probe main body. In a probe for measuring middle ear dynamic characteristics that measures pressure changes and phase differences between a microphone and an earphone, the probe body is made of a hard and thick material, and the length is attached to the ear canal. The probe body is made as short as possible, and a sound guiding hole is formed directly in the probe body.

「作用」 周波数が0.1〜2.0KHzの範囲で変化する発振器
からの正弦波の信号はアンプで増幅され、プローブ本体
内のイヤホンで一定音圧の音に変換され一方の音導孔を
通り外耳道内に導かれる。また、エアポンプをプローブ
本体の一方または他方の音導孔を通り外耳道内に連通し
て+200daPa〜−200daPaの範囲で加圧ま
たは減圧する6そしてプローブ本体内のマイクロホンに
より外耳道内の音圧変化を測定するとともに、イヤホン
とマイクロホンの位相差を測定する。
"Operation" A sine wave signal from an oscillator whose frequency varies in the range of 0.1 to 2.0 KHz is amplified by an amplifier, converted to sound with a constant sound pressure by the earphone inside the probe body, and is transmitted through one sound guide hole. is guided into the external auditory canal. In addition, an air pump is communicated with the ear canal through one or the other sound guide hole of the probe body to pressurize or depressurize it in the range of +200 daPa to -200 daPa6.Then, the sound pressure change in the ear canal is measured using the microphone inside the probe body. At the same time, the phase difference between the earphone and microphone is measured.

「実施例」 以下1本発明の実施例を図面に基づき説明する。"Example" An embodiment of the present invention will be described below based on the drawings.

第1図において、(1)はプローブ本体で、このプロー
ブ本体(1)は、金属、セラミックなどの硬質材料から
なり、先端の外耳道挿入部(2)が円筒形で、途中から
円錐部(3)となる形状をなし、全体で約19oaの長
さである。前記外耳道挿入部(2)の外径は、約3〜4
Iφをなし、内部に中心壁(4)で隔離された半円形の
2個の音導孔(5) (6)が形成され、この音導孔(
5)(6)の内径は約2〜3■φである。一方の音導孔
(5)は長さ約14nmの位置で、直角に屈折し、円錐
部(3)のマイクロホン取付孔(7)と連通し、このマ
イクロホン取付孔(7)はマイクロホン(8)を取付け
た後、樹脂、ガラス等でモールド(9)される。他方の
音導孔(6)は基端部まで貫通してイヤホン(10)に
連通ずるとともに、途中の円錐部(3)でエア孔(11
)が分岐穿設され、音響フィルタ(15)入りのエア管
(12)が連結されている。
In Fig. 1, (1) is the probe body, which is made of a hard material such as metal or ceramic, and has a cylindrical ear canal insertion part (2) at the tip, and a conical part (3) from the middle. ) and has a total length of about 19 oa. The outer diameter of the external auditory canal insertion part (2) is about 3 to 4
Two semicircular sound guide holes (5) and (6) are formed in the shape of Iφ and separated by a center wall (4), and the sound guide holes (
5) The inner diameter of (6) is approximately 2 to 3 mm. One sound guide hole (5) is bent at a right angle at a position with a length of about 14 nm and communicates with the microphone mounting hole (7) of the conical part (3), and this microphone mounting hole (7) is connected to the microphone (8). After mounting, it is molded (9) with resin, glass, etc. The other sound guide hole (6) penetrates to the base end and communicates with the earphone (10), and the conical part (3) in the middle connects the air hole (11).
) are branched and connected to an air pipe (12) containing an acoustic filter (15).

なお、エア孔(11)は一方の音導孔(5)でもよい。Note that the air hole (11) may be one of the sound guide holes (5).

前記イヤホン(10)は全体をカバー(13)で被覆し
、かつモールド(14)されている。また、イヤホン(
10)とマイクロホン(8)は第5図に示した音圧と位
相差の測定回路に接続され、エア管(12)はエアポン
プに結合されている。
The earphone (10) is entirely covered with a cover (13) and molded (14). You can also use earphones (
10) and a microphone (8) are connected to the sound pressure and phase difference measurement circuit shown in FIG. 5, and the air pipe (12) is connected to an air pump.

以上のようにして構成されたプローブ(16)は、外耳
道挿入部(2)の外周に耳栓(17)を取付け、被検者
の外耳道(18)に挿入されて測定する。(19)は鼓
膜である。測定するには、まず、第5図に示す測定回路
の発振器(20)から周波数fを調整手段(21)にて
0.1〜2.0KHzの範囲で変化せしめた正弦波形の
信号がパワーアンプ(22)を通してプローブ本体(1
)内のイヤホン(10)に送られ、このイヤホン(10
)で一定音圧の音に変換されプローブ本体(1)の一方
の音導孔(6)を通り外耳道(18)内に導びかれる。
The probe (16) configured as described above has an earplug (17) attached to the outer periphery of the external auditory canal insertion portion (2), and is inserted into the external auditory canal (18) of the subject to perform measurements. (19) is the eardrum. To measure, first, a sine waveform signal whose frequency f is varied in the range of 0.1 to 2.0 KHz by the adjusting means (21) is sent from the oscillator (20) of the measuring circuit shown in Fig. 5 to the power amplifier. (22) through the probe body (1
) is sent to the earphone (10) in this earphone (10).
), the sound is converted into sound at a constant sound pressure and guided into the external auditory canal (18) through one of the sound guide holes (6) of the probe body (1).

また、エアポンプ(23)からのエアがエア管(12)
、音響フィルタ(15)、プローブ本体(1)内の音導
孔(6)を通して外耳道(18)へ供給され、この外耳
道(18)内部を+200daPaから一200daP
aの範囲で加圧したり減圧したりする。そして、プロー
ブ本体(1)内のマイクロ、ホン(8)により外耳道(
18)内の音圧変化を検出し、プリアンプ(24)、フ
ィルタ(25)を介して容積検出回路(26)で測定す
るとともに、イヤホン(10)とマイクロホン(8)の
位相差を位相差計(27)で測定する。これらの情報は
一旦デジタルストレージオシロスコープ(28)に記憶
され、その後X−Yレコーダ(29)に出力される。
Also, the air from the air pump (23) is sent to the air pipe (12).
, an acoustic filter (15), and a sound guide hole (6) in the probe body (1) are supplied to the external auditory canal (18), and the inside of this external auditory canal (18) is heated from +200 daPa to -200 daP.
Pressure is increased or decreased within the range a. Then, the ear canal (
18) is detected and measured by a volume detection circuit (26) via a preamplifier (24) and a filter (25), and a phase difference meter measures the phase difference between the earphone (10) and microphone (8). (27). This information is temporarily stored in the digital storage oscilloscope (28) and then output to the X-Y recorder (29).

なお、第5図中、(30)は圧力計、(31)は絶対音
圧変化(S P L)表示部、(32)は周波数表示部
、(33)は圧力表示部、(34)は容積検出値表示部
、(35)は位相差表示部である。
In Fig. 5, (30) is a pressure gauge, (31) is an absolute sound pressure change (SPL) display section, (32) is a frequency display section, (33) is a pressure display section, and (34) is a pressure gauge. The volume detection value display section (35) is a phase difference display section.

つぎに、本発明によるプローブ本体(1)が何故第1図
に示すような形状で、かつ硬質の材料で形成しなければ
ならないか、その理論的裏付けについて説明する。
Next, the theoretical basis for why the probe body (1) according to the present invention must have the shape shown in FIG. 1 and be made of a hard material will be explained.

外耳道挿入部であるプローブ本体(1)を1片持梁と考
えると、この場合の固有1次周波数f1は、となる。こ
こに、Q、A、Iはそれぞれプローブ本体(1)の長さ
、断面積、断面2次モーメントであり、E、ρはそれぞ
れ材料のヤング率、密度である。
If the probe body (1), which is the insertion part of the ear canal, is considered as a single cantilever beam, the natural primary frequency f1 in this case is as follows. Here, Q, A, and I are the length, cross-sectional area, and second moment of area of the probe body (1), respectively, and E and ρ are the Young's modulus and density of the material, respectively.

上記式において、 とすると、kは定数であるから、f工が少なくとも測定
周波数以上、具体的には2000)1z以上となる値と
することが必要である。このことから、(1)□が大き
いこと、つまり長さができるだけ短かいこと、 かつヤング率Eが大きい硬質の材料であること。
In the above equation, since k is a constant, it is necessary to set f to a value that is at least equal to or higher than the measurement frequency, specifically, equal to or higher than 2000)1z. From this, (1) □ must be large, that is, the length must be as short as possible, and the material must be hard with a large Young's modulus E.

が要求される。is required.

これらの要求を満足するように本発明のプローブは構成
されているものである。
The probe of the present invention is constructed to satisfy these requirements.

「発明の効果」 本発明は上述のように構成したので、連続加振周波数に
対する人間の鼓膜の微細な絶対音圧変化と絶対位相差を
測定できる。ちなみに、本発明によるプローブの一方端
が閉じられた音響管での動特性は第3図の鎖線で示す音
圧特性(B1)および第4図の鎖線で示す位相差特性(
B2)からも明らかなように、理論値と極めてよく一致
している。
"Effects of the Invention" Since the present invention is configured as described above, it is possible to measure minute absolute sound pressure changes and absolute phase differences of the human eardrum with respect to continuous excitation frequencies. Incidentally, the dynamic characteristics of the probe according to the present invention in an acoustic tube with one end closed are the sound pressure characteristic (B1) shown by the chain line in Figure 3 and the phase difference characteristic (B1) shown by the chain line in Figure 4.
As is clear from B2), it agrees extremely well with the theoretical value.

また、第6図は、本発明のプローブを用いて正常な鼓膜
を有する人間の耳をill’l定した場合における音圧
特性、第7図は同じく位相差特性である。
Further, FIG. 6 shows the sound pressure characteristics when the human ear with a normal eardrum is determined using the probe of the present invention, and FIG. 7 similarly shows the phase difference characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による中耳動特性測定用プローブの一実
施例を示す断面図、第2図は同上A−A線断面図、第3
図は音圧の片端が閉じられた音響管での特性図、第4図
は片端が閉じられた音響管での位相差の特性図、第5図
は測定回路図、第6図は人間の耳での音圧特性図、第7
図は人間の耳での位相差特性図である。 (1)・・・プローブ本体、(2)・・・外耳道挿入部
、(3)・・・円錐部、(4)・・・中心壁、(5) 
(6)・・・音導孔、(7)・・・マイクロホン取付孔
、(8)・・・マイクロホン、(9)・・・モールド、
(10)・・・イヤホン、(11)・・・エア孔、 (
12)・・・エア管、 (13)・・・カバー、(14
)・・・モールド、(15)・・・音響フィルタ、 (
16)・・・プローブ、(17)・・・耳栓、(18)
・・・外耳道、(19)・・・鼓膜。
FIG. 1 is a sectional view showing an embodiment of the probe for measuring middle ear dynamic characteristics according to the present invention, FIG.
The figure shows the characteristics of sound pressure in an acoustic tube with one end closed, Figure 4 shows the characteristics of phase difference in an acoustic tube with one end closed, Figure 5 shows the measurement circuit diagram, and Figure 6 shows the characteristics of the human Sound pressure characteristics diagram at the ear, No. 7
The figure is a phase difference characteristic diagram of the human ear. (1) Probe body, (2) Ear canal insertion part, (3) Conical part, (4) Center wall, (5)
(6)...Sound guide hole, (7)...Microphone mounting hole, (8)...Microphone, (9)...Mold,
(10)...Earphone, (11)...Air hole, (
12)...Air pipe, (13)...Cover, (14)
)...mold, (15)...acoustic filter, (
16)...Probe, (17)...Earplugs, (18)
... external auditory canal, (19) ... eardrum.

Claims (4)

【特許請求の範囲】[Claims] (1)プローブ本体内の2つの音導孔のうちいずれか一
方にエアポンプを結合して外耳道を加圧または減圧し、
可聴範囲の発振信号をイヤホンで一定音圧の音に変換し
て前記プローブ本体内の一方の音導孔を通り外耳道に供
給し、プローブ本体内のマイクロホンにより外耳道の音
圧変化とマイクロホンとイヤホンの位相差とを測定する
ようにした中耳動特性測定用プローブにおいて、前記プ
ローブ本体は、硬質で、かつ肉厚の厚い材料を用い、長
さを外耳道に装着できる範囲内で可及的に短かく形成し
、このプローブ本体に直接音導孔を穿設してなることを
特徴とする中耳動特性測定用プローブ。
(1) Connect an air pump to either one of the two sound guide holes in the probe body to pressurize or depressurize the external auditory canal;
An oscillation signal in the audible range is converted into sound with a constant sound pressure using an earphone, and the sound is supplied to the ear canal through one of the sound guide holes in the probe body. In the probe for measuring middle ear dynamic characteristics, the probe body is made of a hard and thick material, and the length is as short as possible within the range that allows it to be installed in the external auditory canal. A probe for measuring middle ear dynamic characteristics is formed as described above and has a sound guiding hole directly formed in the probe body.
(2)イヤホンに連通する音導孔とマイクロホンに連通
する音導孔とは中央に隔壁をもって対向する半円孔から
なる特許請求の範囲第1項記載の中耳動特性測定用プロ
ーブ。
(2) The probe for measuring middle ear dynamic characteristics according to claim 1, wherein the sound guide hole communicating with the earphone and the sound guide hole communicating with the microphone are semicircular holes facing each other with a partition wall in the center.
(3)プローブ本体は、ステンレススチール、鉄または
セラミックからなる特許請求の範囲第1項記載の中耳動
特性測定用プローブ。
(3) The probe for measuring middle ear dynamic characteristics according to claim 1, wherein the probe body is made of stainless steel, iron, or ceramic.
(4)プローブ本体は、音導孔の長さを10〜30mm
とした特許請求の範囲第1項記載の中耳動特性測定用プ
ローブ。
(4) The length of the sound guide hole in the probe body is 10 to 30 mm.
A probe for measuring middle ear dynamic characteristics according to claim 1.
JP25788087A 1987-10-13 1987-10-13 Probe for measuring dynamic behavior of auris media Granted JPH0199531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25788087A JPH0199531A (en) 1987-10-13 1987-10-13 Probe for measuring dynamic behavior of auris media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25788087A JPH0199531A (en) 1987-10-13 1987-10-13 Probe for measuring dynamic behavior of auris media

Publications (2)

Publication Number Publication Date
JPH0199531A true JPH0199531A (en) 1989-04-18
JPH037369B2 JPH037369B2 (en) 1991-02-01

Family

ID=17312466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25788087A Granted JPH0199531A (en) 1987-10-13 1987-10-13 Probe for measuring dynamic behavior of auris media

Country Status (1)

Country Link
JP (1) JPH0199531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112816940A (en) * 2020-12-23 2021-05-18 中国船舶重工集团有限公司第七一0研究所 Target distance estimation method and device based on sound pressure and particle vibration velocity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112816940A (en) * 2020-12-23 2021-05-18 中国船舶重工集团有限公司第七一0研究所 Target distance estimation method and device based on sound pressure and particle vibration velocity
CN112816940B (en) * 2020-12-23 2023-06-06 中国船舶重工集团有限公司第七一0研究所 Target distance estimation method and device based on sound pressure and particle vibration velocity

Also Published As

Publication number Publication date
JPH037369B2 (en) 1991-02-01

Similar Documents

Publication Publication Date Title
Olson Intracochlear pressure measurements related to cochlear tuning
US6663575B2 (en) Device for electromechanical stimulation and testing of hearing
JPH0337934B2 (en)
EP0014324B1 (en) Device for measuring the acoustical ear impedance
US6837857B2 (en) Method for the recording of acoustic parameters for the customization of hearing aids
US8301029B2 (en) Electroacoustic transducer
Wada et al. Dynamic Behavior of the Middle Ear Based on Sweep Frequency Tympanometry: Original Papers
Stevens et al. Calibration of ear canals for audiometry at high frequencies
US3294193A (en) Acoustic impedance measuring instrument
Olson et al. A family of fiber-optic based pressure sensors for intracochlear measurements
US5919143A (en) Apparatus and method for analysis of acoustic reflectance and thermal radiation of an ear
JPH0199531A (en) Probe for measuring dynamic behavior of auris media
RU2290856C2 (en) Method and device for measuring intra-eye pressure
Benson The Calibration and Use of Probe‐Tube Microphones
JP2019010415A (en) Electronic manometer, blood pressure measurement method and electronic stethoscope
JPH0199532A (en) Measuring method of dynamic behavior of auris media
JP3645794B2 (en) Acoustic calibrator
Rasmussen The influence of environmental conditions on the pressure sensitivity of measurement microphones
US2571979A (en) Acoustic measuring apparatus
Farre et al. Optical method for determining the frequency response of pressure-measurement systems in respiratory mechanics
JPS615832A (en) External auditory miatus measuring apparatus
Harris The use of circumaural earphones in audiometry
JPH0244723Y2 (en)
US20040177675A1 (en) Gas gage utilizing internal resonance frequency
JP3497791B2 (en) Ossicular reflex measurement system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 17