JPH0447924B2 - - Google Patents

Info

Publication number
JPH0447924B2
JPH0447924B2 JP60000867A JP86785A JPH0447924B2 JP H0447924 B2 JPH0447924 B2 JP H0447924B2 JP 60000867 A JP60000867 A JP 60000867A JP 86785 A JP86785 A JP 86785A JP H0447924 B2 JPH0447924 B2 JP H0447924B2
Authority
JP
Japan
Prior art keywords
melting point
component
fiber
fibers
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60000867A
Other languages
Japanese (ja)
Other versions
JPS61160212A (en
Inventor
Itsupei Kato
Masao Takasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Paper Manufacturing Co Ltd
Original Assignee
Mishima Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Paper Manufacturing Co Ltd filed Critical Mishima Paper Manufacturing Co Ltd
Priority to JP60000867A priority Critical patent/JPS61160212A/en
Publication of JPS61160212A publication Critical patent/JPS61160212A/en
Publication of JPH0447924B2 publication Critical patent/JPH0447924B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は導電加工された有機繊維を用いる透明
導電フイルムの製造方法に関するものであり、詳
しくは、得られるフイルムが比較的薄く且つ連続
的な製造が可能な強度を有するとともに、十分な
導電性と優れた透明性を有する透明導電フイルム
を製造することのできる方法に関する。 〔技術の背景〕 半導体ICやLSI等の電子部品、プリント基板、
磁気テープ等は包装、出荷の工程で静電気による
ほこりの吸着や静電気帯電によるトラブルから製
品を保護する必要があり、特に最近よく用いられ
るC−MOS型のIC等は静電気による絶縁破壊を
起こしやすいので帯電防止は不可欠となつてい
る。これらの静電気障害から製品を保護するため
には表面抵抗率の低い導電フイルムで包装するこ
とが考えられる。また、上記IC等の製品は取引
上包装された内容物を透視して判断可能なことが
望まれるので、導電フイルムで包装する場合に
は、導電フイルム自体がある程度の透明性を有す
ることが要請される。さらにこのような包装用導
電フイルムは内容物を傷付けるものであつてはな
らない。従つて導電繊維を用いて透明導電フイル
ムを製造するにはマトリクス中の導電繊維の絶
対量を少なくして所定の導電性を得ること、用
いる導電繊維の表面硬度が小さいこと、導電繊
維は屈曲により折れることなく、かつ屈曲回復性
がよいこと、厚さが薄いこと、フイルムの表
面が平坦で皺がなく加工適正がよいこと、及び
製造、加工工程においてフイルムが破断等しない
十分な強度を有しシート状のものが連続的に製造
可能であること等の6つの条件が必要とされる。 〔従来技術〕 本発明者等は熱可塑性合成パルプに導電加工さ
れた有機繊維を混入した紙料を抄紙し、得られる
原紙を合成パルプの融点以上に温度で加熱加圧す
ることにより前記の6つの条件を満しうることを
見出し、さきに特願昭58−121029号として開示し
た。本発明はこれわ改良し導電フイルムの強度を
さらにあげることにより厚さの減少と透明性の増
大を図り、ひいてはコストのてい減を図つたもの
である。本発明者の実験によれば、ポリオレフイ
ン系合成パルプと導電繊維のみからなる導電フイ
ルムを製造する場合には、ポリオレフイン系合成
パルプに物理的、化学的結合性がほとんどないた
め得られる紙状物の引張強度、引裂き強さ、表面
強度が弱く、ポリオレフインの熱融合前の工程に
おいてフイルムが裂断する等してしまい、シート
状のものを巻き取りながら連続的に製造すること
は実際上困難であり、また秤量の小さい薄手のフ
イルムを製造することは不可能であつた。 強度不足を補うために熱水溶解性ポリビニルア
ルコール繊維状バインダーの如き単一成分のバイ
ンダーを合成パルプと併用することが考えられる
が、融点が低すぎるため抄紙機ドライヤーに溶融
したバインダーが付着するのでシートに粕が付着
したり、穴の発生や断紙の原因ともなるので好ま
しくない。 補強材を用いることなく、ポリオレフイン系合
成パルプをドライパートで溶融することにより強
度を得ることは可能であるが問題が多い。 例えば合成パルプが溶融する直前のホケ、加熱
溶融が不均一になり、部分的な伸び更にシワの発
生等の問題があり、最終的に低秤量の精度の高い
フイルムを得ることは不可能である。 〔発明の目的〕 本発明者は上記の問題に鑑みて大きな強度を有
し抄造性に優れ、製造工程および加工工程におい
て裂断することがなく連続的な製造が可能である
とともに、透明性においても従来のものより優れ
且つ薄手の導電フイルムを製造する方法を提供す
るべく更に研究を重ねた結果、本発明に到達した
ものである。 〔発明の構成と開示〕 本発明においては、後に述べる複合繊維を補強
材として配合することにより、透明導電フイルム
の連続的な製造を可能にするとともに、実験によ
り最適な製造条件を見い出し、透明性において従
来のものより優れ且つ薄手の導電フイルムが得ら
れることを可能としたものである。 本願発明は、熱可塑性合成パルプ94.5〜40容量
%に、該熱可塑性合成パルプの融点よりも低い融
点を有する第1成分と該熱可塑性合成パルプの融
点よりも高い融点を有する第2成分とからなる熱
可塑性複合繊維5〜30容量%及び有機繊維に金属
イオン又は金属化合物が化学的に結合され、或い
は有機繊維に導電剤が物理的に結合されてなる導
電加工された有機繊維(以下導電加工された有機
繊維と称する)0.5〜30容量%を混合してなる紙
料を用いて湿紙を形成した後、前記第1成分の融
点以上で前記熱可塑性合成パルプの融点以下の温
度で加熱乾燥して第1成分を溶融し、紙料が相互
に接着された原紙を抄造し、しかる後、該原紙を
前記熱可塑性合成パルプの融点以上で前記第2成
分の融点より低く且つ前記導電加工された有機繊
維の融点、軟化点あるいは熱分解温度より低い温
度で加熱加圧して熱可塑性合成パルプを溶融し、
前記第2成分と前記導電加工された有機繊維が分
散された透明フイルムを形成することを特徴とす
る面方向比抵抗1×108Ω−cm以下で不透明度30
%以下の透明導電フイルムの製造方法に関する。 (熱可塑性合成パルプ) 本発明において用いる熱可塑性合成パルプと
は、熱可塑性合成樹脂から成るパルプ等の抄紙可
能な繊維状物質をいう。 また、熱可塑性樹脂としては、ポリオレフイ
ン、ポリアクリロニトリル、ポリエステル、ポリ
アミド等であり、加熱による溶融で透明化し、冷
却によつて固体高分子にもどつてもその透明性を
保持するものであればよい。これらのうち特に好
ましいのは融点が低く比較的廉価なポリオレフイ
ンであり、ポリオレフインとは、ポリエチレン、
ポリプロピレン、エチレンとプロピレンの共重合
物、エチレン又はプロピレンとα−オレフインと
の共重合物、エチレン又はプロピレンと酢酸ビニ
ル、アクリル酸等との共重合物、又はこれらの混
合物又はこれら更に化学処理した重合物等を含む
ものである。尚、導電フイルムのヒートシール性
を考慮した場合には融点が200℃以下、特に170℃
以下のものが好ましい。 (導電加工された有機繊維) 本発明において用いられる導電加工された有機
繊維(以下「有機導電繊維」という)とは、各種
の合成繊維、半合成繊維或いは天然繊維に、望ま
しくはこれらの繊維の性質を損うことなく導電加
工が施されたものであつて、前記合成繊維、半合
成繊維或いは天然繊維などの有機繊維やピツチを
原料に焼成して炭化させた炭素繊維および炭素繊
維の表面を金属で被覆した金属被覆炭素繊維が含
まれないことは言うまでもない。本発明における
有機導電繊維は、例えば有機繊維に金属イオン又
は金属化合物が化学的に結合されたもの或いは有
機繊維に金属や炭素等の導電剤が物理的に結合さ
れたものである。金属イオン又は金属化合物が結
合されたものの好ましい代表例は、アクリル繊維
に染色工程で銅イオンを拡散した導電繊維(日本
蚕毛染色(株)製、商品名サンダーロン SS−N)
を例示できる。 また、導電剤が物理的に結合されたものとして
は、金属メツキを施した有機繊維(実公昭49−
3921号)等であるが、基体となる有機繊維の性質
を損うことがなく、また抄紙工程で導電剤が分離
するおそれがない等の点から化学的な結合による
ものの方がより望ましい。 導電加工の方法は上記例示に限定されるもので
はなく、繊維の比抵抗が1×104Ω・cm以下、好
ましくは1×100Ω・cm以下程度となるように行
なえばよい。 導電加工された有機繊維は、比重が0.9〜2.5、
特に0.9〜1.35の範囲のものが望ましい。これは
有機導電繊維が配合される主原料が熱可塑性合成
パルプ(たとえばポリエチレン系合成パルプの比
重0.94〜0.96)であるため近似した比重のものが
均一分散が容易であり、面方向比抵抗、透明性の
均一な導電性フイルムが得られ易いからである。
従つてたとえば基体となる有機繊維としてポリビ
ニルアルコール系(比重1.26〜1.30)、ポリアミ
ド系(比重1.14)、アクリル系(比重1.14〜1.18)、
ポリビニルアルコールとポリ塩化ビニル共重合系
繊維(比重1.32)等に導電剤が化学的に結合され
たものが好適である。但し、アルミニウム(比重
2.7)、銅(比重7.9)、ニツケル(比重8.9)、その
他の金属メツキしたものでも、比覆層の厚さを薄
くしたものであれば、比重の小さいものが得られ
るので、そのようなものでもよい。 尚、基体となる有機繊維として合成繊維を用い
る場合、その融点望ましくはその軟化点が、マト
リクスとなる熱可塑性樹脂原料例えば熱可塑性合
成パルプの融点よりも高いものでなければならな
い。これは導電フイルムの製造工程において抄紙
した原紙をカレンダーにより加熱加圧する場合
に、マトリクス部分の原料よりも有機導電繊維の
方が早く或いは同時に溶融して繊維の形態を失う
と、有機導電繊維に与えられた電気的性質が変化
し、所望の面方向比抵抗を有する導電フイルムが
得られなくなるからである。 従つて、加熱加圧によるマトリクス部分の透明
化処理は、マトリクス原料の融点以上であつて且
つ有機導電繊維の融点以下望ましくは軟化以下の
温度で行なうことになる。 例えば、マトリクス原料としてポリエチレン系
合成パルプ(融点110〜138℃)を使用する場合に
は、アクリル系繊維(軟化点190〜240℃)等を組
み合せて用いる。ポリエステル系繊維(軟化点
235〜240℃)、ポリビニルアルコール系繊維(軟
化点220〜230℃)、ポリアミド系繊維(軟化点180
〜235℃)等を用いることもできる。 半合成繊維や天然繊維を基体とする有機導電繊
維を用いる場合には、軟化、溶融等の問題はない
が、セルロースの熱分解温度が240〜400℃である
ので、マトリクス原料として融点が200℃以下の
ものを使用し、240℃以下で加熱加圧処理するの
が望ましい。 有機導電繊維の直径は3〜5μmで、長さが1
〜40mmの範囲で用いうるが、5〜20μmの直径と
1〜25mmの長さが紙料の均一分散および歩留上好
適である。 以上に述べた有機導電繊維は表面硬度が小さい
ので本発明のフイルムを包装に用いる場合にも内
容物を傷付けることがない。なお、後に述べるよ
うに加熱加圧によるマトリクス部分の透明化処理
は、前記の要件を満たすとともに複合繊維の第2
成分の融点より低い温度で行わなければならな
い。 有機導電繊維の最適な配合割合は、用いる有機
導電繊維の種類や繊維の太さによつて変動しうる
が面方向比抵抗1×108Ω・cm以下の導電フイル
ムを得るには、少なくとも0.5容量%以上、望ま
しくは2容量%以上配合する。また、導電フイル
ムの不透明度を30%以下に確保するには、有機導
電繊維の量を、その太さに応じて30容量%以下、
望ましくは10容量%以下で調整する。有機導電繊
維の直径が5〜10μmの場合には7容量%以下、
10〜15μmの場合には12容量%以下、15〜20μm
の場合には20容量%以下、20μm以上の場合には
30容量%以下とするのが望ましい。 (熱可塑性複合繊維) 本発明においては上記原料に加えて、熱可塑性
合成パルプの融点よりも低い融点を有する第1成
分と熱可塑性合成パルプの融点よりも高い融点を
有する第2成分とからなる熱可塑性複合繊維を配
合する。 熱可塑性複合繊維とは、融点の異なる熱可塑性
樹脂2種以上から構成される繊維であり、一般に
複合紡糸法等によつて製造されるものである。1
例として特公昭48−15684号に開示のものが挙げ
られる。複合の第1成分と第2成分は、前記した
熱可塑性合成パルプのうち使用する合成パルプの
融点に応じて適宜選定される。例えば、合成パル
プとして、融点が120℃程度のポリエチレン系合
成パルプを用いる場合、これより低い融点を有す
る低密度ポリエチレンを第1成分とし、ポリプロ
ピレンを第2成分とする複合繊維を用いることが
できる。第1成分としては他にエチレン酢酸ビニ
ル共重合体やポリビニルアルコール等の比較的融
点の低いもの、第2成分としてはポリエステル等
がある。第1成分と第2成分は、それぞれ合成パ
ルプと同系のものであつても、融点において差の
あるものであれば使用できる。また、逆に、複合
繊維が与えられれば、複合繊維の第1成分より融
点が高く、第2成分より融点が低いものとして熱
可塑性合成パルプを選択することもできる。 複合繊維の形態は、融点の高い第2成分を芯と
し、融点の低い第1成分を鞘とした同心状の或い
は偏心状の構造や芯部分が繊維の表面に露出した
ものの他、第1成分と第2成分が連続的で変則的
に複合しているものでもよく、高融点の第2成分
が溶融する以前の温度で、第1成分が、原紙の配
合原料中で他の紙料を相互に結合できるように複
合繊維の外部に溶出可能な形態であれば特に制限
されない。 また、複合繊維は、抄紙工程中の脱落を防止
し、且つ均一な配合を可能とするため繊維長が2
〜40mm程度のものが望ましく、特に好ましくは3
〜15mmのものであり、単繊度は1〜30デニール、
好ましくは1.5〜8デニールのものである。 上記複合繊維は、5〜30容量%の割合で配合す
る。5容量%以下では、原紙に強度を与える補強
効果が不十分であり、配合割合を増加するほど原
紙の引裂き強さは大となるが、20容量%以上では
強度の向上が徐々にわずかとなる。他方、配合割
合が30容量%を超えると、加熱加圧処理後得られ
る透明フイルム中に空隙が多発し、均一なフイル
ムが製造できないし、製品の強度も劣ることにな
る。原紙及び透明フイルム双方の特性上、特に望
ましい配合割合は10〜20容量%である。 (製造工程) 本発明方法においては、熱可塑性合成パルプと
有機導電繊維および熱可塑性複合繊維を所定の割
合で配合し均一なものとして抄紙工程に送る。抄
紙においては、通常の製紙技術において用いられ
る、すき網部、圧搾部、乾燥部等からなる抄紙機
を用いることができる 上記紙料から形成される湿紙を、乾燥部で熱可
塑性複合繊維の第1成分の融点以上で、熱可塑性
合成パルプの融点より低い温度で加熱乾燥して、
第1成分のみを溶融して紙料が相互に接着された
原紙を抄造する。乾燥して得られた原紙は透明化
のため加熱加圧する。加熱加圧は、通常製紙工程
で紙に光沢をつけ表面を平滑にするカレンダー処
理やホツトプレス処理等により行うことができ、
圧力条件としては通常のカレンダー処理による40
〜200Kg/cmの線圧或いはホツトプレスによる場
合には60〜200Kg/cm2の圧力下で適宜選定する。
また同様の条件であればプラスチツク用カレンダ
ーによる処理でも行なうことができる。 加熱加圧の温度条件は、熱可塑性合成パルプの
融点以上で熱可塑性複合繊維の第2成分の融点よ
り低く且つ有機導電繊維の融点、軟化点あるいは
熱分解温度より低い温度とし、得られた透明フイ
ルム中には第2成分と有機導電繊維が分散されて
ネツトワークを形成する。 尚、本発明の発明思想を害しない範囲で、化学
木材パルプその他の高強度材料や高融点材料を更
に配合することは何ら差しつかえない。 〔発明の効果〕 本発明方法においては、紙料中に、融点の異な
る成分で構成される複合繊維を配合し、低融点の
第1成分のみが溶融する温度で乾燥するため、低
融点の第1成分が溶融して他の紙料を結合するバ
インダーとして役割を果すとともに、この第1成
分が溶融しても、高融点の第2成分が繊維の形態
を保持し補強効果を発揮しているので、抄紙工程
においてドライヤー表面へ紙料が付着してもドラ
イヤーから高速で原紙を引きとることができる。
複合繊維の補強効果によつて、原紙の引裂き強さ
が大きくなるため、フイルムが破断することなく
シート状のフイルムを連続して製造でき、秤量が
100g/m2以下、更に85g/m2以下、20g/m2
での薄手のフイルムの連続的製造が可能である。
有機導電繊維は合成パルプ、複合繊維に比し加熱
加圧処理時の熱膨張、収縮率の差が小さいので、
より薄手のフイルムとしても皺が発生しない。炭
素繊維、ステンレス繊維などの無機繊維を配合し
た導電フイルムは薄手にするに従つて皺の発生が
著しくなり加工適正を失うに至るので薄手の透明
導電フイルムの製造は事実上不可能である。最終
製品として得られる導電フイルムは、第2成分が
分散されてなるため、第2成分による補強効果が
得られる。このフイルムは屈曲により折れること
がないので面方向比抵抗地は安定しており、また
フイルムの屈曲回復性がよい。また熱可塑性複合
繊維は、加熱加圧処理後に透明性を有するので不
透明度10%以下の導電フイルムも製造容易であ
り、さらに通常の透明フイルム並みの不透明度5
%以下の透明導電フイルムの提供も可能となつ
た。なお、フイルムの秤量が低下する結果、高価
な導電繊維の絶対量を低下しうることも本発明の
効果である。 本発明方法で製造される透明導電フイルムで
は、フイルム状の透明な熱可塑性樹脂マトリクス
中に有機導電繊維と、複合繊維の第2成分が分散
されており、有機導電繊維が接触点を有し、接触
点を通じて電気的に導通されるため1×108Ω−
cm以下の面方向比抵抗を有する。 本発明による透明導電フイルムにおいては、有
機導電繊維の種類および配合比により所望の比抵
抗のものを得ることができ、面方向比抵抗が主と
して108〜100Ω−cmのものは電子部品等のほこり
付着防止用袋として及び静電障害防止用として、
10°以下のものは電磁波シールド効果が要求され
る用途に好適である。 以下に本発明を実施例及び実施例に基づいて説
明するが、本発明は以下の実施例及び実施例の範
囲に限定されるものではない。 実験例 1 熱可塑性合成パルプとしてSWP UL−410(三
井石油化学製 ポリエチレン系樹脂、融点123℃、
比重0.94、平均繊維長0.9mm、白色度94%以上、
以下SWPと略す)を用い、有機導電繊維として
サンダーロンSS−N(商標、アクリル系、軟化点
190〜240℃、比重1.18、平均繊維長3mm、単糸径
17.5μm、比抵抗5.85×10-2Ω・cm、日本蚕毛染色
製、以下サンダーロンと略す)を用い、複合繊維
としてNBF−E〔商標、大和紡製 第1成分エチ
レン酢ビ共重合体(融点96〜100℃)と第2成分
ポリプロピレン(融点165〜170℃)の鞘芯型、繊
維長5mm、繊度2デニール、以下NBFという〕
を用いた、サンダーロンのみは5重量%(3.8容
量%)とし他はそれぞれの混合比率を変えて試験
を行つた。 SWPとNBFとサンダーロンはそれぞれ水に分
散させた後混合し紙料とした。湿紙形成後の乾燥
はNBF−Eの低融点成分の融点以上でSWPの融
点以下の100〜115℃で行い坪量約50g/m2の各種
原紙を得た。 NBF配合率と裂断長及び比引裂き強さの関係
を第1図及び第2図に示す。 第1図から、NBF配合率5容量%以下加えて
も裂断長はほとんど変らない。10容量%以上加え
ると著しい裂断長の向上が見られ、30容量%以上
になるとNBF配合率が増えても裂断長の値は頭
打ちとなる。 第2図から、NBF配合率の添加に伴い比引裂
き強さの向上が見られる。 次に、これらの原紙を試験用スーパーカレンダ
ーで加熱加圧処理し透明シートを得た。スーパー
カレンダー条件は線圧60Kg/cm、速度4.5m/分、
ロール表面温度130℃で処理した。 フイルム化したシート特性とNBF配合率の関
係を以下に示す。 第3図から、NBF配合率10容量%までは配合
率の添加に伴い裂断長も高くなるが、それ以上で
はほぼ一定の値を示す。第4図によればフイルム
の不透明度はNBFの配合率に係らず10%以下で
あり、透明性の高いフイルムが得られる。 以上の実験結果から、抄紙及び加熱加圧処理の
作業上必要とされる裂断長及び比引裂き強さは
NBF配合率5容量%以上で満たされる。 また、フイルム化したシートの強度に対しても
NBFは有効に働き、電気的特性に対しては悪影
響を及ぼさないことが判つた。しかし、NBFが
剛直な繊維形態であるため、配合率30容量%以上
のものは加熱加圧後に得られるフイルムに空隙が
生じるようになり、目的とするフイルムが得にく
くなる。よつてNBF配合率は30容量%以下とす
る必要があり、作業性に係る強度の点からは5容
量%以上とするのが望ましい。 実験例 2 有機導電繊維を用いた外観が平坦で光沢感のあ
る導電フイルムと無機繊維を用いた皺が多く光沢
感の少ない導電フイルムにつき、皺の発生程度を
数値的に把握するために次の実験を行つた。有機
導電繊維としてはサンダーロンを用い、無機繊維
としては炭素繊維(クレハカーボンフアイバーチ
ヨツプ C−203、呉羽化学工業製、黒鉛質繊維、
平均繊維長3.0mm、単糸径12.5μm)(以下、CFと
略す)を用いSWP/NBF/導電繊維の配合比を
81.2/15/3.8各容量%として坪量約50g/m2
透明導電フイルムを作成した。それぞれのフイル
ム(15×15cm)の1枚の厚さ、10枚重ねの厚さ、
10枚重ねの上にアクリル板をあてその自重による
0.25g/m2の軽荷重をかけた場合のかさ厚さを測
定しその結果を第1表に示した。
[Technical Field] The present invention relates to a method for manufacturing a transparent conductive film using conductively processed organic fibers. Specifically, the present invention relates to a method for manufacturing a transparent conductive film using conductively processed organic fibers. The present invention relates to a method for producing a transparent conductive film having excellent conductivity and transparency. [Technology background] Electronic components such as semiconductor ICs and LSIs, printed circuit boards,
Magnetic tape, etc. must protect products from problems caused by static electricity, such as dust adsorption and static electricity charging, during the packaging and shipping process.In particular, C-MOS type ICs, which are commonly used these days, are susceptible to dielectric breakdown due to static electricity. Prevention of static electricity has become essential. In order to protect products from these electrostatic disturbances, packaging them with a conductive film with low surface resistivity may be considered. In addition, since it is desirable for products such as the above-mentioned ICs to be able to see through and judge the packaged contents for transactions, when packaging with conductive film, it is required that the conductive film itself has a certain degree of transparency. be done. Furthermore, such a conductive film for packaging must not damage the contents. Therefore, in order to manufacture a transparent conductive film using conductive fibers, it is necessary to reduce the absolute amount of conductive fibers in the matrix to obtain the desired conductivity, the surface hardness of the conductive fibers used is small, and the conductive fibers must be bent. It does not break, has good bending recovery, is thin, has a flat surface with no wrinkles, and is suitable for processing, and has sufficient strength to prevent the film from breaking during the manufacturing and processing process. Six conditions are required, including the ability to continuously produce sheet-like products. [Prior Art] The present inventors made paper by mixing thermoplastic synthetic pulp with electrically conductive organic fibers, and heated and pressurized the resulting base paper at a temperature higher than the melting point of the synthetic pulp to achieve the above six effects. It was discovered that the conditions could be met, and the invention was disclosed in Japanese Patent Application No. 121029/1982. The present invention aims to improve this and further increase the strength of the conductive film, thereby reducing its thickness and increasing its transparency, thereby reducing its cost. According to experiments conducted by the present inventor, when producing a conductive film made only of polyolefin-based synthetic pulp and conductive fibers, the resulting paper-like material is It has low tensile strength, tear strength, and surface strength, and the film tends to tear during the process before heat fusion of polyolefin, making it difficult in practice to manufacture it continuously while winding up a sheet. Furthermore, it has been impossible to produce thin films with a small basis weight. In order to compensate for the lack of strength, it is possible to use a single-component binder such as a hot water-soluble polyvinyl alcohol fibrous binder in combination with synthetic pulp, but the melting point is too low and the molten binder will stick to the dryer of the paper machine. This is undesirable as it may cause lees to adhere to the sheet, create holes, or cause paper breakage. Although it is possible to obtain strength by melting polyolefin synthetic pulp in a dry part without using reinforcing materials, there are many problems. For example, there are problems such as bulges just before the synthetic pulp melts, uneven heating and melting, partial elongation, and wrinkles, making it impossible to obtain a highly accurate film with a low basis weight. . [Object of the Invention] In view of the above problems, the present inventor has developed a paper that has high strength, excellent formability, can be manufactured continuously without tearing during the manufacturing and processing steps, and has excellent transparency. The present invention was achieved as a result of further research in order to provide a method for manufacturing a thinner conductive film that is superior to conventional ones. [Structure and Disclosure of the Invention] In the present invention, by blending composite fibers as a reinforcing material, which will be described later, it is possible to continuously manufacture a transparent conductive film. This makes it possible to obtain a conductive film that is better and thinner than conventional ones. The present invention comprises 94.5 to 40% by volume of thermoplastic synthetic pulp, a first component having a melting point lower than the melting point of the thermoplastic synthetic pulp, and a second component having a melting point higher than the melting point of the thermoplastic synthetic pulp. conductive processed organic fibers (hereinafter referred to as conductive processed organic fibers), in which metal ions or metal compounds are chemically bonded to organic fibers, or conductive agents are physically bonded to organic fibers. After forming a wet paper using a paper stock made by mixing 0.5 to 30% by volume of organic fibers (referred to as organic fibers), the wet paper is dried by heating at a temperature higher than the melting point of the first component and lower than the melting point of the thermoplastic synthetic pulp. The first component is melted to form a base paper in which the paper stock is bonded to each other, and then the base paper is heated to a temperature higher than the melting point of the thermoplastic synthetic pulp but lower than the melting point of the second component and which has been subjected to the conductive treatment. The thermoplastic synthetic pulp is melted by heating and pressurizing at a temperature lower than the melting point, softening point, or pyrolysis temperature of the organic fiber.
Forming a transparent film in which the second component and the conductively processed organic fiber are dispersed, the in-plane specific resistance is 1×10 8 Ω-cm or less and the opacity is 30.
% or less. (Thermoplastic synthetic pulp) The thermoplastic synthetic pulp used in the present invention refers to a fibrous material that can be made into paper, such as pulp made of a thermoplastic synthetic resin. Further, the thermoplastic resin may be polyolefin, polyacrylonitrile, polyester, polyamide, etc., as long as it becomes transparent when melted by heating and maintains its transparency even when it returns to a solid polymer by cooling. Among these, particularly preferred are polyolefins that have a low melting point and are relatively inexpensive.
Polypropylene, copolymers of ethylene and propylene, copolymers of ethylene or propylene and α-olefin, copolymers of ethylene or propylene with vinyl acetate, acrylic acid, etc., or mixtures thereof, or polymers obtained by further chemical treatment. It includes things, etc. In addition, when considering the heat sealability of the conductive film, the melting point should be below 200℃, especially 170℃.
The following are preferred. (Conductively processed organic fiber) The conductively processed organic fiber (hereinafter referred to as "organic conductive fiber") used in the present invention refers to various synthetic fibers, semi-synthetic fibers, or natural fibers, preferably those made of these fibers. Carbon fibers and carbon fibers that have been subjected to conductive processing without impairing their properties and are carbonized by firing organic fibers such as synthetic fibers, semi-synthetic fibers, or natural fibers, or pitch as raw materials. Needless to say, metal-coated carbon fibers coated with metal are not included. The organic conductive fiber in the present invention is, for example, one in which a metal ion or a metal compound is chemically bonded to an organic fiber, or one in which a conductive agent such as a metal or carbon is physically bonded to an organic fiber. A preferred representative example of a material to which metal ions or metal compounds are bonded is conductive fiber in which copper ions are diffused into acrylic fiber during the dyeing process (product name: Thunderon SS-N, manufactured by Nippon Kage Seiyo Co., Ltd.).
can be exemplified. In addition, organic fibers with metal plating (1983-1983
No. 3921), etc., but chemical bonding is more preferable because it does not impair the properties of the base organic fiber and there is no risk of separation of the conductive agent during the papermaking process. The method of electrically conductive processing is not limited to the above example, and may be carried out so that the specific resistance of the fibers is about 1×10 4 Ω·cm or less, preferably about 1×10 0 Ω·cm or less. The conductive processed organic fiber has a specific gravity of 0.9 to 2.5.
In particular, a range of 0.9 to 1.35 is desirable. This is because the main raw material in which the organic conductive fibers are blended is thermoplastic synthetic pulp (for example, polyethylene synthetic pulp with a specific gravity of 0.94 to 0.96), so it is easy to uniformly disperse materials with similar specific gravity, and the in-plane specific resistance and transparency This is because it is easy to obtain a conductive film with uniform properties.
Therefore, for example, as an organic fiber serving as a base, polyvinyl alcohol type (specific gravity 1.26 to 1.30), polyamide type (specific gravity 1.14), acrylic type (specific gravity 1.14 to 1.18),
Preferably, a conductive agent is chemically bonded to polyvinyl alcohol and polyvinyl chloride copolymer fiber (specific gravity 1.32). However, aluminum (specific gravity
2.7), copper (specific gravity 7.9), nickel (specific gravity 8.9), and other metal-plated materials, as long as the thickness of the specific coating layer is thin, a product with a small specific gravity can be obtained, so such items But that's fine. When synthetic fibers are used as the organic fibers serving as the base, their melting point, preferably their softening point, must be higher than the melting point of the thermoplastic resin raw material, such as thermoplastic synthetic pulp, serving as the matrix. This is because when the base paper is heated and pressurized using a calendar in the process of manufacturing a conductive film, the organic conductive fibers melt faster or at the same time than the raw material for the matrix part and lose their fiber form, causing damage to the organic conductive fibers. This is because the electrical properties of the film will change, making it impossible to obtain a conductive film having a desired in-plane specific resistance. Therefore, the transparentization treatment of the matrix portion by heating and pressing is carried out at a temperature that is above the melting point of the matrix raw material and below the melting point of the organic conductive fiber, preferably below the softening point. For example, when polyethylene synthetic pulp (melting point 110-138°C) is used as a matrix raw material, acrylic fiber (softening point 190-240°C) is used in combination. Polyester fiber (softening point
235-240℃), polyvinyl alcohol fiber (softening point 220-230℃), polyamide fiber (softening point 180℃)
~235°C), etc. can also be used. When using semi-synthetic fibers or organic conductive fibers based on natural fibers, there are no problems with softening or melting, but since the thermal decomposition temperature of cellulose is 240 to 400°C, the melting point as a matrix raw material is 200°C. It is preferable to use the following materials and perform heat and pressure treatment at 240°C or less. The diameter of the organic conductive fiber is 3 to 5 μm, and the length is 1
A diameter of 5 to 20 μm and a length of 1 to 25 mm are suitable for uniform dispersion of paper stock and yield. Since the organic conductive fibers described above have a low surface hardness, the film of the present invention will not damage the contents even when used for packaging. As will be described later, the process of making the matrix part transparent by heating and pressurizing satisfies the above requirements and also improves the
It must be carried out at a temperature below the melting point of the ingredients. The optimal blending ratio of organic conductive fibers may vary depending on the type of organic conductive fibers used and the thickness of the fibers, but in order to obtain a conductive film with an in-plane specific resistance of 1×10 8 Ω・cm or less, it should be at least 0.5. It is blended in an amount of at least 2% by volume, preferably at least 2% by volume. In addition, in order to ensure the opacity of the conductive film to be 30% or less, the amount of organic conductive fiber should be adjusted to 30% by volume or less depending on its thickness.
Preferably, it is adjusted to 10% by volume or less. When the diameter of the organic conductive fiber is 5 to 10 μm, 7% by volume or less,
In case of 10-15μm, 12% by volume or less, 15-20μm
In the case of 20% by volume or less, in the case of 20μm or more
It is desirable that it be 30% by volume or less. (Thermoplastic composite fiber) In addition to the above raw materials, the present invention comprises a first component having a melting point lower than the melting point of the thermoplastic synthetic pulp and a second component having a melting point higher than the melting point of the thermoplastic synthetic pulp. Blending thermoplastic composite fibers. Thermoplastic composite fibers are fibers composed of two or more types of thermoplastic resins having different melting points, and are generally produced by a composite spinning method or the like. 1
An example is the one disclosed in Japanese Patent Publication No. 15684/1984. The first component and the second component of the composite are appropriately selected depending on the melting point of the synthetic pulp used among the thermoplastic synthetic pulps described above. For example, when using polyethylene-based synthetic pulp with a melting point of about 120° C. as the synthetic pulp, a composite fiber containing low-density polyethylene having a lower melting point as the first component and polypropylene as the second component can be used. Other examples of the first component include those having relatively low melting points such as ethylene vinyl acetate copolymer and polyvinyl alcohol, and examples of the second component include polyester. Even if the first component and the second component are similar to synthetic pulp, they can be used as long as they have different melting points. Conversely, if composite fibers are provided, thermoplastic synthetic pulp may be selected as having a melting point higher than the first component of the composite fibers and lower than the second component. Composite fibers have a concentric or eccentric structure in which the second component with a high melting point is the core and the first component with the low melting point is the sheath, or the core part is exposed on the surface of the fiber. The second component and the second component may be continuously and irregularly combined, and the first component mutually binds the other paper materials in the blended raw materials of the base paper at a temperature before the high melting point second component melts. There is no particular restriction as long as it is in a form that can be eluted to the outside of the composite fiber so that it can be bonded to the composite fiber. In addition, composite fibers have a fiber length of 2 to prevent them from falling off during the papermaking process and to enable uniform blending.
It is desirable to have a diameter of about 40mm, particularly preferably 3mm.
~15mm, single fineness 1~30 denier,
Preferably it has a denier of 1.5 to 8. The above composite fibers are blended in a proportion of 5 to 30% by volume. If it is less than 5% by volume, the reinforcing effect that gives strength to the base paper is insufficient, and as the blending ratio increases, the tear strength of the base paper increases, but if it is more than 20% by volume, the improvement in strength gradually becomes small. . On the other hand, if the blending ratio exceeds 30% by volume, many voids will occur in the transparent film obtained after heating and pressure treatment, making it impossible to produce a uniform film and resulting in poor strength of the product. Considering the characteristics of both the base paper and the transparent film, a particularly desirable blending ratio is 10 to 20% by volume. (Manufacturing process) In the method of the present invention, thermoplastic synthetic pulp, organic conductive fibers, and thermoplastic conjugate fibers are blended in a predetermined ratio and sent as a uniform product to the papermaking process. For paper making, a paper machine consisting of a screen section, a pressing section, a drying section, etc., which is used in ordinary papermaking technology, can be used.Wet paper formed from the above paper stock is processed into thermoplastic composite fibers in the drying section. Drying by heating at a temperature higher than the melting point of the first component and lower than the melting point of the thermoplastic synthetic pulp,
Only the first component is melted to produce a base paper in which paper stocks are mutually bonded. The dried base paper is heated and pressurized to make it transparent. Heat and pressure can be performed by calendering or hot press processing, which makes the paper glossy and smooth the surface in the normal papermaking process.
The pressure condition is 40 by normal calendering.
A linear pressure of ~200 Kg/cm or a pressure of 60 to 200 Kg/cm 2 is selected as appropriate when using a hot press.
Further, under similar conditions, treatment using a plastic calendar can also be carried out. The temperature conditions for heating and pressing are higher than the melting point of the thermoplastic synthetic pulp, lower than the melting point of the second component of the thermoplastic composite fiber, and lower than the melting point, softening point, or thermal decomposition temperature of the organic conductive fiber. The second component and organic conductive fibers are dispersed in the film to form a network. It should be noted that there is no problem in adding chemical wood pulp or other high strength materials or high melting point materials to the extent that it does not impair the inventive idea of the present invention. [Effects of the Invention] In the method of the present invention, conjugate fibers composed of components with different melting points are blended into paper stock and dried at a temperature at which only the first component with a low melting point melts. When one component melts, it plays a role as a binder that binds other paper stocks, and even when this first component melts, the second component with a high melting point maintains the fiber shape and exerts a reinforcing effect. Therefore, even if paper stock adheres to the dryer surface during the papermaking process, the base paper can be removed from the dryer at high speed.
The reinforcing effect of composite fibers increases the tear strength of the base paper, making it possible to continuously produce sheet-like films without breaking the film, and reducing the weight.
Continuous production of thin films of 100 g/m 2 or less, further 85 g/m 2 or less, and up to 20 g/m 2 is possible.
Compared to synthetic pulp and composite fibers, organic conductive fibers have smaller differences in thermal expansion and contraction rates during heat and pressure treatment.
Wrinkles do not occur even in thinner films. As conductive films containing inorganic fibers such as carbon fibers and stainless steel fibers are made thinner, they tend to wrinkle more and become unsuitable for processing, so it is virtually impossible to produce thin transparent conductive films. Since the conductive film obtained as a final product has the second component dispersed therein, a reinforcing effect by the second component can be obtained. Since this film does not break when bent, the resistivity in the plane direction is stable, and the film has good bending recovery properties. In addition, thermoplastic composite fibers have transparency after heat and pressure treatment, so it is easy to manufacture conductive films with an opacity of 10% or less, and furthermore, they have an opacity of 5%, which is comparable to that of ordinary transparent films.
% or less. Note that another advantage of the present invention is that as a result of the reduction in the basis weight of the film, the absolute amount of expensive conductive fibers can be reduced. In the transparent conductive film produced by the method of the present invention, organic conductive fibers and a second component of composite fibers are dispersed in a film-like transparent thermoplastic resin matrix, and the organic conductive fibers have contact points, 1×10 8 Ω− due to electrical conduction through the contact point
It has an in-plane resistivity of less than cm. In the transparent conductive film according to the present invention, a desired specific resistance can be obtained depending on the type and blending ratio of the organic conductive fibers, and those with a planar specific resistance of 10 8 to 10 0 Ω-cm are suitable for use in electronic components, etc. As a bag to prevent dust adhesion and to prevent electrostatic damage,
Those with a angle of 10° or less are suitable for applications requiring electromagnetic shielding effects. EXAMPLES The present invention will be described below based on examples and examples, but the present invention is not limited to the scope of the following examples and examples. Experimental example 1 SWP UL-410 (Mitsui Petrochemical, polyethylene resin, melting point 123℃,
Specific gravity 0.94, average fiber length 0.9mm, whiteness 94% or more,
Sanderon SS-N (trademark, acrylic, softening point
190-240℃, specific gravity 1.18, average fiber length 3mm, single yarn diameter
17.5μm, specific resistance 5.85×10 -2 Ω・cm, made by Nihon Kasuke Sensei Co., Ltd. (hereinafter abbreviated as Thunderon) was used as the composite fiber, NBF-E [trademark, made by Daiwabo Co., Ltd. First component ethylene vinyl acetate copolymer (melting point 96-100℃) and second component polypropylene (melting point 165-170℃) sheath-core type, fiber length 5mm, fineness 2 denier, hereinafter referred to as NBF]
Tests were conducted using 5% by weight (3.8% by volume) for Thunderon and varying the mixing ratios for the others. SWP, NBF, and Thunderon were each dispersed in water and then mixed to make paper stock. Drying after forming the wet paper was carried out at 100 to 115°C, which was above the melting point of the low melting point component of NBF-E and below the melting point of SWP, to obtain various base papers with a basis weight of about 50 g/m 2 . The relationship between the NBF blending ratio, tear length, and specific tear strength is shown in Figures 1 and 2. From Figure 1, even if NBF is added at a blending rate of 5% by volume or less, the fracture length hardly changes. When 10% by volume or more is added, a remarkable improvement in the breaking length is seen, and when it exceeds 30% by volume, the value of the breaking length reaches a plateau even if the NBF blending ratio increases. From FIG. 2, it can be seen that the specific tear strength improves with the addition of NBF blending ratio. Next, these base papers were subjected to heating and pressure treatment using a test supercalender to obtain a transparent sheet. Super calendar conditions are linear pressure 60Kg/cm, speed 4.5m/min,
The treatment was carried out at a roll surface temperature of 130°C. The relationship between the properties of the film-formed sheet and the NBF blending ratio is shown below. From FIG. 3, it can be seen that up to a NBF blending ratio of 10% by volume, the fracture length increases as the blending ratio increases, but above that it remains almost constant. According to FIG. 4, the opacity of the film is 10% or less regardless of the blending ratio of NBF, and a highly transparent film can be obtained. From the above experimental results, the tear length and specific tear strength required for paper making and heating and pressure treatment are
Satisfied with an NBF blending ratio of 5% by volume or more. Also, regarding the strength of the film sheet,
It was found that NBF worked effectively and had no adverse effect on electrical characteristics. However, since NBF is in the form of rigid fibers, if the blending ratio exceeds 30% by volume, voids will appear in the film obtained after heating and pressing, making it difficult to obtain the desired film. Therefore, the NBF blending ratio needs to be 30% by volume or less, and from the viewpoint of strength related to workability, it is desirable to set it to 5% by volume or more. Experimental Example 2 In order to numerically understand the degree of wrinkle occurrence for a conductive film made of organic conductive fibers with a flat appearance and a glossy appearance and a conductive film made of inorganic fibers with many wrinkles and a low glossiness, the following was carried out. I conducted an experiment. Thunderon was used as the organic conductive fiber, and carbon fiber (Kureha Carbon Fiber Tip C-203, manufactured by Kureha Chemical Industry Co., Ltd., graphite fiber,
The blending ratio of SWP/NBF/conductive fiber was determined using average fiber length of 3.0 mm and single fiber diameter of 12.5 μm (hereinafter abbreviated as CF).
A transparent conductive film having a basis weight of approximately 50 g/m 2 was prepared with volume % of 81.2/15/3.8. The thickness of each film (15 x 15cm), the thickness of 10 layers,
Place an acrylic board on top of 10 sheets and use its own weight.
The bulk thickness was measured when a light load of 0.25 g/m 2 was applied, and the results are shown in Table 1.

【表】 第1表によれば10枚重ねと厚さは1枚の厚さと
同様にマイクロメーターによる測定であるためそ
の1枚あたりの厚さの平均値は1枚の測定値と同
一であつた。しかるに軽荷重下のかさ厚さはサン
ダーロン使用のものが1枚の厚さ測定値の1.25倍
であるのに対し、CF使用のものは約4.2倍となつ
た。軽荷重下では枚葉間の空気層のためかさ厚さ
はやや大きくなるが、かさ厚さのけんちよな相違
はCF使用のものが皺による凹凸が著しいことを
示すものである。この結果からサンダーロン使用
の導電フイルムは製袋加工が容易でありフイルム
の商品価値が高いことが判る。他方CF使用の導
電フイルムは坪量を厚くするか、或いはナイロン
フイルム、ポリエステルフイルムのような寸法安
定性のよいフイルムと貼合わせなければ皺を防止
できないので不利な点が多い。 次に前記の試験試料に加えて、サンダーロンに
つき同一配合で坪量のみ約25g/m2に低下させて
導電フイルムを10枚作成した。このものの外観は
サンダーロンの50g/m2品と同様に表面が平坦で
光沢に富むものであつた。この3種の試料につき
触針型表面あらさ測定器により表面あらさを測定
し結果を第2表に示した。
[Table] According to Table 1, the thickness of a stack of 10 sheets is measured using a micrometer in the same way as the thickness of a single sheet, so the average value of the thickness per sheet is the same as the measured value of one sheet. Ta. However, while the bulk thickness under light load was 1.25 times the measured thickness of one sheet using Thunderon, it was approximately 4.2 times the thickness of the sheet using CF. Under light loads, the bulk thickness becomes slightly larger due to the air space between the sheets, but the drastic difference in bulk thickness indicates that the CF sheets have significant unevenness due to wrinkles. This result shows that the conductive film using Thunderon is easy to process into bags and has a high commercial value. On the other hand, conductive films using CF have many disadvantages because wrinkles cannot be prevented unless the basis weight is increased or they are bonded to a film with good dimensional stability such as nylon film or polyester film. Next, in addition to the above test samples, 10 conductive films were prepared using the same composition of Thunderon but with only the basis weight reduced to about 25 g/m 2 . The appearance of this product was similar to the 50 g/m 2 product from Thunderon, with a flat surface and high gloss. The surface roughness of these three types of samples was measured using a stylus-type surface roughness measuring device, and the results are shown in Table 2.

【表】 表中Raは中心線からの山の高さの平均値を示
し、またピツチとは1cmあたりの山の個数を示
す。これらの測定値にはフイルム表面に露出した
導電繊維によるあらさが因子として入り込むが配
合割合その他の製造条件が同一なので比較資料と
して用いることができる。第2表によればサンダ
ーロン使用品でも坪量が小さくなれば山の高さが
高くなり山の個数がふえるが、その山は非常に細
かいもので外観上ほとんど判らない。一方CF使
用の50g/m2品は大きな皺が多いことが示されて
いる。このことから、本発明によれば複合繊維を
配合することにより強度があり、かつ製袋等の加
工適性がすぐれたかなり薄手のフイルムを提供で
きることが判る。 実施例 1 熱可塑性合成パルプとして実験例1に用いた
SWPの一定量を50℃の温水に投入し、3%の濃
度とし、撹拌機で離解した。また熱可塑性複合繊
維として、NBFの一定量を常温の水中に分散さ
せた。さらに有機導電繊維としてサンダーロンを
常温の水に1%濃度となるように分散させ、これ
に消泡剤を少量加えて調製した。 SWP/NBF/サンダーロンの混合比率が、
81.2/15/3.8(容量%)となるように採り混合槽
に入れ20分以上撹拌し、ついで分散剤を少量加
え、テストマシンによつて米坪量50g/m2を目標
として原紙を製造した。原紙の乾燥はNBFの鞘
成分の融点96〜100℃以上で、SWPの融点123℃
以下の100〜115℃で行なつた。製造速度は30m/
分で、ドライヤーに特に離型処理をしなくても、
ドライヤーからの剥離が良好で紙切れもなく容易
に連続生産することができた。この原紙を線圧60
Kg/cm、ロール表面温度はSWPの融点123℃以上
でNBFの芯成分の融点165〜170℃以下の130℃の
条件でスーパーカレンダー処理した。通紙速度は
4.5m/分で行つた。 比較として、SWP/NBF/サンダーロンの混
合比率が96.2/0/3.8(容量%)について、同様
に原紙および導電フイルムを製造した。しかし、
紙力が弱いため紙切れが起こり連続製造が極めて
困難であつた。 本例で製造した原紙と導電フイルムの物性およ
び比較例を第3表に示す。
[Table] In the table, Ra indicates the average height of the peaks from the center line, and pitch indicates the number of peaks per cm. These measured values include roughness due to the conductive fibers exposed on the film surface, but since the blending ratio and other manufacturing conditions are the same, they can be used as comparative data. According to Table 2, even in products using Thunderon, as the basis weight decreases, the height of the peaks increases and the number of peaks increases, but the peaks are so fine that they are hardly noticeable from the outside. On the other hand, the 50g/ m2 product using CF has been shown to have many large wrinkles. From this, it can be seen that according to the present invention, by blending composite fibers, it is possible to provide a fairly thin film that is strong and has excellent suitability for processing such as bag making. Example 1 Used in Experimental Example 1 as thermoplastic synthetic pulp
A certain amount of SWP was poured into hot water at 50°C to give a concentration of 3%, and disintegrated with a stirrer. In addition, as a thermoplastic composite fiber, a certain amount of NBF was dispersed in water at room temperature. Further, as an organic conductive fiber, Thunderon was dispersed in water at room temperature to a concentration of 1%, and a small amount of an antifoaming agent was added thereto. The mixing ratio of SWP/NBF/Thunderon is
81.2/15/3.8 (volume %) was taken, placed in a mixing tank and stirred for over 20 minutes, then a small amount of dispersant was added, and a base paper was produced using a test machine with a basis weight of 50 g/ m2 . . The base paper is dried at a temperature above the melting point of the NBF sheath component of 96 to 100℃, and the melting point of SWP is 123℃.
It was carried out at the following temperature of 100-115°C. Production speed is 30m/
In minutes, without any special mold release treatment in the dryer.
It peeled off well from the dryer and could easily be continuously produced without any paper breakage. Linear pressure of this paper is 60
Kg/cm, and the roll surface temperature was 130°C, which is above the melting point of SWP at 123°C and below the melting point of the core component of NBF from 165 to 170°C. The paper feeding speed is
I went at 4.5m/min. For comparison, base paper and conductive film were produced in the same manner at a mixing ratio of SWP/NBF/Thunderon of 96.2/0/3.8 (volume %). but,
Continuous production was extremely difficult due to paper breakage due to weak paper strength. Table 3 shows the physical properties of the base paper and conductive film produced in this example, as well as comparative examples.

【表】 表中の不透明度の測定にはフオトボルト光電反
射計670型を用いた。面方向比抵抗の測定は日本
ゴム協会法SRIS2301に、ヒートシール強度はタ
ツピースタンダードT517−69にそれぞれ準拠し
た。 第3表によれば、不透明度の低い、ヒートシー
ル強度のある導電フイルムが得られることを示
す。比較例との対比ではSWPの一部をNBFに置
き換えることにより、強度に於いて著しい向上が
見られる。特に原紙においてはNBFの配合によ
り裂断長で2倍以上、比引裂き強さで3倍以上の
強度が出ている。これが原紙を容易に連続させる
要因となつていることを示す。不透明度は5%以
下であり、通常のプラスチツクフイルムと比較し
て遜色がなかつた。また、得られた導電フイルム
は静電障害防止用として好適に使用できた。 実施例 2 SWP/NBF/サンダーロンの混合比率を
79.5/20/0.5(容量%)、目標米坪量を20g/m2
50g/m2、85g/m2として、実施例1と同様にし
て原紙および導電フイルムを得た。この物性を第
4表に示す。
[Table] A photovolt photoelectric reflectometer model 670 was used to measure the opacity in the table. The measurement of surface direction specific resistance was based on the Japan Rubber Association method SRIS2301, and the heat seal strength was based on Tatsupi Standard T517-69. Table 3 shows that a conductive film with low opacity and high heat seal strength can be obtained. In comparison with the comparative example, a significant improvement in strength can be seen by replacing a portion of SWP with NBF. In particular, the strength of base paper is more than twice as strong in terms of breaking length and more than three times as strong in terms of specific tear strength due to the combination of NBF. This shows that this is a factor that allows the base paper to be easily continuous. The opacity was 5% or less, comparable to ordinary plastic film. Furthermore, the obtained conductive film could be suitably used for preventing electrostatic damage. Example 2 Mixing ratio of SWP/NBF/Thunderon
79.5/20/0.5 (capacity%), target basis weight 20g/m 2 ,
A base paper and a conductive film were obtained in the same manner as in Example 1 using 50 g/m 2 and 85 g/m 2 . The physical properties are shown in Table 4.

【表】 NBFの配合により原紙の強度が向上し低坪量
20g/m2品についても実施例1と同様に容易に連
続製造することができた。 サンダーロンの低配合により不透明度は低くな
つているが、比抵抗は107Ω−cmであり、サンダ
ーロンの配合の下限に近いことを示している。な
お、坪量20g/m2品は85g/m2品と同レベルの強
度を有し、かつサンダーロン配合量は4分の1に
節減できるから省資源上意義が大きい。 得られた導電フイルムはいずれも皺がなく光沢
感に富み、電子部品のホコリ付着防止用袋として
良好に使用できた。 実施例 3 SWP/NBF/サンダーロンの混合比率を40/
30/30(容量%)、目標米坪量を50g/m2とし、実
施例1と同様にして導電フイルムを得た。実施例
1と同様に容易に連続製造することができた。得
られた導電フイルムは、坪量51.5g/m2、不透明
度29.5%、面方向比抵抗1.2×100Ω−cm、裂断長
2.52Kmであつた。50g/m2品では30容量%のサン
ダーロン配合率が不透明度の点で限界に近い。し
かし、NBFの高配合により必要な強度は十分に
保持されている。このものは低周波の電磁波シー
ルド材として好適に使用できた。 実施例 4 SWP/NBF/サンダローンの混合比率を82/
10/8(容量%)、目標米坪量を50g/m2とし、実
施例1と同様にして導電フイルムを得た。実施例
1と同様に容易に連続生産することができた。得
られた導電フイルムは坪量50.2g/m2、不透明度
6.5%、裂断長2.2Km、面方向比抵抗2.5×100Ω−cm
であり良好な透明導電フイルムであつた。また製
袋加工においてフイルム切れ等がなく強度の優れ
たものであつた。 実施例 5 有機導電繊維として、アクリル繊維(直径14μ
m)の表面に約3μmの厚さにアルミニウムを被
覆した平均繊維長5mmの繊維(比重2.0)(以下、
Al−アクリルという)を使用し、紙料の混合比
率をSWP/NBF/Al−アクリル=85/10/5容
量%として実施例1と同様にして導電フイルムを
作成した。得られた導電フイルムは、米坪量50.8
g/m2、不透明度7.8%面方向比抵抗1.5×100Ω・
cmであり、なめらかなプラスチツクフイルムの外
観を呈した。 実施例 6 熱可塑性合成パルプとしてSWP、複合繊維と
してNBF、有機導電繊維として人絹(直径26μ
m)の表面に2μmの厚さに銅を被覆した平均繊
維長5mmの繊維(比重3.4)を使用し、銅被覆繊
維の配合量を変化させて目標米坪量50g/m2の各
種のフイルムを作成した。加熱加圧条件は実施例
1と同様とした。 得られた導電フイルムの諸物性を第5表に示
す。
[Table] The strength of the base paper is improved and the basis weight is reduced by adding NBF.
Similarly to Example 1, 20g/ m2 products could be easily and continuously manufactured. Although the opacity is low due to the low content of Thunderon, the specific resistance is 10 7 Ω-cm, indicating that it is close to the lower limit of the Thunderon content. In addition, a product with a basis weight of 20g/ m2 has the same level of strength as a product with a basis weight of 85g/ m2 , and the amount of Thunderon added can be reduced to one-fourth, so it is of great significance in terms of resource conservation. All of the obtained conductive films had no wrinkles and were rich in gloss, and could be used satisfactorily as bags for preventing dust from adhering to electronic components. Example 3 Mixing ratio of SWP/NBF/Thunderon is 40/
A conductive film was obtained in the same manner as in Example 1 using 30/30 (volume %) and a target basis weight of 50 g/m 2 . As in Example 1, continuous production could be easily carried out. The obtained conductive film has a basis weight of 51.5 g/m 2 , an opacity of 29.5%, a specific resistance in the plane direction of 1.2 × 10 0 Ω-cm, and a breaking length.
It was 2.52km. For two 50g/m products, the Thunderon blending rate of 30% by volume is close to the limit in terms of opacity. However, the necessary strength is sufficiently maintained due to the high content of NBF. This material could be suitably used as a low-frequency electromagnetic shielding material. Example 4 Mixing ratio of SWP/NBF/Thunderone is 82/
A conductive film was obtained in the same manner as in Example 1, with a target weight of 10/8 (volume %) and a target basis weight of 50 g/m 2 . As in Example 1, continuous production could be easily carried out. The obtained conductive film has a basis weight of 50.2 g/m 2 and an opacity.
6.5%, rupture length 2.2Km, planar resistivity 2.5×10 0 Ω−cm
It was a good transparent conductive film. In addition, there was no film breakage during the bag making process, and the bag had excellent strength. Example 5 Acrylic fiber (diameter 14μ) was used as an organic conductive fiber.
Fibers (specific gravity 2.0) with an average fiber length of 5 mm whose surface is coated with aluminum to a thickness of approximately 3 μm (hereinafter referred to as
A conductive film was prepared in the same manner as in Example 1 using a mixture ratio of paper stock (SWP/NBF/Al-acrylic=85/10/5% by volume). The obtained conductive film has a square meter weight of 50.8
g/m 2 , opacity 7.8% surface direction specific resistance 1.5×10 0 Ω・
cm, and had the appearance of a smooth plastic film. Example 6 SWP as thermoplastic synthetic pulp, NBF as composite fiber, human silk (diameter 26μ) as organic conductive fiber
Using fibers with an average fiber length of 5 mm (specific gravity 3.4) coated with copper to a thickness of 2 μm on the surface of the film, various films with a target basis weight of 50 g/m 2 were produced by varying the amount of copper coated fibers. It was created. The heating and pressurizing conditions were the same as in Example 1. Table 5 shows the physical properties of the conductive film obtained.

【表】 第5表によればこの導電フイルムは銅被覆人絹
の1.4容量%以上の配合量で安定した面方向比抵
抗を示しまた6.2容量%以下では透明なフイルム
と同様の透明性を有している。また該繊維は合成
樹脂マトリクス中に十分に埋没してフイルム表面
は平滑であり包装内容物を傷付ける恐れはないと
判断された。なお銅被覆人絹20.9容量%のものも
透明性、強度とも十分に条件を満たしており低周
波の電磁波シールド材としても好適であつた。 実施例 7 熱可塑性合成パルプとしてSWP、複合繊維と
してES−Chop −EA(チツソ(株)製、ポリエチレ
ンとポリプロピレンの複合繊維、低融点部100〜
110℃、高融点部165〜170℃、繊維長5mm、繊度
3デニール)(以下ESと略す)、有機導電繊維と
してアクリル繊維(直径13.3μm)の表面に約
0.8μmの厚さにニツケルを被覆した平均繊維長3
mmの繊維(比重2.7)を使用し、SWP/ES/導電
繊維の容量比を85.8/10.7/3.5(80/10/10重量
比)として坪量50.2g/m2の導電フイルムを作成
した。このものは不透明度5.2%、裂断長2.5Km、
面方向比抵抗3.0×10-1Ω−cmを示し、包装用、低
周波の電磁波シールド用ともに好適に使用でき
た。
[Table] According to Table 5, this conductive film exhibits a stable in-plane resistivity when the content of copper-coated human silk is 1.4% by volume or more, and has the same transparency as a transparent film when the content is 6.2% by volume or less. are doing. It was also determined that the fibers were sufficiently embedded in the synthetic resin matrix and the film surface was smooth, so there was no risk of damaging the packaged contents. In addition, the copper-coated human silk 20.9% by volume satisfactorily met the requirements for both transparency and strength, and was suitable as a material for shielding low-frequency electromagnetic waves. Example 7 SWP as thermoplastic synthetic pulp, ES-Chop-EA as composite fiber (manufactured by Chitsuso Co., Ltd., composite fiber of polyethylene and polypropylene, low melting point 100~
110℃, high melting point 165-170℃, fiber length 5mm, fineness 3 denier) (hereinafter abbreviated as ES), as an organic conductive fiber on the surface of acrylic fiber (diameter 13.3μm).
Average fiber length 3 coated with nickel to a thickness of 0.8μm
A conductive film with a basis weight of 50.2 g/m 2 was prepared using fibers of 1.5 mm (specific gravity: 2.7) and a capacitance ratio of SWP/ES/conductive fibers of 85.8/10.7/3.5 (80/10/10 weight ratio). This one has an opacity of 5.2%, a tear length of 2.5km,
It exhibited a surface direction specific resistance of 3.0×10 -1 Ω-cm, and could be suitably used for both packaging and low-frequency electromagnetic shielding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、熱可塑性複合繊維の配合量に対する
原紙の裂断長の関係を表わすグラフである。第2
図は、熱可塑性複合繊維の配合量に対する原紙の
比引裂き強さの関係を表わすグラフである。第3
図は、熱可塑性複合繊維の配合量に対する透明導
電フイルムの裂断長の関係を表わすグラフであ
る。第4図は、熱可塑性複合繊維の配合量に対す
る透明導電フイルムの不透明度の関係を表わすグ
ラフである。
FIG. 1 is a graph showing the relationship between the amount of thermoplastic conjugate fibers and the tearing length of base paper. Second
The figure is a graph showing the relationship between the specific tear strength of base paper and the amount of thermoplastic conjugate fiber blended. Third
The figure is a graph showing the relationship between the breaking length of a transparent conductive film and the blending amount of thermoplastic composite fibers. FIG. 4 is a graph showing the relationship between the opacity of the transparent conductive film and the amount of thermoplastic conjugate fiber blended.

Claims (1)

【特許請求の範囲】 1 熱可塑性合成パルプ94.5〜40容量%に、該熱
可塑性合成パルプの融点よりも低い融点を有する
第1成分と該熱可塑性合成パルプの融点よりも高
い融点を有する第2成分とからなる熱可塑性複合
繊維5〜30容量%及び有機繊維に金属イオン又は
金属化合物が化学的に結合され、或いは有機繊維
に導電剤が物理的に結合されてなる導電加工され
た有機繊維(以下導電加工された有機繊維と称す
る)0.5〜30容量%を混合してなる紙料を用いて
湿紙を形成した後、前記第1成分の融点以上で前
記熱可塑性合成パルプの融点以下の温度で加熱乾
燥して第1成分を溶融し、紙料が相互に接着され
た原紙を抄造し、しかる後、該原紙を前記熱可塑
性合成パルプの融点以上で前記第2成分の融点よ
り低く且つ前記導電加工された有機繊維の融点、
軟化点あるいは熱分解温度より低い温度で加熱加
圧して熱可塑性合成パルプを溶融し、前記第2成
分と前記導電加工された有機繊維が分散された透
明フイルムを形成することを特徴とする面方向比
抵抗1×108Ω−cm以下で不透明度30%以下の透
明導電フイルムの製造方法。 2 有機繊維が合成繊維であり、加熱、加圧温度
が該合成繊維の融点以下の温度である特許請求の
範囲第1項記載の透明導電フイルムの製造方法。 3 有機繊維が半合成繊維もしくは天然繊維であ
り、加熱、加圧温度が240℃以下である特許請求
の範囲第1項記載の透明導電フイルムの製造方
法。 4 熱可塑性複合繊維が、第2成分を芯とし第1
成分を鞘とした同心状又は偏心状の構造の複合繊
維である特許請求の範囲第1項記載の透明導電フ
イルムの製造方法。
[Scope of Claims] 1 94.5 to 40% by volume of thermoplastic synthetic pulp, a first component having a melting point lower than the melting point of the thermoplastic synthetic pulp, and a second component having a melting point higher than the melting point of the thermoplastic synthetic pulp. Thermoplastic composite fibers consisting of 5 to 30% by volume of thermoplastic composite fibers, and conductive processed organic fibers in which metal ions or metal compounds are chemically bonded to the organic fibers, or conductive agents are physically bonded to the organic fibers. After forming a wet paper using a paper stock made by mixing 0.5 to 30% by volume of organic fibers (hereinafter referred to as electrically conductive treated organic fibers), the temperature is higher than the melting point of the first component and lower than the melting point of the thermoplastic synthetic pulp. The first component is melted by heating and drying to make a base paper in which the paper stock is bonded to each other, and then the base paper is heated at a temperature higher than the melting point of the thermoplastic synthetic pulp, lower than the melting point of the second component, and the first component is melted. Melting point of conductive processed organic fiber,
A surface direction characterized in that the thermoplastic synthetic pulp is melted by heating and pressurizing at a temperature lower than the softening point or thermal decomposition temperature to form a transparent film in which the second component and the conductive processed organic fiber are dispersed. A method for producing a transparent conductive film having a specific resistance of 1×10 8 Ω-cm or less and an opacity of 30% or less. 2. The method for producing a transparent conductive film according to claim 1, wherein the organic fiber is a synthetic fiber, and the heating and pressurizing temperatures are below the melting point of the synthetic fiber. 3. The method for producing a transparent conductive film according to claim 1, wherein the organic fiber is a semi-synthetic fiber or a natural fiber, and the heating and pressing temperature is 240° C. or lower. 4 The thermoplastic composite fiber has the second component as the core and the first component as the core.
The method for producing a transparent conductive film according to claim 1, wherein the transparent conductive film is a conjugate fiber having a concentric or eccentric structure with the component as a sheath.
JP60000867A 1985-01-09 1985-01-09 Preparation of transparent conductive film Granted JPS61160212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60000867A JPS61160212A (en) 1985-01-09 1985-01-09 Preparation of transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60000867A JPS61160212A (en) 1985-01-09 1985-01-09 Preparation of transparent conductive film

Publications (2)

Publication Number Publication Date
JPS61160212A JPS61160212A (en) 1986-07-19
JPH0447924B2 true JPH0447924B2 (en) 1992-08-05

Family

ID=11485619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60000867A Granted JPS61160212A (en) 1985-01-09 1985-01-09 Preparation of transparent conductive film

Country Status (1)

Country Link
JP (1) JPS61160212A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904520A (en) * 1988-10-17 1990-02-27 Hercules Incorporated Gas-permeable, liquid-impermeable nonwoven material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118237A (en) * 1984-11-15 1986-06-05 Mishima Seishi Kk Manufacture of electrically conductive film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446640A (en) * 1987-08-17 1989-02-21 Seiko Epson Corp Humidity detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118237A (en) * 1984-11-15 1986-06-05 Mishima Seishi Kk Manufacture of electrically conductive film

Also Published As

Publication number Publication date
JPS61160212A (en) 1986-07-19

Similar Documents

Publication Publication Date Title
CN1942629B (en) Aramid paper blend
US6042936A (en) Microsphere containing circuit board paper
US4645566A (en) Process for producing electroconductive films
US4617231A (en) Electroconductive film and process for production thereof
KR100560899B1 (en) Synthetic fiber paper and the production process thereof
US5783039A (en) Wholly aromatic polyamide fiber sheet
EP1608811B1 (en) Multilayer product and method for the production thereof
US4259398A (en) Electrical insulating material
KR20150135345A (en) Laminate and method for producing same
EP0100670A1 (en) Conductive film for packaging
JPH0345159B2 (en)
JPH0447924B2 (en)
JPH08267664A (en) Manufacture of laminate
KR20050118179A (en) Inorganic sheet laminate
JPH0373680B2 (en)
CN109835002B (en) Release film and preparation method thereof
JPH0146639B2 (en)
JPH0146640B2 (en)
US4065594A (en) Method of shaping oriented materials of polyolefin
JPH0874193A (en) Electrically conductive paper
JPS59213730A (en) Conductive film and its manufacture
JP4441010B2 (en) Hot melt composition, moisture-proof paper using the same, and method for producing the same
JPS5926597A (en) Conductive paper and production thereof
JP2002155474A (en) Mold release paper and synthetic leather produced by using the same
TWI250240B (en) Heat-resistant fiber paper sheet, method for making same, and prepreg and laminate made by same