JPH0373680B2 - - Google Patents

Info

Publication number
JPH0373680B2
JPH0373680B2 JP58121029A JP12102983A JPH0373680B2 JP H0373680 B2 JPH0373680 B2 JP H0373680B2 JP 58121029 A JP58121029 A JP 58121029A JP 12102983 A JP12102983 A JP 12102983A JP H0373680 B2 JPH0373680 B2 JP H0373680B2
Authority
JP
Japan
Prior art keywords
fibers
conductive film
conductive
fiber
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58121029A
Other languages
Japanese (ja)
Other versions
JPS6013819A (en
Inventor
Itsupei Kato
Tomihisa Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Paper Manufacturing Co Ltd
Original Assignee
Mishima Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Paper Manufacturing Co Ltd filed Critical Mishima Paper Manufacturing Co Ltd
Priority to JP12102983A priority Critical patent/JPS6013819A/en
Publication of JPS6013819A publication Critical patent/JPS6013819A/en
Publication of JPH0373680B2 publication Critical patent/JPH0373680B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は包装用に適した導電フイルムの製造方
法に関するものであり、特に柔軟性や可撓性に富
み、表面のなめらかさが優れているため包装内容
物を傷付けることがなく、且つ内容物を静電気障
害から保護するに十分な導電性と内容物が透視で
きる程度の透明性を有し、更にヒートシール可能
な導電フイルムの製造方法に関するものである。 半導体ICやLSI等の電子部品、プリント基板、
磁気テープ等は包装、出荷の工程で静電気による
ほこりの吸着や静電気帯電によるトラブルから製
品を保護する必要があり、特に最近よく用いられ
るC−MOS型のIC等は静電気により絶縁破壊を
起こしやすいので帯電防止は不可欠となつてい
る。これらの静電気障害から製品を保護するため
には表面抵抗率の低い導電フイルムで包装するこ
とが考えられる。 従来この目的のために導電性のフイラーとして
炭素繊維、ステンレス繊維、アルミコートガラス
繊維等の無機繊維を木材パルプと混合抄紙した導
電紙が提案されているが、これらの導電性フイラ
ーは 1 該フイラーの表面強度が高いので包装内容物
を傷付け易い。 2 屈曲回復性がないため、使用時または加工時
の屈曲により導電性能が低下する。 3 比重が大きく(ステンレス繊維7.9、アルミ
コートガラス繊維2.54)かつ撥水性を有するの
で木材パルプ紙料中での均一分散が容易でな
く、導電紙の面方向比抵抗が不均一になり易
い。 などの欠点があり、特に包装内容物を傷付けない
導電紙が望まれている。 本出願人は先に炭素繊維を導電性のフイラーと
する透明性とヒートシール性を有する導電紙につ
き出願し(特開昭57−134421号)、包装を破らな
くても内容物を透視でき、かつヒートシール性を
具備させたことによつて包装作業の自動化に寄与
しうる発明を開示した。その後、更に上記無機繊
維の欠点につき研究を重ねた結果、前記発明の炭
素繊維にかえて導電加工された特定の有機繊維を
用いることによつてこれらの欠点がすべて解決さ
れ、かつ透明性とヒートシール性を具備する導電
フイルムが得られることを見出し、本発明に到達
したものである。 即ち、本願発明は、熱可塑性合成パルプ99.5〜
70容量%と、該熱可塑性合成パルプの融点よりも
融点、軟化点あるいは熱分解温度が高い有機繊維
を基体とする導電加工された有機繊維であつて、
長さが1〜40mm、直径が5〜30μmのもの0.5〜30
容量%とを混合抄紙してなる原紙を、前記熱可塑
性合成パルプの融点以上で且つ前記導電加工され
た有機繊維がそのままの形態で分散されて接触点
を有することのできる温度でカレンダー処理によ
り加熱加圧処理することを特徴とする不透明度30
%以下で面方向比抵抗1×108Ω・cm以下の導電
フイルムの製造方法に関する。 本発明において用いられる導電加工された有機
繊維(以下「有機導電繊維」という)とは、各種
の合成繊維、半合成繊維或いは天然繊維に、望ま
しくはこれらの繊維の性質を損うことなく導電加
工が施されたものであつて、例えば、有機繊維に
金属イオン又は金属化合物が化学的に結合された
もの、或いは有機繊維に金属や炭素等の導電剤が
物理的に結合されたものである。金属イオン又は
金属化合物が結合されたものの好ましい代表例
は、アクリル繊維に染色工程で銅イオンを拡散し
た導電繊維(日本蚕毛染色(株)製 商品名サンダー
ロン SS−N)或いは、各種の有機繊維中に沃
化第1銅を吸着含有させた導電繊維(特開昭57−
39299号)等である。また、導電剤が物理的に結
合されたものとしては、導電剤を基体中に練り込
んだ有機繊維(特開昭56−134298号)、炭素複合
繊維、金属メツキを施した有機繊維(実公昭49−
3921号)等であるが、基体となる有機繊維の性質
を損うことがなく、また抄紙工程で導電剤が分離
するおそれがない等の点から化学的な結合による
ものの方がより望ましい。 導電加工の方法は上記例示に限定されるもので
はなく、繊維の比抵抗が1×104Ω・cm以下、好
ましくは1×100Ω・cm以下程度となるように行
なえばよい。 導電加工された有機繊維は、比重が0.9〜2.5、
特に0.9〜1.35の範囲のものが望ましい。これは
有機導電繊維が配合される主原料が熱可塑性合成
パルプ(たとえばポリエチレン系合成パルプの比
重0.94〜0.96)等であるため近似した比重のもの
が均一分散が容易であり、面方向比抵抗、透明性
の均一な導電性フイルムが得られ易いからであ
る。従つてたとえば基体となる有機繊維としてポ
リビニルアルコール系(比重1.26〜1.30)、ポリ
アミド系(比重1.14)、アクリル系(比重1.14〜
1.18)ポリビニルアルコールとポリ塩化ビニル共
重合系繊維(比重1.32)等に導電剤が化学的に結
合されたものが好適である。但し、アルミニウム
(比重2.7)、銅(比重7.9)、ニツケル(比重8.9)、
その他の金属をメツキしたものでも、被覆層の厚
さを薄くしたものであれば、比重の小さいものが
得られるので、そのようなものでもよい。 尚、基体となる有機繊維として合成繊維を用い
る場合、その融点望ましくはその軟化点が、マト
リクスとなる熱可塑性樹脂原料例えば熱可塑性合
成パルプの融点よりも高いものでなければならな
い。これは導電フイルムの製造工程において抄紙
した原紙をカレンダーにより加熱加圧する方法等
のように、マトリクスとなる熱可塑性樹脂を加熱
溶融して透明化する場合に、マトリクス部分の原
料よりも有機導電繊維の方が早く或いは同時に溶
融して繊維の形態を失うと、有機導電繊維に与え
られた電気的性質が変化し、所望の面方向比抵抗
を有する導電フイルムが得られなくなるからであ
る。 従つてまた、加熱加圧によるマトリクス部分の
透明化処理はマトリクス原料の融点以上であつて
且つ有機導電繊維の融点以下望ましくは軟化点以
下の温度で行なうことになる。 例えば、マトリクス原料としてポリエチレン系
合成パルプ(融点110〜138℃)を使用する場合に
は、同系の有機導電繊維では不都合であり、アク
リル系繊維(軟化点190〜240℃)等を組み合せて
用いる。ポリエステル系繊維(軟化点235〜240
℃)、ポリビニルアルコール系繊維(軟化点220〜
230℃)、ポリアミド系繊維(軟化点180〜235℃)
等を用いることもできる。 半合成繊維や天然繊維を基体とする有機導電繊
維を用いる場合には、軟化、溶融等の問題はない
が、セルロースの熱分解温度が240〜400℃である
ので、マトリクス原料として融点が240℃以下の
ものを使用し、240℃以下で加熱加圧処理するの
が望ましい。 有機導電繊維の直径は5〜30μmで、長さが1
〜40mmであることが望ましいが、5〜20μmの直
径と1〜25mmの長さが特に好ましい。これは抄紙
のし易さ、均一な面方向比抵抗、透明性を得るた
めの要件である。すなわち直径については、導電
フイルムのマトリクスを占める合成パルプ、木材
パルプ等の直径が5〜20μmであること、本発明
にかゝる導電フイルムは通常米坪量20g/m2(厚
さ約22μm)〜100g/m2の範囲で用いられるこ
となどのために均一分散ができ、また導電フイル
ムの表面が平滑に仕上がるために包装内容物を保
護の観点からも好ましいからである。また長さに
ついては1mm以下のものは抄紙製造中に脱落し易
く、導電フイルムの面方向比抵抗が不均一にな
り、かつこのような微細繊維は配合量を多くしな
いと所定の面方向比抵抗が得られず、また透明性
が得られないからである。一方、40mm以上になる
とフロツクを作り易く、地合の均一性に欠け面方
向比抵抗および透明性が不均一になるので好まし
くない。 本発明により製造される導電フイルムにおいて
マトリクスとなる熱可塑性樹脂としては、ポリオ
レフイン、ポリアクリロニトリル、ポリエステ
ル、ポリアミド、ポリビニルアルコール等であ
り、加熱による溶融で透明化し、冷却によつて固
体高分子にもどつてもその透明性を保持するもの
であり、使用する有機導電繊維との関係で適切な
融点のものを選択する。これらのうち特に好まし
いのは融点が低く比較的廉価なポリオレフインで
あり、ポリオレフインとは、ポリエチレン、ポリ
プロピレン、エチレンとプロピレンの共重合物、
エチレン又はプロピレンとα−オレフインとの共
重合物、エチレン又はプロピレンと酢酸ビニル、
アクリル酸等との共重合物、又はこれらの混合物
又はこれらを更に化学処理した重合物等を含むも
のである。又これらの重合物は製紙工業において
用いられているポリビニルアルコール系バインダ
ー等と併用することもできる。尚、前記したよう
に有機導電繊維の軟化、溶融或いは熱分解を避け
るために加熱処理温度に上限があることや、導電
フイルムのヒートシール性を考慮した場合には融
点は200℃以下、特に170℃以下のものが好まし
い。 本発明に係る導電フイルムは主として製紙技術
を応用して製造されるものであり、熱可塑性合成
樹脂から成るマトリクスは、熱可塑性合成パルプ
を原料として形成される。パルプという語は一般
には植物原料を機械的或いは化学的に処理して取
り出されるセルロース繊維の集まりについて用い
られているが、ここでは、繊維状物質又はその集
合体の意味であり、本発明において熱可塑性合成
パルプとは、熱可塑性合成樹脂から成るパルプ、
熱可塑性合成繊維、熱可塑性合成繊維状バインダ
ー等の抄紙可能な繊維状物質をすべて包含するも
のである。 また、本発明に係る導電フイルムにおいては、
原料としての熱可塑性合成パルプの一部を抄造性
を高めるために化学パルプに置き換えることによ
り、導電フイルムの熱可塑性樹脂マトリクス中に
セルロース繊維が分散されているものであつても
よい。本発明における化学パルプには、亜硫酸パ
ルプ、クラフトパルプ、ソーダパルプ等の他、セ
ミケミカルパルプも含まれる。また、さらしパル
プと未さらしパルプのいずれでもよい。本発明に
おいて用いるのに望ましい化学パルプは、透明性
の点から、さらし亜硫酸パルプ又はさらしクラフ
トパルプである。得られる導電フイルムの透明
性、ヒートシール性等の特性上の見地からは化学
パルプを併用することは必ずしも望ましくない
が、導電フイルムを製造する際の抄造性を高める
ためや価格の見地から使用するものである。但
し、その量は、熱可塑性合成パルプの50容量%以
下を置換するに止める。 本発明に係る導電フイルムは次のような方法で
製造される。 先ず、熱可塑性合成パルプと短繊維状の有機導
電繊維とを混合する。混合に際しては熱可塑性合
成パルプを予め温水等に投入、撹拌して離解して
おき、有機導電繊維の方も水等に分散させておき
これらを混合する。熱可塑性合成パルプと導電繊
維との配合割合は、得られる導電フイルムの面方
向比抵抗や透明性等の特性に対して重要な意味を
もつ。有機導電繊維が少なすぎると、繊維同志の
接触が不十分となり、面方向比抵抗の小さい導電
フイルムが得られないし、また有機導電繊維が多
すぎると、不透明度が高くなつてしまうからであ
る。有機導電繊維の最適な配合割合は、用いる有
機導電繊維の種類や繊維の太さによつて変動しう
るが、面方向比抵抗が1×108Ω・cm以下の導電
フイルムを得るには、少なくとも0.5容量%以上、
望ましくは2容量%以上配合する。また、導電フ
イルムの不透明度を30%以下に確保するには、有
機導電繊維の量を、その太さに応じて30容量%以
下、望ましくは10容量%以下で調整する。有機導
電繊維の直径が5〜10μmの場合には7容量%以
下、10〜15μmの場合には12容量%以下、15〜
20μmの場合には20容量%以下、20μm以上の場
合には30容量%以下とするのが望ましい。 原料として化学パルプを配合する場合には、叩
解したものを上記原料に混合する。 抄紙においては、通常の製紙技術において用い
られる、すき網部、圧搾部、乾燥部等からなる抄
紙機を用いることができる。乾燥して得られた原
紙は透明化のため加熱加圧する。加熱加圧は、通
常製紙工程で紙に光沢をつけ表面を平滑にするカ
レンダー処理やホツトプレス処理等により行なう
ことができ、圧力条件としては通常のカレンダー
処理による10〜200Kg/cmの線圧或いはホツトプ
レスによる場合には10〜200Kg/cm2の圧力下で適
宜選定する。また同様の条件であればプラスチツ
ク用カレンダーによる処理でも行なうことができ
る。 温度条件については、通常のカレンダー処理等
と異なり、寧可塑性合成パルプの融点以上の温度
に加熱することを必須とする。但し、その加熱温
度は使用する有機導電繊維の融点以下望ましくは
軟化点以下の温度とする。例えば融点が123℃の
熱可塑性合成パルプ(三井石油化学(株)製 ポリエ
チレン系樹脂 商品名SWP UL410)をマトリ
クス原料とし、有機導電繊維の基体として軟化点
が190℃のアクリル系繊維を使用した場合には、
123℃以上190℃以下の温度で加熱処理する。この
加熱は、熱可塑性合成パルプにより形成される熱
可塑性樹脂マトリクスを透明化するためにも、及
び導電フイルムの面方向比抵抗値を小さくするた
めにも必要である。 本発明に係る導電フイルムは、透明性、柔軟性
等の点から100μm以下の厚さとするのが望まし
い。 上記のようにして製造される導電フイルムは、
フイルム状の透明な熱可塑性樹脂マトリクス中に
短繊維状の有機導電繊維が分散されており、導電
繊維同志が接触点を有し、電気的接触状態を保持
するとともに、フイルムの厚さ方向には、有機導
電繊維が存在しない箇所、つまり透明な樹脂マト
リクスのみの部分を有している。このため、有機
導電繊維の多くの接点を通じて電気的に導通され
るため、1×108Ω・cm以下の小さい面方向比抵
抗を有し、且つ透明な樹脂マトリクス部分によつ
て光が透過されるので不透明度が30%以下という
透明性を有する導電フイルムが得られる。 本発明により、導電性と透明性とを有する従来
には存在しなかつた導電フイルムが得られるの
は、熱可塑性樹脂マトリクス中に、少ない配合量
の有機導電繊維がほとんど切断されない状態で分
散されるためである。これは、本発明に係る導電
フイルムが、製紙技術を応用されて作られること
と、導電フイラーとしての柔軟性に富んだ有機導
電繊維を用いるためである。従来の射出成形法や
押出成形法等のプラスチツク成形技術による場合
には、混練による樹脂マトリクスと導電フイラー
とのぬれがよくフイラー同志の接点での接触抵抗
が高くなる傾向があるので、製紙技術を応用して
製造することは導電性の優れたフイルムを得る上
で望ましい。 本発明においては導電フイルムは製紙技術を応
用して製造されるので、有機導電繊維は大部分破
損せずに抄紙され、その後加圧加熱により固着さ
れる際も、熱可塑性合成パルプの溶融による状態
変化が、カレンダーの圧力に対し、有機導電繊維
の折損を保護する緩衝作用をなし、直径に対して
長さの割合が大きい繊維状態で、有機導電繊維同
志の各接点が、溶融した熱可塑性合成パルプによ
り把持され、処理後の放冷により固定されフイル
ムが形成される。従つて本発明の導電フイルムは
接点の多い事が並列抵抗の如く、全抵抗値を低く
するものである。この事が有機導電繊維の添加量
が少ないにもかかわらず低い面方向比抵抗が得ら
れる原因と考えられる。 尚、本願発明を実施するに当り抄紙原料に対
し、屈折率がセルロースより低いか、もしくは同
等の天然又は合成高分子物質で、その融点が熱可
塑性合成パルプと類似のものを、透明化剤として
紙料中に混合する事も何等差支えない。又各種バ
インダー、界面活性剤、紙力増強剤、消泡剤など
を抄紙原料に加えてもよい。又透明化を助長する
ために、原紙に水分をダンピングしてスーパーカ
レンダーで処理することや、線圧をあげて処理す
ることも、公知技術として使用出来る。又熱可塑
性合成パルプの種類により熱風式加熱機、赤外線
加熱機などを併用することもできる。又抄紙工程
では熱可塑性合成パルプの軟化点以下の乾燥温度
で行うのが好ましい。 以上、本願発明に係る導電フイルムの製造方法
については、製紙法によるものについて説明した
が、同様の技術的思想により乾式不織布製造法を
採用することもできる。 本発明により得られる導電フイルムは実用的に
はグラシン紙と同程度乃至はそれ以上に透明なも
ので制電性、ヒートシール性をも兼ね備えた新規
有用なもので業界の要望に答えた新規なものであ
る。 本発明により製造される導電フイルムにおいて
は、導電繊維の配合比により所望の比抵抗のもの
を得ることができ、面方向比抵抗が主として108
〜100Ω・cmのものは電子部品等のほこり付着防
止用袋として及び静電障害防止用として、100
10-2Ω・cmのものは電磁波シールド効果が要求さ
れる用途に好適である。 更に、本願発明で用いる有機導電繊維は、繊維
自体が炭素繊維や金属繊維等の他の導電繊維と比
較して柔軟性、可撓性が優れているため、得られ
る導電フイルムも柔軟性と可撓性に富むととも
に、繊維とマトリクス樹脂とのなじみがよいた
め、導電フイルムの表面でも繊維が樹脂マトリク
スに十分に埋没し、表面が非常になめらかな導電
フイルムが得られる。従つて包装用フイルムとし
て用いた場合に、包装内容物を傷付けることが全
くないことに加えてえ、他の導電繊維を使用する
場合よりも成形性に優れているため、所望の形
状、構造の製品を作りやすいという効果もある。 又本発明により製造される導電フイルムは、他
の透明資材とのラミネート、又は不透明資材と貼
り合せて使用することや、不透明部分を一部残し
たエンボス加工品として使用することも出来る。 実験例 1 本発明にかゝる導電フイルムを包装用として使
用した場合に、有機導電繊維が内容物を傷付ける
ことがないことを知るために次の実験を行なつ
た。 有機導電繊維としてサンダーロンSS−N(商
標、アクリル系、軟化点190〜240℃、比重1.18、
平均繊維長3mm、単糸径17.5μm、比抵抗5.85×
10-2Ω・cm日本蚕毛染色製)、比較資料としてク
レハカーボンフアイバーチヨツプC203(商標、黒
鉛質、平均繊維長3mm、単糸径12.5μm 呉羽化
学製)を用い、それぞれを粘着紙面上に撒布して
供試試料とした。この粘着紙の両端をラボテスタ
ー(東洋精機製)に挾み、別に用意したメタクリ
ル樹脂板アクリライト(商標、三菱レイヨン製)
上に置き、0.5ポンド/平方吋の荷重をかけて500
往復回摩擦した。次いでメタクリル樹脂板の傷の
付き方および試料へのメタクリル樹脂板から生じ
た粉の付着の程度を肉眼判定し、またメタクリル
樹脂板の光沢度をグロスメーターS(東洋精機製)
で測定した。その結果を第1表に示した。
The present invention relates to a method for manufacturing a conductive film suitable for packaging, and is particularly flexible and has excellent surface smoothness, so it does not damage the contents of the package and protects the contents. The present invention relates to a method for producing a conductive film that has sufficient conductivity to protect against electrostatic damage, transparency to the extent that the contents can be seen through, and which can be heat-sealed. Electronic components such as semiconductor ICs and LSIs, printed circuit boards,
Magnetic tape and other products need to protect products from problems caused by static electricity, such as attracting dust and static electricity during the packaging and shipping process.In particular, C-MOS type ICs, which are commonly used these days, are susceptible to dielectric breakdown due to static electricity. Prevention of static electricity has become essential. In order to protect products from these electrostatic disturbances, packaging them with a conductive film with low surface resistivity may be considered. Conventionally, conductive paper made by mixing inorganic fibers such as carbon fibers, stainless steel fibers, and aluminum-coated glass fibers with wood pulp has been proposed as a conductive filler for this purpose. Because of its high surface strength, it easily damages the packaged contents. 2. Since there is no bending recovery property, the conductive performance decreases due to bending during use or processing. 3. Because it has a high specific gravity (stainless fiber 7.9, aluminum coated glass fiber 2.54) and water repellency, uniform dispersion in wood pulp stock is not easy, and the in-plane specific resistance of the conductive paper tends to be uneven. However, there is a need for conductive paper that does not damage the packaged contents. The present applicant previously filed an application for a conductive paper with transparency and heat-sealability using carbon fiber as a conductive filler (Japanese Patent Laid-Open No. 134421/1983), which allows the contents to be seen through without tearing the package. Moreover, by providing heat-sealability, an invention has been disclosed that can contribute to automation of packaging work. Subsequently, as a result of further research into the drawbacks of the above-mentioned inorganic fibers, it was found that all of these drawbacks were solved by using a specific organic fiber that had been treated with conductivity instead of the carbon fiber of the invention, and also improved transparency and heat resistance. The inventors have discovered that a conductive film with sealing properties can be obtained, and have arrived at the present invention. That is, the present invention has thermoplastic synthetic pulp of 99.5~
70% by volume, which is a conductively processed organic fiber based on an organic fiber having a melting point, softening point, or thermal decomposition temperature higher than the melting point of the thermoplastic synthetic pulp,
0.5 to 30 with a length of 1 to 40 mm and a diameter of 5 to 30 μm
% by volume and then heated by calendering at a temperature above the melting point of the thermoplastic synthetic pulp and at which the conductive treated organic fibers can be dispersed in their original form and have contact points. Opacity 30, characterized by pressure treatment
The present invention relates to a method for manufacturing a conductive film having a specific resistance in the in-plane direction of 1×10 8 Ω·cm or less. The electrically conductive processed organic fibers (hereinafter referred to as "organic conductive fibers") used in the present invention refer to various synthetic fibers, semi-synthetic fibers, or natural fibers that are preferably electrically processed without impairing the properties of these fibers. For example, organic fibers are chemically bonded with metal ions or metal compounds, or organic fibers are physically bonded with a conductive agent such as metal or carbon. Preferred typical examples of materials to which metal ions or metal compounds are bonded are conductive fibers in which copper ions are diffused into acrylic fibers during the dyeing process (trade name: Thunderon SS-N, manufactured by Nippon Kage Senso Co., Ltd.), or various organic fibers. Conductive fibers containing adsorbed cuprous iodide in the fibers
39299) etc. Examples of materials to which a conductive agent is physically bonded include organic fibers with a conductive agent kneaded into the base (Japanese Patent Laid-Open No. 56-134298), carbon composite fibers, and organic fibers plated with metal (Japanese Patent Publication No. 134298/1983) 49−
No. 3921), etc., but chemical bonding is more preferable because it does not impair the properties of the base organic fiber and there is no risk of separation of the conductive agent during the papermaking process. The method of electrically conductive processing is not limited to the above example, and may be carried out so that the specific resistance of the fibers is about 1×10 4 Ω·cm or less, preferably about 1×10 0 Ω·cm or less. The conductive processed organic fiber has a specific gravity of 0.9 to 2.5.
In particular, a range of 0.9 to 1.35 is desirable. This is because the main raw material in which the organic conductive fibers are blended is thermoplastic synthetic pulp (for example, polyethylene synthetic pulp with a specific gravity of 0.94 to 0.96), so it is easy to uniformly disperse materials with similar specific gravity, and the in-plane specific resistance, This is because it is easy to obtain a conductive film with uniform transparency. Therefore, for example, polyvinyl alcohol type (specific gravity 1.26 to 1.30), polyamide type (specific gravity 1.14), acrylic type (specific gravity 1.14 to 1.30) can be used as the base organic fiber.
1.18) A conductive agent chemically bonded to polyvinyl alcohol and polyvinyl chloride copolymer fiber (specific gravity 1.32) is suitable. However, aluminum (specific gravity 2.7), copper (specific gravity 7.9), nickel (specific gravity 8.9),
Even if it is plated with other metals, it may be used as long as the thickness of the coating layer is reduced, since a product with a small specific gravity can be obtained. When synthetic fibers are used as the organic fibers serving as the base, their melting point, preferably their softening point, must be higher than the melting point of the thermoplastic resin raw material, such as thermoplastic synthetic pulp, serving as the matrix. This is because when the thermoplastic resin that becomes the matrix is heated and melted to make it transparent, such as in the method of heating and pressing the base paper made using a calendar in the manufacturing process of conductive film, organic conductive fibers are This is because if the organic conductive fibers melt earlier or at the same time and lose their shape, the electrical properties imparted to the organic conductive fibers will change, making it impossible to obtain a conductive film having the desired in-plane specific resistance. Therefore, the transparentization treatment of the matrix portion by heating and pressing is carried out at a temperature that is above the melting point of the matrix raw material and below the melting point, preferably below the softening point, of the organic conductive fiber. For example, when polyethylene synthetic pulp (melting point 110-138°C) is used as a matrix raw material, organic conductive fibers of the same type are inconvenient, and acrylic fibers (softening point 190-240°C) are used in combination. Polyester fiber (softening point 235-240
°C), polyvinyl alcohol fiber (softening point 220~
230℃), polyamide fiber (softening point 180-235℃)
etc. can also be used. When using semi-synthetic fibers or organic conductive fibers based on natural fibers, there are no problems such as softening or melting, but since the thermal decomposition temperature of cellulose is 240 to 400°C, the melting point is 240°C as a matrix raw material. It is preferable to use the following materials and perform heat and pressure treatment at 240°C or less. The diameter of the organic conductive fiber is 5 to 30 μm, and the length is 1
A diameter of 5 to 20 μm and a length of 1 to 25 mm are particularly preferred, although a diameter of 5 to 20 μm is preferred. This is a requirement for ease of paper making, uniform in-plane resistivity, and transparency. That is, regarding the diameter, the diameter of the synthetic pulp, wood pulp, etc. that occupies the matrix of the conductive film is 5 to 20 μm, and the conductive film according to the present invention usually has a basis weight of 20 g/m 2 (thickness of about 22 μm). This is because uniform dispersion is possible because it is used in the range of ~100 g/m 2 , and the surface of the conductive film is finished smoothly, which is preferable from the viewpoint of protecting the contents of the package. In addition, fibers with a length of 1 mm or less tend to fall off during paper manufacturing, making the conductive film's in-plane resistivity uneven. This is because it cannot be obtained and transparency cannot be obtained. On the other hand, if it is 40 mm or more, flocs tend to form, the formation becomes less uniform, and resistivity and transparency in the surface direction become non-uniform, which is not preferable. The thermoplastic resin that becomes the matrix in the conductive film produced by the present invention includes polyolefin, polyacrylonitrile, polyester, polyamide, polyvinyl alcohol, etc., and it becomes transparent when melted by heating and returns to a solid polymer by cooling. It also maintains its transparency, and a material with an appropriate melting point is selected in relation to the organic conductive fiber used. Among these, particularly preferred are polyolefins that have a low melting point and are relatively inexpensive. Polyolefins include polyethylene, polypropylene, copolymers of ethylene and propylene,
copolymer of ethylene or propylene and α-olefin, ethylene or propylene and vinyl acetate,
It includes a copolymer with acrylic acid or the like, a mixture thereof, or a polymer obtained by further chemically treating these. These polymers can also be used in combination with polyvinyl alcohol binders used in the paper industry. As mentioned above, there is an upper limit to the heat treatment temperature to avoid softening, melting, or thermal decomposition of organic conductive fibers, and when considering the heat sealability of the conductive film, the melting point should be 200°C or lower, especially 170°C. It is preferable that the temperature is below ℃. The conductive film according to the present invention is mainly manufactured by applying paper manufacturing technology, and the matrix made of thermoplastic synthetic resin is formed using thermoplastic synthetic pulp as a raw material. The term "pulp" is generally used to refer to a collection of cellulose fibers extracted by mechanically or chemically processing plant materials, but here it refers to a fibrous material or an aggregate thereof, and in the present invention, it refers to a fibrous material or an aggregate thereof. Plastic synthetic pulp is pulp made of thermoplastic synthetic resin.
It includes all fibrous substances that can be made into paper, such as thermoplastic synthetic fibers and thermoplastic synthetic fibrous binders. Moreover, in the conductive film according to the present invention,
Cellulose fibers may be dispersed in the thermoplastic resin matrix of the conductive film by replacing a part of the thermoplastic synthetic pulp as a raw material with chemical pulp in order to improve paper formability. The chemical pulp in the present invention includes not only sulfite pulp, kraft pulp, soda pulp, etc., but also semi-chemical pulp. Moreover, either bleached pulp or unbleached pulp may be used. The preferred chemical pulp for use in the present invention is bleached sulfite pulp or bleached kraft pulp from the viewpoint of transparency. Although it is not necessarily desirable to use chemical pulp in combination with the resulting conductive film in terms of its properties such as transparency and heat sealability, it is used in order to improve the formability when manufacturing the conductive film and from the viewpoint of price. It is something. However, the amount should be limited to replacing 50% by volume or less of the thermoplastic synthetic pulp. The conductive film according to the present invention is manufactured by the following method. First, thermoplastic synthetic pulp and short fibrous organic conductive fibers are mixed. When mixing, the thermoplastic synthetic pulp is placed in hot water or the like in advance and stirred to disintegrate it, and the organic conductive fibers are also dispersed in water or the like and then mixed. The blending ratio of the thermoplastic synthetic pulp and the conductive fibers has an important meaning on the properties of the resulting conductive film, such as its in-plane resistivity and transparency. If the amount of organic conductive fibers is too small, the contact between the fibers will be insufficient, making it impossible to obtain a conductive film with low specific resistance in the planar direction, and if the amount of organic conductive fibers is too large, the opacity will become high. The optimal blending ratio of organic conductive fibers may vary depending on the type of organic conductive fibers used and the thickness of the fibers, but in order to obtain a conductive film with an in-plane specific resistance of 1×10 8 Ω・cm or less, At least 0.5% by volume or more,
Preferably, it is blended in an amount of 2% by volume or more. Furthermore, in order to ensure the opacity of the conductive film to be 30% or less, the amount of organic conductive fibers is adjusted to 30% by volume or less, preferably 10% by volume or less, depending on the thickness. If the diameter of the organic conductive fiber is 5 to 10 μm, it is 7% by volume or less, if it is 10 to 15 μm, it is 12% by volume or less, and 15 to 15% by volume.
When the thickness is 20 μm, it is preferably 20% by volume or less, and when the thickness is 20 μm or more, it is preferably 30% by volume or less. When blending chemical pulp as a raw material, the beaten pulp is mixed with the above raw material. In papermaking, a papermaking machine that is used in normal papermaking technology and is composed of a screen section, a pressing section, a drying section, etc. can be used. The dried base paper is heated and pressurized to make it transparent. Heat and pressure can be carried out by calender treatment or hot press treatment, which makes the paper glossy and smooth the surface in the normal papermaking process.The pressure conditions include a linear pressure of 10 to 200 kg/cm by normal calender treatment, or hot press. In this case, the pressure is appropriately selected from 10 to 200 kg/cm 2 . Further, under similar conditions, treatment using a plastic calendar can also be carried out. Regarding the temperature conditions, unlike ordinary calender treatment, it is essential to heat the process to a temperature higher than the melting point of the plastic synthetic pulp. However, the heating temperature is set to a temperature below the melting point, preferably below the softening point, of the organic conductive fiber used. For example, if thermoplastic synthetic pulp with a melting point of 123°C (polyethylene resin product name SWP UL410 manufactured by Mitsui Petrochemicals Co., Ltd.) is used as the matrix raw material, and acrylic fiber with a softening point of 190°C is used as the base of the organic conductive fiber. for,
Heat treatment at a temperature of 123℃ or higher and 190℃ or lower. This heating is necessary both to make the thermoplastic resin matrix formed from the thermoplastic synthetic pulp transparent and to reduce the in-plane specific resistance value of the conductive film. The conductive film according to the present invention preferably has a thickness of 100 μm or less from the viewpoint of transparency, flexibility, etc. The conductive film manufactured as described above is
Short organic conductive fibers are dispersed in a film-like transparent thermoplastic resin matrix, and the conductive fibers have contact points with each other to maintain electrical contact. , it has a portion where there is no organic conductive fiber, that is, a portion where there is only a transparent resin matrix. For this reason, electrical conduction occurs through many contact points of the organic conductive fibers, so it has a small in-plane specific resistance of 1×10 8 Ω・cm or less, and light is not transmitted through the transparent resin matrix portion. Therefore, a transparent conductive film with an opacity of 30% or less can be obtained. According to the present invention, a conductive film that has conductivity and transparency, which did not exist in the past, can be obtained because a small amount of organic conductive fibers is dispersed in a thermoplastic resin matrix without being cut. It's for a reason. This is because the conductive film according to the present invention is made by applying paper manufacturing technology and uses organic conductive fibers with high flexibility as the conductive filler. When conventional plastic molding techniques such as injection molding and extrusion molding are used, the resin matrix and conductive filler tend to get wet due to kneading, and the contact resistance at the contact points between the fillers tends to be high. Manufacturing by applying this method is desirable in order to obtain a film with excellent conductivity. In the present invention, the conductive film is manufactured by applying papermaking technology, so the organic conductive fibers are made into paper without being damaged for the most part, and even when they are fixed by pressure and heating, they remain in a state due to the melting of the thermoplastic synthetic pulp. The change acts as a buffer to protect the organic conductive fibers from breaking due to the pressure of the calender, and each contact point between the organic conductive fibers is made of molten thermoplastic composite fibers with a large ratio of length to diameter. It is gripped by the pulp and fixed by cooling after treatment to form a film. Therefore, in the conductive film of the present invention, the large number of contacts reduces the total resistance value, like a parallel resistance. This is considered to be the reason why a low in-plane specific resistance can be obtained despite the small amount of organic conductive fibers added. In carrying out the present invention, a natural or synthetic polymer substance with a refractive index lower than or equivalent to that of cellulose and whose melting point is similar to that of thermoplastic synthetic pulp is used as a clarifying agent for the papermaking raw material. There is no problem with mixing it into the paper stock. Further, various binders, surfactants, paper strength enhancers, antifoaming agents, etc. may be added to the papermaking raw materials. Further, in order to promote transparency, it is possible to use known techniques such as dumping moisture into the base paper and treating it with a super calendar, or treating it by increasing the linear pressure. Depending on the type of thermoplastic synthetic pulp, a hot air heating machine, an infrared heating machine, etc. can also be used in combination. In addition, the papermaking process is preferably carried out at a drying temperature below the softening point of the thermoplastic synthetic pulp. As mentioned above, the method for manufacturing the conductive film according to the present invention has been described using a paper manufacturing method, but a dry nonwoven fabric manufacturing method can also be adopted based on the same technical concept. The conductive film obtained by the present invention is practically as transparent as or more transparent than glassine paper, and has antistatic properties and heat sealing properties, making it a novel and useful product that meets the needs of the industry. It is something. In the conductive film produced according to the present invention, a desired specific resistance can be obtained by changing the blending ratio of the conductive fibers, and the in-plane specific resistance is mainly 10 8
~ 100 Ω・cm can be used as a bag to prevent dust from adhering to electronic parts, etc. , and to prevent electrostatic damage.
10 -2 Ω・cm is suitable for applications requiring electromagnetic shielding effect. Furthermore, the organic conductive fibers used in the present invention have superior flexibility and flexibility compared to other conductive fibers such as carbon fibers and metal fibers, so the resulting conductive film also has excellent flexibility and flexibility. In addition to being highly flexible, the fibers and matrix resin are compatible with each other, so that the fibers are fully embedded in the resin matrix even on the surface of the conductive film, resulting in a conductive film with an extremely smooth surface. Therefore, when used as a packaging film, it does not damage the packaged contents at all, and it also has better formability than other conductive fibers, so it can be used to form desired shapes and structures. It also has the effect of making the product easier to manufacture. Further, the conductive film produced according to the present invention can be used by laminating it with other transparent materials or bonding it with opaque materials, or can be used as an embossed product with some opaque parts remaining. Experimental Example 1 The following experiment was conducted to find out that when the conductive film according to the present invention is used for packaging, the organic conductive fibers do not damage the contents. Thunderon SS-N (trademark, acrylic type, softening point 190-240℃, specific gravity 1.18,
Average fiber length 3mm, single yarn diameter 17.5μm, specific resistance 5.85×
10 -2 Ω・cm (manufactured by Nippon Silk Hair Dying) and Kureha Carbon Fiber Tip C203 (trademark, graphite, average fiber length 3 mm, single yarn diameter 12.5 μm, manufactured by Kureha Chemical Co., Ltd.) as a comparison material. This was used as a test sample. Hold both ends of this adhesive paper between lab testers (manufactured by Toyo Seiki) and separately prepared methacrylic resin plate Acrylite (trademark, manufactured by Mitsubishi Rayon).
500 with a load of 0.5 lb/sq.
I rubbed it back and forth. Next, the scratches on the methacrylic resin board and the degree of adhesion of powder from the methacrylic resin board to the sample were visually judged, and the gloss of the methacrylic resin board was measured using a gloss meter S (manufactured by Toyo Seiki).
It was measured with The results are shown in Table 1.

【表】 第1表から明らかな如くサンダーロンSS−N
の表面硬度は炭素繊維に比して遥かに低いので本
発明の目的に好適な導電繊維の1つであることが
わかる。 次に熱可塑性合成パルプとしてSWP UL410
(商標、三井石油化学製ポリエチレン系樹脂、比
重0.94、融点123℃、平均繊維長0.9mm、白色度94
%以上)(以下、SWP410と略称する)を用い、
導電繊維として前記サンダーロンSS−N(以下サ
ンダーロンという)および比較試料として前記炭
素繊維を用い各導電繊維はSWP410に対し30重量
%ずつ配合して抄紙し、130℃、60Kg/cmで加熱
加圧処理して2種類の導電フイルム(米坪量約
100g/m2)を作成した。また市販の包装用ポリ
エチレンフイルムとも比較した。これを前記と同
様の方法で摩擦試験を行なつた結果を第2表に示
した。
[Table] As is clear from Table 1, Thunderon SS-N
The surface hardness of carbon fiber is much lower than that of carbon fiber, so it can be seen that it is one of the conductive fibers suitable for the purpose of the present invention. Next, SWP UL410 as thermoplastic synthetic pulp
(trademark, polyethylene resin manufactured by Mitsui Petrochemicals, specific gravity 0.94, melting point 123℃, average fiber length 0.9mm, whiteness 94)
% or more) (hereinafter abbreviated as SWP410),
The above-mentioned Thunderon SS-N (hereinafter referred to as Thunderon) was used as the conductive fiber and the above-mentioned carbon fiber was used as a comparison sample. Each conductive fiber was mixed with SWP410 in an amount of 30% by weight to make paper, and then heated at 130°C and 60 kg/cm. Pressure treated to produce two types of conductive films (approx.
100g/m 2 ). A comparison was also made with a commercially available polyethylene film for packaging. This was subjected to a friction test in the same manner as above, and the results are shown in Table 2.

【表】 この結果、本発明品は通常の包装用フイルムと
同様に苛酷な摩擦によつても内容物を傷付ける恐
れは殆んどないことが判明した。なお導電フイル
ムの表面を電子顕微鏡により100〜500倍に拡大し
て観察したところ、サンダーロンSS−Nは樹脂
マトリクス中に完全に埋没しているが、炭素繊維
は樹脂マトリクスにより被覆されずに突出し、ま
た該マトリクスとの融着が悪く、該繊維の周辺に
多くの連続、不連続の穴が見られた。これらの結
果から炭素繊維配合品が内容物を傷付け易いのは
樹脂マトリクスとの親和性が悪く、かつ表面硬度
が高いこと及び屈曲性がないためと考えられた。 実験例 2 熱可塑性パルプとしてSWP410を、化学パルプ
としてはNBKP(針葉樹さらしクラフトパルプ)
を、そして有機導電繊維としてはサンダーロンの
繊維径17.5μm、繊維長3mmのものを用いた。 実験試料は、サンダーロンの配合量を5重量%
(3.8容量%)で一定とし、SWP410とNBKPの混
合比率をかえた目標米坪量50g/m2のシートを3
種作成した。 尚、NBKPの叩解度は何れもカナダ標準水
度計で300mlCSFとし、SWP410及びサンダーロ
ンはそれぞれ水に分散させた後、NBKPと均一
に混合した。 次いで試験用スーパーカレンダーの線圧60Kg/
cm、速度4.5m/分を一定として、ロールの表面
温度130℃で加熱し処理した各シートにつき、特
性を測定した。測定結果を第3表に示す。 ここで容量%は、使用原料の比重(サンダーロ
ン1.2、SWP410 0.9、化学パルプ0.9)を用いて
算出したものである。尚、化学パルプの真比重は
1.4〜1.6であるが、本発明では見掛けの比重0.9を
用いた。
[Table] As a result, it was found that the product of the present invention, like ordinary packaging films, has almost no risk of damaging the contents even when subjected to severe friction. When observing the surface of the conductive film with an electron microscope magnified 100 to 500 times, it was found that Thunderon SS-N was completely buried in the resin matrix, but the carbon fibers were not covered by the resin matrix and protruded. Also, the fusion with the matrix was poor, and many continuous and discontinuous holes were observed around the fibers. From these results, it was considered that the reason why carbon fiber blended products easily damage the contents is because they have poor affinity with the resin matrix, have high surface hardness, and lack flexibility. Experimental example 2 SWP410 was used as thermoplastic pulp, and NBKP (softwood bleached kraft pulp) was used as chemical pulp.
And as the organic conductive fiber, Thunderon fiber diameter 17.5 μm and fiber length 3 mm were used. The experimental sample contained 5% by weight of Thunderon.
(3.8 volume%) and changed the mixing ratio of SWP410 and NBKP to produce 3 sheets with a target basis weight of 50g/m2.
I created a seed. The freeness of NBKP was set to 300 ml CSF using a Canadian standard hydrometer, and SWP410 and Thunderon were each dispersed in water and then uniformly mixed with NBKP. Next, the linear pressure of the super calender for testing was 60Kg/
The properties of each sheet were measured by heating at a roll surface temperature of 130°C at a constant speed of 4.5 m/min. The measurement results are shown in Table 3. Here, the volume % is calculated using the specific gravity of the raw materials used (Thunderon 1.2, SWP410 0.9, chemical pulp 0.9). Furthermore, the true specific gravity of chemical pulp is
Although the specific gravity is 1.4 to 1.6, an apparent specific gravity of 0.9 was used in the present invention.

【表】 尚、不透明度の測定はフオトボルト光電反射計
670型で測定した。 また、面方向比抵抗は一般には次式で表わされ
る。 ρ=RTW/L ρ:面方向比抵抗 Ω・cm L:電圧電極間の距離(cm) R:実測抵抗値(Ω) T:試験片の厚さ(cm) W:試験片の幅(cm) 面方向比抵抗の測定は日本ゴム協会法
SRIS2301に準拠した。 第3表から、SWP410の配合量が多いほど、面
方向比抵抗及び不透明度ともに低く、導電性、透
明性に優れたシートが得られることが判明した。 また、SWP410/NBKP/サンダーロンの混合
率が66.5/28.5/5重量%(サンダーロン3.8容量
%)、米坪量50g/m2のシートをカレンダー処理
した時のロールの表面温度と得られたシートの不
透明度の関係を第1図に示す。これより、カレン
ダーロールの線圧が60Kg/cmで一定の場合、
SWP410の軟化点(100〜105℃)の温度までは、
不透明度に著しい変化はないが、軟化点以上にな
ると不透明度は急激に低下し、融点(123℃)以
上では小さい不透明度のシートとなる。 実験例 3 熱可塑性パルプとしてSWP410を、有機導電繊
維としてサンダーロン(繊維径17.5μm、繊維長
3mm)を使用し、化学パルプは配合せずに、サン
ダーロンの配合量を変化させて、目標米坪量50
g/m2の各種シートを作成した。加熱加圧条件は
実験例2と同様とした。 得られた導電フイルムについて、サンダーロン
の配合量(容量%)に対する不透明度の関係を第
2図に、面方向比抵抗の関係を第3図に示す。 第2図から、有機導電繊維の配合量の増加にと
もなう不透明度の上昇傾向は比較的ゆるやかであ
り、各試料について不透明度が30%より十分小さ
い導電フイルムが得られている。使用したサンダ
ーロンについて望ましい配合量は20容量%以下で
あり、特に10容量%以下では不透明度が数%で透
明性の優れたものが得られることがわかる。 第3図から、サンダーロンが1容量%以上で面
方向比抵抗が1×106Ω・cm以下の導電フイルム
が得られており、2容量%付近から面方向比抵抗
が急激に小さくなり、配合量を多くすると1×
101Ω・cm以下の導電フイルムが得られる。 実験例 4 SWP410/NBKPの混合比率が80/20重量部と
なるように化学パルプを併用し、サンダーロンの
配合量を変化させて各種の導電フイルムを作成し
た。サンダーロンは繊維長がそれぞれ5mm、3
mm、0.7mmのもの(繊維の直径はいずれも17.5μ
m)について実験した。 尚、いずれの試料も米坪量50g/m2を目標と
し、加熱加圧条件は実験例2と同様とした。 得られた導電フイルムについて、サンダーロン
の配合量(容量%)に対する面方向比抵抗の関係
を第4図に示す。第4図において、●印はサンダ
ーロンの繊維長か5mmのもの、○印は3mmのも
の、△印は0.7mmのものである。 尚、比較のために、繊維長3mm、直径12.5μm
の炭素繊維を用いて同一条件で作成した導電フイ
ルムについての測定結果も×印として第4図に示
す。 第4図より、面方向比抵抗を1×108Ω・cm以
下とするには、サンダーロンの配合量を繊維長5
mm及び3mmのもので0.7容量%以上、0.7mmのもの
で5.5容量%以上とすればよいことがわかる。ま
た、サンダーロンの繊維長が長い程、同一面方向
比抵抗を得るための配合量は少なくてすむ。 また、炭素繊維配合のものと比較してみると、
配合量が3容量%以下での配合量の減少にともな
う面方向比抵抗の上昇の度合が繊維長3mmと5mm
のサンダーロンの方がゆるやかであり、サンダー
ロンの場合には1容量%でも1×106Ω・cm以下
の導電フイルムが得られる。 実施例 1 熱可塑性合成パルプとしてSWP UL410(三井
石油化学(株)製、ポリエチレン系樹脂 融点123℃)
(以下SWP410と略す)の一定量を50℃の温水に
投入し、3%の濃度とし、撹拌機で離解した。ま
た、化学パルプとしてNBKPは試験ビータで叩
解度が30mlCSFになるまで叩解した。有機導電繊
維としてサンダーロンSS−N(日本蚕毛染色(株)
平均繊維長5mm、繊維径17.5μm、比抵抗5.9×
10-2Ω・cm)を常温の水に1%の濃度となるよう
に分散させ、これに消泡剤としてトリミン
DF130(ミヨシ油脂(株)製)を少量加えて調整した。 これらを混合比率で80/20/5重量部(77/
19.2/3.8容量%)となる様に採り、混合槽に入
れ10分間撹拌し、次いで分散剤としてPEO −
PF(製鉄化学(株)製)を原料に対し0.06%加え、米
坪量50g/m2を目標とし原紙を製造した。原紙の
乾燥は80〜100℃で行なつた。これを線圧60Kg/
cm、温度130℃の条件でスーパーカレンダーで処
理し、導電フイルムを製造した。原紙と導電フイ
ルムの物性を第4表に示す。
[Table] The opacity is measured using a photovolt photoelectric reflectometer.
Measured with Model 670. Further, the in-plane specific resistance is generally expressed by the following formula. ρ=RTW/L ρ: Planar specific resistance Ω・cm L: Distance between voltage electrodes (cm) R: Actual resistance value (Ω) T: Thickness of test piece (cm) W: Width of test piece (cm) ) Measurement of in-plane specific resistance is based on the Japan Rubber Association method.
Compliant with SRIS2301. From Table 3, it was found that the greater the amount of SWP410, the lower both the in-plane specific resistance and opacity, and the more excellent the sheet was obtained in conductivity and transparency. Also, the surface temperature of the roll obtained when a sheet with a mixing ratio of SWP410/NBKP/Thunderon of 66.5/28.5/5% by weight (Thunderon 3.8% by volume) and a basis weight of 50 g/ m2 was calendered. The relationship between sheet opacity is shown in FIG. From this, if the linear pressure of the calendar roll is constant at 60Kg/cm,
Up to the softening point (100-105℃) of SWP410,
There is no significant change in opacity, but above the softening point, the opacity decreases rapidly, and above the melting point (123°C), the sheet becomes a sheet with low opacity. Experimental example 3 Using SWP410 as the thermoplastic pulp and Thunderon (fiber diameter 17.5 μm, fiber length 3 mm) as the organic conductive fiber, the target rice was achieved by varying the blending amount of Thunderon without adding any chemical pulp. Basis weight 50
Various sheets of g/m 2 were prepared. The heating and pressurizing conditions were the same as in Experimental Example 2. Regarding the obtained conductive film, the relationship between the opacity and the blending amount (volume %) of Thunderon is shown in FIG. 2, and the relationship between the specific resistance in the in-plane direction is shown in FIG. From FIG. 2, the tendency for the opacity to increase as the amount of organic conductive fibers increases is relatively gradual, and conductive films with opacity well below 30% were obtained for each sample. It can be seen that the desired amount of Thunderon used is 20% by volume or less, and in particular, if it is 10% by volume or less, an opacity of several percent and excellent transparency can be obtained. From Figure 3, a conductive film with Thunderon of 1% by volume or more and a specific resistance in the planar direction of 1×10 6 Ω・cm or less was obtained, and the specific resistance in the planar direction suddenly decreases from around 2% by volume. When the amount of compounding is increased, it becomes 1×
A conductive film with a resistance of 10 Ω・cm or less can be obtained. Experimental Example 4 Various conductive films were created by using chemical pulp in combination so that the mixing ratio of SWP410/NBKP was 80/20 parts by weight, and by varying the blending amount of Thunderon. Thunderon has fiber lengths of 5 mm and 3, respectively.
mm, 0.7mm (fiber diameter is 17.5μ)
An experiment was conducted regarding m). The target weight for each sample was 50 g/m 2 , and the heating and pressing conditions were the same as in Experimental Example 2. FIG. 4 shows the relationship between the in-plane specific resistance and the amount of Thunderon (volume %) for the obtained conductive film. In Fig. 4, ● marks are for Thunderon fibers with a length of 5 mm, ○ marks are for 3 mm fibers, and △ marks are for 0.7 mm fibers. For comparison, the fiber length is 3 mm and the diameter is 12.5 μm.
The measurement results for a conductive film made under the same conditions using carbon fibers are also shown in FIG. 4 as x marks. From Figure 4, in order to make the in-plane resistivity less than 1×10 8 Ω・cm, the amount of Thunderon added should be increased by increasing the fiber length by 5.
It can be seen that the amount should be 0.7% by volume or more for mm and 3mm products, and 5.5% by volume or more for 0.7mm products. Furthermore, the longer the fiber length of Thunderon is, the smaller the amount required to obtain specific resistance in the same plane direction is required. Also, when compared with those containing carbon fiber,
When the blending amount is 3% by volume or less, the degree of increase in the in-plane resistivity as the blending amount decreases is different for fiber lengths of 3 mm and 5 mm.
Sanderon is more gentle, and in the case of Thunderon, a conductive film of 1×10 6 Ω·cm or less can be obtained even at 1% by volume. Example 1 SWP UL410 (manufactured by Mitsui Petrochemical Co., Ltd., polyethylene resin, melting point 123°C) as thermoplastic synthetic pulp
(hereinafter abbreviated as SWP410) was poured into hot water at 50°C to give a concentration of 3%, and disintegrated with a stirrer. In addition, as a chemical pulp, NBKP was beaten with a test beater until the degree of beating was 30 ml CSF. Thunderon SS-N as an organic conductive fiber (Nihon Kasuke Dyeing Co., Ltd.)
Average fiber length 5mm, fiber diameter 17.5μm, specific resistance 5.9×
10 -2 Ω・cm) is dispersed in water at room temperature to a concentration of 1%, and trimin is added to this as an antifoaming agent.
Adjustments were made by adding a small amount of DF130 (manufactured by Miyoshi Yushi Co., Ltd.). The mixing ratio of these is 80/20/5 parts by weight (77/
19.2/3.8% by volume), placed in a mixing tank and stirred for 10 minutes, then added PEO − as a dispersant.
A base paper was produced by adding 0.06% PF (manufactured by Seitetsu Kagaku Co., Ltd.) to the raw material and aiming for a basis weight of 50 g/m 2 . The base paper was dried at 80-100°C. Linear pressure 60Kg/
cm, and processed in a super calender at a temperature of 130°C to produce a conductive film. Table 4 shows the physical properties of the base paper and conductive film.

【表】 同表のヒートシール強度はタツピースタンダー
ドT517−69に準拠し、次の条件で行なつた。 シール条件:圧着圧力2Kg/cm2、圧着時間1秒、
温度150℃、シール幅10mm 強度試験:万能形引張試験機テンシロン(東洋ボ
ールドウイン(株)製)によるT型剥離速度50mm/
分、つかみ間隔10cm、試験片幅2.5cm 原紙は不透明度が高く、上級紙の外観を示し
た。 導電フイルムは表面が非常になめらかであり、
有機導電繊維がフイルム中に均一に且つマトリク
スと異和感なく分散しており、均質なプラスチツ
クフイルムの感触を呈し、袋とした場合内容物は
十分透視出来た。透気度が高いのは合成樹脂パル
プの溶融効果であり、従つて透湿度も低く、ヒー
トシールをして袋とし、水1を入れ長時間放置
しても水の滲出の触感はなかつた。又ヒートシー
ル強度も十分であつた。 実施例 2 SWP410/NBKP/サンダーロンの混合比率を
80/20/1重量部(79.3/19.9/0.8容量%)とし
た他は、実施例1と同様にして導電フイルムを作
製した。得られた導電フイルムの面方向比抵抗は
5×106Ω・cmで、不透明度は10.3%であつた。
この導電フイルムはほこり防止用袋として十分使
用できた。 実施例 3 サンダーロンの平均繊維長を3mmとし、
SWP410/NBKP/サンダーロンの混合比率を
50/50/3重量部(48.9/48.9/2.2容量%)とし
た他は、実施例1と同様にして導電フイルムを作
製した。導電フイルムの物性は第5表の通りであ
つた。
[Table] The heat seal strength shown in the table was based on Tatsupi Standard T517-69 and was conducted under the following conditions. Sealing conditions: crimping pressure 2Kg/cm 2 , crimping time 1 second,
Temperature: 150℃, seal width: 10mm Strength test: T-type peeling speed: 50mm/all-purpose tensile tester Tensilon (manufactured by Toyo Baldwin Co., Ltd.)
The base paper had a high opacity and had the appearance of a high-grade paper. The conductive film has a very smooth surface.
The organic conductive fibers were uniformly dispersed in the film without any discomfort from the matrix, giving it the feel of a homogeneous plastic film, and when it was made into a bag, the contents could be seen through. The high air permeability is due to the melting effect of the synthetic resin pulp, and therefore the water permeability is low, so even if the bags were heat-sealed, filled with water 1, and left for a long time, there was no tactile sensation of water oozing out. Moreover, the heat sealing strength was also sufficient. Example 2 Mixing ratio of SWP410/NBKP/Thunderon
A conductive film was produced in the same manner as in Example 1, except that the ratio was 80/20/1 part by weight (79.3/19.9/0.8% by volume). The conductive film obtained had a surface direction specific resistance of 5×10 6 Ω·cm and an opacity of 10.3%.
This conductive film could be used satisfactorily as a dust prevention bag. Example 3 The average fiber length of Thunderon was 3 mm,
Mixing ratio of SWP410/NBKP/Thunderon
A conductive film was produced in the same manner as in Example 1, except that the proportions were 50/50/3 parts by weight (48.9/48.9/2.2% by volume). The physical properties of the conductive film were as shown in Table 5.

【表】 実施例1、実施例2と比較して化学パルプの量
が多く、透明性は若干低下したものが得られてい
る。実施例1と比較して透気度が低下し、透湿度
が増加し、ヒートシール強度は低下しているが、
引張り強さは向上している。本実施例の導電フイ
ルムは十分導電性コンテナとして使用できた。 実施例 4 熱可塑性合成パルプとしてSWPに代えて、ES
−Chop (チツソ(株)製ポリエチレンと、ポリプ
ロピレンの複合繊維、融点165〜170℃、繊維長5
mm、繊度3デニール)と、ポリビニルアルコール
繊維状バインダーを90:10の割合で混合し、化学
パルプは使用せず、これにサンダーロン(繊維長
3mmのもの)を5部加えた。従つて本組成は熱可
塑性合成パルプと有機導電繊維の混合比率は
100/5重量部(96.1/3.9容量%)である。これ
を米坪量50g/m2を目標として、実施例1と同様
に抄紙し、原紙を製造した。次にスーパーカレン
ダーと赤外線加熱機を併用し、180℃、60Kg/cm
で処理した。得られた導電フイルムの特性は第6
表の通りであつた。
[Table] Compared to Examples 1 and 2, the amount of chemical pulp was larger and the transparency was slightly lower. Compared to Example 1, the air permeability decreased, the moisture permeability increased, and the heat seal strength decreased;
Tensile strength has improved. The conductive film of this example could be used as a sufficiently conductive container. Example 4 Using ES instead of SWP as thermoplastic synthetic pulp
-Chop (composite fiber of polyethylene and polypropylene manufactured by Chitsuso Co., Ltd., melting point 165-170℃, fiber length 5
mm, fineness 3 denier) and a polyvinyl alcohol fibrous binder at a ratio of 90:10, no chemical pulp was used, and 5 parts of Thunderon (fiber length 3 mm) was added to this. Therefore, in this composition, the mixing ratio of thermoplastic synthetic pulp and organic conductive fiber is
It is 100/5 parts by weight (96.1/3.9% by volume). This was made into paper in the same manner as in Example 1, aiming at a basis weight of 50 g/m 2 to produce a base paper. Next, we used a super calendar and an infrared heating machine to heat the product at 180℃ and 60Kg/cm.
Processed with. The characteristics of the obtained conductive film are as follows.
It was as shown in the table.

【表】 実施例1と比較して、本実施例の導電フイルム
はより柔軟で崇高であり袋への加工適正は優れて
おり、透明性も十分であつた。 実施例 5 化学パルプを使用せず、SWP410/サンダーロ
ンの混合比率を100/5重量部(96.2/3.8容量
%)とし、サンダーロンの平均繊維長を3mmとし
た他は実施例1と同じ方法で米坪量を30、40、50
g/m2を目標にして抄紙し、スーパーカレンダー
処理を行なつて3種の導電フイルムを作製した。
得られた導電フイルムの特性を第7表に示す。
[Table] Compared with Example 1, the conductive film of this example was more flexible and noble, had excellent suitability for processing into bags, and had sufficient transparency. Example 5 Same method as Example 1 except that no chemical pulp was used, the mixing ratio of SWP410/Thunderon was 100/5 parts by weight (96.2/3.8% by volume), and the average fiber length of Thunderon was 3 mm. 30, 40, 50 basis weight
Paper was made with a target of g/m 2 and subjected to supercalender treatment to produce three types of conductive films.
Table 7 shows the properties of the conductive film obtained.

【表】 得られた導電フイルムはいずれも透明性に優れ
ており、薄く着色した透明なプラスチツクフイル
ムの外観を呈し、表面はなめらかなプラスチツク
の触感であつた。 実施例 6 SWP410/NBKP/サンダーロンの混合比率を
80/20/10重量部(74.4/18.6/7.0容量%)とし
た他は実施例1と同じ方法で米坪量50g/m2を目
標として抄紙し、スーパーカレンダー処理して導
電フイルムを得た。この導電フイルムは、米坪量
54.4g/m2、不透明度17.9%、透気度5000秒/
100ml、面方向比抵抗2.8×100Ω・cmであつた。 実施例 7 SWP410/NBKP/サンダーロンの混合比率を
75/25/25重量部(63.2/21.0/15.8容量%)と
した他は実施例1と同じ方法で米坪量40g/m2
目標に抄紙し、スーパーカレンダー処理して導電
フイルムを得た。この導電フイルムの特性は第8
表の通りであつた。
[Table] All of the obtained conductive films had excellent transparency and had the appearance of a lightly colored transparent plastic film, and the surface had a smooth plastic feel. Example 6 Mixing ratio of SWP410/NBKP/Thunderon
Paper was made in the same manner as in Example 1, except that 80/20/10 parts by weight (74.4/18.6/7.0% by volume) was used, aiming for a basis weight of 50 g/ m2 , and a conductive film was obtained by supercalendering. . This conductive film has a weight of
54.4g/m 2 , opacity 17.9%, air permeability 5000 seconds/
The volume was 100 ml, and the in-plane specific resistance was 2.8×10 0 Ω·cm. Example 7 Mixing ratio of SWP410/NBKP/Thunderon
Paper was made in the same manner as in Example 1, except that 75/25/25 parts by weight (63.2/21.0/15.8% by volume) was used, aiming for a basis weight of 40 g/m 2 , and supercalendered to obtain a conductive film. . The characteristics of this conductive film are as follows:
It was as shown in the table.

【表】 実施例 8 有機導電繊維として、アクリル繊維(直径14μ
m)の表面に約3μmの厚さにアルミニウムを被
覆した平均繊維長5mmの繊維(比重2.0)を使用
し、化学パルプを使用せずSWP410/有機導電繊
維の混合比率を90/10重量部(95.2/4.8容量%)
とした他は、実施例1と同様にして導電フイルム
を作成した。 得られた導電フイルムは、米坪量51.2g/m2
不透明度7.5%、面方向比抵抗1.3×100Ω・cmであ
り、なめらかなプラスチツクフイルムの外観を呈
した。 実施例 9 熱可塑性合成パルプとしてSWP410、有機導電
繊維として人絹(直径26μm)の表面に2μmの厚
さに銅を被覆した平均繊維長5mmの繊維(比重
3.4)を使用し、化学パルプは配合せずに、銅被
覆繊維の配合量を変化させて目標米坪量50g/m2
の各種シートを作成した。加熱、加圧条件は実施
例2と同様とした。 得られた導電フイルムの諸物性を第9表に示
す。
[Table] Example 8 Acrylic fiber (diameter 14μ
Using fibers with an average fiber length of 5 mm (specific gravity 2.0) coated with aluminum to a thickness of approximately 3 μm on the surface of the fibers, the mixing ratio of SWP410/organic conductive fiber was 90/10 parts by weight (without using chemical pulp). 95.2/4.8 capacity%)
A conductive film was produced in the same manner as in Example 1, except for the following. The obtained conductive film had a basis weight of 51.2 g/m 2 ,
The opacity was 7.5%, the in-plane specific resistance was 1.3×10 0 Ω·cm, and it had the appearance of a smooth plastic film. Example 9 SWP410 was used as a thermoplastic synthetic pulp, human silk (diameter 26 μm) was used as an organic conductive fiber, and the surface was coated with copper to a thickness of 2 μm, and the average fiber length was 5 mm (specific gravity
3.4), without adding chemical pulp, and by changing the amount of copper-coated fibers to achieve a target basis weight of 50g/m 2
Various sheets were created. The heating and pressurizing conditions were the same as in Example 2. Table 9 shows the physical properties of the conductive film obtained.

【表】 第9表によればこの導電フイルムは銅被覆人絹
の1.4容量%以上の配合量で安定した面方向比抵
抗を示し、また6.2容量%以下では透明なフイル
ムと同様の透明性を有している。また該繊維は合
成樹脂マトリクス中に十分に埋没してフイルム表
面は平滑であり包装内容物を傷付ける恐れはない
と判断された。
[Table] According to Table 9, this conductive film exhibits stable in-plane resistivity when the content of copper-coated human silk is 1.4% by volume or more, and it exhibits the same transparency as a transparent film when the content is 6.2% by volume or less. have. It was also determined that the fibers were sufficiently embedded in the synthetic resin matrix and the film surface was smooth, so there was no risk of damaging the packaged contents.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、カレンダー処理した時のロールの表
面温度と得られたシートの不透明度の関係を示す
グラフでもある。第2図は、有機導電繊維の配合
量(容量%)に対する、化学パルプを併用せずに
作られた導電フイルムの不透明度の関係を示すグ
ラフである。第3図は、有機導電繊維の配合量
(容量%)に対する、化学パルプを併用せずに作
られた導電フイルムの面方向比抵抗の関係を示す
グラフである。第4図は、各種繊維長の有機導電
繊維と炭素繊維の配合量(容量%)に対する、化
学パルプを併用して作られた導電フイルムの面方
向比抵抗の関係を示すグラフである。
FIG. 1 is also a graph showing the relationship between the surface temperature of the roll and the opacity of the sheet obtained during calendering. FIG. 2 is a graph showing the relationship between the amount of organic conductive fibers (volume %) and the opacity of a conductive film made without using chemical pulp. FIG. 3 is a graph showing the relationship between the amount (volume %) of organic conductive fibers and the in-plane specific resistance of a conductive film made without using chemical pulp. FIG. 4 is a graph showing the relationship between the in-plane specific resistance of a conductive film made using chemical pulp in combination with the blending amount (volume %) of organic conductive fibers of various fiber lengths and carbon fibers.

Claims (1)

【特許請求の範囲】 1 熱可塑性合成パルプ99.5〜70容量%と、該熱
可塑性合成パルプの融点よりも融点、軟化点ある
いは熱分解温度が高い有機繊維を基体とする導電
加工された有機繊維であつて、長さが1〜40mm、
直径が5〜30μmのもの0.5〜30容量%とを混合抄
紙してなる原紙を、前記熱可塑性合成パルプの融
点以上で且つ前記導電加工された有機繊維がその
ままの形態で分散されて接触点を有することので
きる温度でカレンダー処理により加熱加圧処理す
ることを特徴とする不透明度30%以下で面方向比
抵抗1×108Ω・cm以下の導電フイルムの製造方
法。 2 有機繊維が合成繊維であり、加熱温度が該合
成繊維の融点以下の温度である特許請求の範囲第
1項記載の導電フイルムの製造方法。 3 有機繊維が半合成繊維又は天然繊維であり、
加熱温度が240℃である特許請求の範囲第1項記
載の導電フイルムの製造方法。 4 熱可塑性合成パルプの50容量%以下を化学パ
ルプで置き換えたものである特許請求の範囲第1
項〜第3項のいずれかに記載の導電フイルムの製
造方法。
[Scope of Claims] 1 Conductively processed organic fibers containing 99.5 to 70% by volume of thermoplastic synthetic pulp and organic fibers having a melting point, softening point, or thermal decomposition temperature higher than the melting point of the thermoplastic synthetic pulp. The length is 1~40mm,
A base paper made by mixing 0.5 to 30% by volume of fibers with a diameter of 5 to 30 μm is heated to a temperature higher than the melting point of the thermoplastic synthetic pulp and the conductive treated organic fibers are dispersed in their original form to form contact points. 1. A method for producing a conductive film having an opacity of 30% or less and an in-plane specific resistance of 1×10 8 Ω·cm or less, the method comprising heating and pressurizing the film by calendering at a temperature that allows the conductive film to have an opacity of 30% or less. 2. The method for producing a conductive film according to claim 1, wherein the organic fiber is a synthetic fiber and the heating temperature is a temperature below the melting point of the synthetic fiber. 3 The organic fiber is a semi-synthetic fiber or a natural fiber,
The method for producing a conductive film according to claim 1, wherein the heating temperature is 240°C. 4 Claim 1 in which less than 50% by volume of thermoplastic synthetic pulp is replaced with chemical pulp
A method for manufacturing a conductive film according to any one of items 1 to 3.
JP12102983A 1983-07-05 1983-07-05 Electrically-conductive film and its preparation Granted JPS6013819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12102983A JPS6013819A (en) 1983-07-05 1983-07-05 Electrically-conductive film and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12102983A JPS6013819A (en) 1983-07-05 1983-07-05 Electrically-conductive film and its preparation

Publications (2)

Publication Number Publication Date
JPS6013819A JPS6013819A (en) 1985-01-24
JPH0373680B2 true JPH0373680B2 (en) 1991-11-22

Family

ID=14801050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12102983A Granted JPS6013819A (en) 1983-07-05 1983-07-05 Electrically-conductive film and its preparation

Country Status (1)

Country Link
JP (1) JPS6013819A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104600A (en) * 1983-11-05 1985-06-08 阿波製紙株式会社 Production of packing paper
JPH028712Y2 (en) * 1985-02-12 1990-03-01
JPS61225398A (en) * 1985-03-28 1986-10-07 愛媛県 Sheet like composition containing coudnctive fiber
JPH0523327Y2 (en) * 1985-11-25 1993-06-15
JPH069903B2 (en) * 1986-10-14 1994-02-09 宇部興産株式会社 Method for producing transparent conductive buffer sheet
JP6462486B2 (en) * 2015-05-26 2019-01-30 Kbセーレン株式会社 Conductive synthetic paper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493921U (en) * 1972-04-14 1974-01-14
JPS5311946A (en) * 1976-07-21 1978-02-02 Toray Ind Inc Resin compositions incorporated with conductive fibers
JPS5354242A (en) * 1976-10-27 1978-05-17 Mitsubishi Monsanto Chem Co Synthetic resin compositions for molding antistatic artificial grass
JPS56134298A (en) * 1980-03-21 1981-10-20 Toray Industries Special paper
JPS5739299A (en) * 1980-08-14 1982-03-04 Teijin Ltd Antistatic synthetic paper
JPS5765751A (en) * 1980-10-08 1982-04-21 Toray Ind Inc Highly electrically conductive resin composition and electrically conductive resin molded product therefrom

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493921U (en) * 1972-04-14 1974-01-14
JPS5311946A (en) * 1976-07-21 1978-02-02 Toray Ind Inc Resin compositions incorporated with conductive fibers
JPS5354242A (en) * 1976-10-27 1978-05-17 Mitsubishi Monsanto Chem Co Synthetic resin compositions for molding antistatic artificial grass
JPS56134298A (en) * 1980-03-21 1981-10-20 Toray Industries Special paper
JPS5739299A (en) * 1980-08-14 1982-03-04 Teijin Ltd Antistatic synthetic paper
JPS5765751A (en) * 1980-10-08 1982-04-21 Toray Ind Inc Highly electrically conductive resin composition and electrically conductive resin molded product therefrom

Also Published As

Publication number Publication date
JPS6013819A (en) 1985-01-24

Similar Documents

Publication Publication Date Title
US4645566A (en) Process for producing electroconductive films
KR101861529B1 (en) Cellulose-reinforced high mineral content products and methods of making the same
EP3475485B1 (en) Microfibrillated film
JP6441876B2 (en) Improved cellulose article containing additive composition
Yan et al. Improvement of paper strength with starch modified clay
EP3727855A1 (en) Heat-sealable packaging material
JPH0373680B2 (en)
JP2950514B2 (en) Method for producing a flat, fibrous, and flexible substrate that is difficult to tear, and a substrate thereof
US5614312A (en) Wet-laid sheet material and composites thereof
EP0100670B1 (en) Conductive film for packaging
EP3706998A1 (en) Packaging material with barrier properties
JPH0345159B2 (en)
JPH0146639B2 (en)
JPS59213730A (en) Conductive film and its manufacture
JPS5926597A (en) Conductive paper and production thereof
JPH0146640B2 (en)
JPH0447924B2 (en)
KR20040072039A (en) Paper for upper layer of wallpaper
JP3624452B2 (en) Waste paper board
JP3919141B2 (en) Recyclable moisture-proof paper, manufacturing method thereof and wrapping paper
JPH11320802A (en) Barrier sheet
JPH0412594A (en) Vinyl chloride based laminated body and its manufacture
US20230127264A1 (en) Abrasive backing and method of making same
JP4480448B2 (en) Waterproof paper
JPH11353938A (en) Extensible conductive sheet and its manufacture