JPH0373601A - Waveguide antenna - Google Patents
Waveguide antennaInfo
- Publication number
- JPH0373601A JPH0373601A JP20795189A JP20795189A JPH0373601A JP H0373601 A JPH0373601 A JP H0373601A JP 20795189 A JP20795189 A JP 20795189A JP 20795189 A JP20795189 A JP 20795189A JP H0373601 A JPH0373601 A JP H0373601A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- antenna
- groove
- slots
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920003023 plastic Polymers 0.000 claims abstract description 22
- 239000004033 plastic Substances 0.000 claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 239000004020 conductor Substances 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Waveguides (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、導波管アンテナの給電部の構造に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a power feeding section of a waveguide antenna.
従来、高周波領域に於ける情報通信や放送用のアンテナ
としては、特に高性能な特性が要求される分野に於いて
は導波管が用いられている。その理由は、高周波信号の
線路として導波管を用いれば導体損が極めて少なく、か
つ誘電損や輻射損などもないため、極めて低損失かつ高
効率なアンテナを実現することができるためである。Conventionally, waveguides have been used as antennas for information communication and broadcasting in the high frequency region, especially in fields where high performance characteristics are required. The reason for this is that if a waveguide is used as a line for high-frequency signals, conductor loss is extremely small, and there is no dielectric loss or radiation loss, so an antenna with extremely low loss and high efficiency can be realized.
第3図および第4図は従来の導波管アンテナの例であり
、電波を受信するためのスロットaOが形成されたアン
テナ部導波管0つの中を伝播した信号は、結合用スロッ
)(121により給電部導波管(ロ)へと伝達され、コ
ンバーターまで導びかれる。このように従来の導波管ア
ンテナは、複数のアンテナ部導波管(1ツを1本の給電
部導波管Q4に結合しているために、おのおののアンテ
ナ部導波管α$は結合用スロットa″!Jにより、直列
に励振される。Figures 3 and 4 show examples of conventional waveguide antennas, in which the signal propagated through the antenna part waveguide 0, which has slots aO for receiving radio waves, is transmitted through the coupling slots ( 121 to the feeding section waveguide (b), and is guided to the converter.In this way, conventional waveguide antennas have multiple antenna section waveguides (one feeding section waveguide). Since they are coupled to the tube Q4, each antenna part waveguide α$ is excited in series by the coupling slot a″!J.
一方、アンテナの効率を最大限に貰めるには、おのおの
のアンテナ部導波管03)は同相かつ等振幅に励振され
ることが必要であるが、従来の方式では結合用スロット
■のピッチを導波管の管内波長に等しくすることによっ
て同相に励振することは可能であるものの、等振幅に励
振することは極めて難しい。On the other hand, in order to maximize the efficiency of the antenna, it is necessary for each antenna part waveguide 03) to be excited in the same phase and with equal amplitude, but in the conventional method, the pitch of the coupling slot Although it is possible to excite the waves in the same phase by making them equal to the internal wavelength of the waveguide, it is extremely difficult to excite them with equal amplitude.
すなわち、たかだかIOないし20個程度の結合用スロ
ット個数では、可能な限り等振幅になるように結合用ス
ロットの形状を設計しても、給電用導波管の終端部に残
存してしまうエネルギーをなくすことはできず、逆に残
存するエネルギーを可能な限り零に近づけるように結合
用スロットを設計すると、等振幅条件から大きくずれる
。いずれにしてもこのような方式では信号を100%有
効にコンバーターまで伝達することは不可能であり、線
路損失が小さいにもかかわらず、結果としてアンテナと
しての効率はあまり高められなかった。In other words, when the number of coupling slots is about IO or 20 at most, even if the shape of the coupling slots is designed so that the amplitude is as equal as possible, the energy remaining at the end of the feeding waveguide is However, if the coupling slot is designed to bring the remaining energy as close to zero as possible, it will deviate greatly from the equal amplitude condition. In any case, with this type of system, it is impossible to transmit the signal 100% effectively to the converter, and as a result, the efficiency of the antenna cannot be improved much, even though the line loss is small.
本発明は、従来の導波管アンテナのかかる欠点に鑑みて
種々検討した結果得られたものであり、その目的とする
ところは、製造が容易でかつ低損失な導波管アンテナの
給電部を提供するにある。The present invention was obtained as a result of various studies in view of the drawbacks of conventional waveguide antennas, and its purpose is to provide a feeding section of a waveguide antenna that is easy to manufacture and has low loss. It is on offer.
すなわち、本発明は、電波を受信するアンテナ部と、該
アンテナ部が受信した電波をコンバーターまで導く給電
部とを基本構造として組上げられ、かつ該アンテナ部と
給電部は導波管より構成されるアンテナに於いて、該給
電部の導波路は、その内側に溝が形成され、かつ政情の
内壁を含んでその表面が導電化された2つのプラスチッ
ク成形体の組合せにより構成されたものであり、かつ2
つのプラスチック成形体は導波路中のTE、モードのH
面中央で貼合せられ、分岐はE面で分割されたものであ
ることを特徴とする導波管アンテナである。That is, the present invention is assembled with the basic structure of an antenna section that receives radio waves and a feeding section that guides the radio waves received by the antenna section to a converter, and the antenna section and the feeding section are composed of waveguides. In the antenna, the waveguide of the power feeding section is constituted by a combination of two plastic molded bodies each having a groove formed inside thereof and whose surface including the inner wall of the political situation is made conductive; Katsu 2
The two plastic molded bodies are TE and H modes in the waveguide.
This is a waveguide antenna characterized in that the antennas are bonded together at the center of the plane, and the branches are divided at the E plane.
以下、図面により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.
第1図は、第2図(b)に示すような本発明による給電
用導波管の部分の断面図である。溝付きのプラスチック
形成体(1)および(2)は、その溝(3)および(4
)の形状が同一であり、かつその溝(3)、(4)の内
壁を含む表面には導電層(5)および(6)が形成され
ている。FIG. 1 is a sectional view of a portion of the power feeding waveguide according to the present invention as shown in FIG. 2(b). The grooved plastic formations (1) and (2) have their grooves (3) and (4)
) have the same shape, and conductive layers (5) and (6) are formed on the surface including the inner walls of the grooves (3) and (4).
2つのプラスチック成形体(1)、(2)が、その溝(
3)、(4)が互いに向きあうように組立てられること
によりあらたに形成される導波路(7)の寸法、形状は
、使用する周波数領域に適合した導波管内寸形状に等し
くなるように設計すればよい0例えば、8〜12.4C
I(z帯のxバンドではWRJ−10ないしWRJ−1
2、あるいはWRJ−140などがこの帯域に特性が適
合する導波管であるので、かりにWJR−140の導波
管を構成しようとすれば、プラスチック成形体(1)、
(2)の溝(3)、(4)の形状は、溝の深さ7.9閣
、溝幅7.9閣に、加工しておけばよく、組立て後の導
波路の寸法は、長寸×短寸が15.8鴫X 7.9 m
となる。また、18〜26.5GHz帯のKuバンドで
はWRJ−24の導波管が好適であるので、溝(3)、
(4)の形状は、溝の深さ5.35m、溝幅4.3園に
加工しておけばよく、組立て後の導波路の寸法は、長寸
×短寸が10.70閣X4.30箇となる。Two plastic molded bodies (1) and (2) are placed in the groove (
The dimensions and shape of the waveguide (7) newly formed by assembling 3) and (4) so as to face each other are designed to be equal to the inner dimensions and shape of the waveguide that are compatible with the frequency range to be used. For example, 8-12.4C
I (WRJ-10 or WRJ-1 in the x band of the z band)
2 or WRJ-140 are waveguides whose characteristics are suitable for this band, so if you were to construct a waveguide for WJR-140, you would need plastic molded body (1),
The shapes of the grooves (3) and (4) in (2) can be processed to have a depth of 7.9 mm and a width of 7.9 mm, and the dimensions of the waveguide after assembly are long. Dimension x short dimension is 15.8 m x 7.9 m
becomes. In addition, since the WRJ-24 waveguide is suitable for the Ku band of 18 to 26.5 GHz, the groove (3)
For the shape of (4), it is sufficient to process the groove to have a depth of 5.35 m and a groove width of 4.3 mm, and the dimensions of the waveguide after assembly are long dimension x short dimension of 10.7 mm x 4 mm. There are 30 items.
第1図で(8)はTE10モードの信号の電場の振幅分
布を示しているのであるが、本発明ではプラスチック成
形体(1)、(2)を、信号のH面中央で貼合せするこ
とが第1の要件である。このようにすることによって貼
合せ部の導電層の非連続部は溝の内壁を流れる電流(9
)およびQ[llを何ら阻害することがなく、金属の引
抜き導波管と遜色ない低損失性を維持することができる
。In Figure 1, (8) shows the amplitude distribution of the electric field of the signal in the TE10 mode, but in the present invention, the plastic molded bodies (1) and (2) are bonded together at the center of the H side of the signal. is the first requirement. By doing this, the discontinuous part of the conductive layer in the bonded part is controlled by the current (9) flowing through the inner wall of the groove.
) and Q[ll, and can maintain low loss comparable to that of a metal drawn waveguide.
なお貼合せ位置は、H面の厳密な中央である必要はなく
、中央部から±0.5ないし1.0閣程度ずれても実用
的には支障ない。Note that the bonding position does not need to be at the exact center of the H surface, and there is no practical problem even if the bonding position is deviated from the center by about ±0.5 to 1.0 degrees.
本発明に於いて貼合せの方法は、接着剤あるいは導電接
着剤による固定、ネジ止め、あるいはプラスチック成形
体(1)と(2)の嵌合なとその方法は特に限定しない
、またネジ止めや嵌合などの方法で固定する場合、一般
には信号の反射や不要モード発生を防ぐため、使用する
周波数での管内波長の1/4のピッチ以下で行なうのが
好ましいのであるが、本発明に於いてはプラスチック成
形体(1)と(2)の貼合せは、貼合せ面があたかも溝
の内壁の導電層と電気的に連続であるかの如く接触をは
かる必要はなく、機械的に一応の密着がはかれていれば
充分で、特にネジピッチにこだわる必要はない。In the present invention, the bonding method is not particularly limited, and may include fixing with an adhesive or conductive adhesive, screwing, or fitting the plastic molded bodies (1) and (2) together. When fixing by a method such as fitting, it is generally preferable to do it at a pitch of 1/4 or less of the pipe wavelength at the frequency to be used in order to prevent signal reflection and generation of unnecessary modes. However, when bonding the plastic molded bodies (1) and (2) together, there is no need for the bonded surfaces to be in contact with the conductive layer on the inner wall of the groove, as if they were electrically continuous; It is sufficient that there is good adhesion, and there is no need to be particular about the thread pitch.
本発明に於ける導電化の方法は、真空蒸着、スパッタリ
ングなどの乾式導電化方法でもかまわないし、無電解メ
ツキや電解メツキなどの湿式導電化方法、あるいはこれ
らの併用でもよい、また、金属の種類は抵抗値の小さい
ものが好ましく、金、銀、銅、アルミニウムなどが適し
ている。これらの導電層の厚さは、使用する周波数での
表皮厚さ以上に形成することが必要である。導電層の厚
さがこれ以下だと、電流(9)、0■は導電層のないプ
ラスチック成形体の内部にまで入りこむことになり、大
幅な線路損失を招くので是非避けるべきである。The conductivity method in the present invention may be a dry conductivity method such as vacuum evaporation or sputtering, or a wet conductivity method such as electroless plating or electrolytic plating, or a combination thereof. A material with a low resistance value is preferable, and gold, silver, copper, aluminum, etc. are suitable. The thickness of these conductive layers must be greater than the skin thickness at the frequency used. If the thickness of the conductive layer is less than this, the current (9), 0 will penetrate into the inside of the plastic molded body without the conductive layer, causing a large line loss, and should be avoided by all means.
例えば、導電層として銅薄膜を形成し、使用周波数がX
バンドであれば、表皮厚さは0.6 tt mないし0
.8 a mであるから、銅の厚さはこれ以上の厚さで
形成すべきである。導電層の厚さは厚い分には特性に何
ら支障をきたさず、特に限定しない。For example, if a copper thin film is formed as a conductive layer and the operating frequency is
For bands, the skin thickness is between 0.6 tt m and 0.
.. 8 am, the thickness of the copper should be greater than this. The thickness of the conductive layer is not particularly limited, as long as it is thick, it does not affect the characteristics at all.
上述の条件の場合、IOμmないし12μmの厚さで導
電層(5)、(6)を形成しても何ら問題はなかった。Under the above conditions, there was no problem even if the conductive layers (5) and (6) were formed with a thickness of IO μm to 12 μm.
また、導電層はプラスチック成形体(1)および(2)
の溝側の表面だけでなく、プラスチック成形体の全体に
形成してもさしつかえない。さらに、水分、湿度などに
ともなう表面状態の経時変化を抑止するため、導電層の
表面に薄く保護層をつけてもかまわない、保護層は耐水
、耐湿性塗布剤をスプレーないしディッピングによりコ
ートしてもよいし、Ni、Orなどの金属被膜を乾式あ
るいは湿式法で薄く形成してもかまわないが、低損失性
を維持するためには導電層に比較して薄く形成すること
が必要であり、通常は数100〜数100OA、導電層
が10μmと厚い場合でも1μm程度の厚さに抑えてお
くことが望ましい。In addition, the conductive layer is made of plastic molded bodies (1) and (2).
It may be formed not only on the surface of the groove side but also on the entire plastic molded body. Furthermore, in order to prevent changes in the surface condition over time due to moisture and humidity, a thin protective layer may be applied to the surface of the conductive layer. Alternatively, a metal film such as Ni or Or may be formed thinly by a dry or wet method, but in order to maintain low loss properties, it is necessary to form it thinner than the conductive layer. Normally, it is several 100 to several 100 OA, and even if the conductive layer is as thick as 10 μm, it is desirable to keep the thickness to about 1 μm.
本発明に用いるプラスチック成形体の材質としては、底
形・加工の容易なもので、表面の導電化が容易なものか
ら選ばれ特に限定はしないが、導電化の方法として例え
ばメツキ法をとった場合、ABS樹脂、ポリカーボネー
ト、PPS樹脂、あるいはこれらのアロイなどが好適で
ある。The material of the plastic molded body used in the present invention is not particularly limited, and is selected from those with a bottom shape, easy to process, and whose surface can be easily made electrically conductive. In this case, ABS resin, polycarbonate, PPS resin, or alloys thereof are suitable.
このように、表面を導電化したプラスチック成形体を用
いるのが本発明の第2の要件であり、これによって従来
の導波管ではできない複雑な給電部の形状も容易に作製
でき、全体の重量も従来の導波管に比較して大幅に軽量
化することが可能となる。第2図(a)は本発明の給電
部、導波管を構成するプラスチック成形体(1)上の溝
形状の一例であり、a3)図はこのようなプラスチック
成形体を溝を向かい合うようにして貼合せた全体図であ
る。As described above, the second requirement of the present invention is to use a plastic molded body whose surface is made conductive.This makes it possible to easily create a complex power feeding part shape that cannot be made with conventional waveguides, and to reduce the overall weight. It is also possible to significantly reduce the weight compared to conventional waveguides. Figure 2(a) shows an example of the groove shape on the plastic molded body (1) constituting the power feeding section and waveguide of the present invention, and Figure a3) shows a groove shape of such a plastic molded body with the grooves facing each other. This is an overall diagram pasted together.
第2図(a)は1枚のプラスチック平板に分岐を有する
溝(3)を形成したものであり、溝形状は前述のとおり
使用周波数帯に適合する導波管の内寸法をもとに設計す
ればよい、このようにしてE面で分割した分岐とするこ
とが本発明の第3の要件であり、これによって溝の分岐
前後でカットオフ周波数やインピーダンスの変化がない
ため、マツチングが極めてとりやすいという設計上の利
点がある。Figure 2 (a) shows a groove (3) with branches formed in a single plastic plate, and the groove shape is designed based on the internal dimensions of the waveguide that are compatible with the frequency band used as described above. The third requirement of the present invention is to make the branches divided on the E plane in this way, and because there is no change in the cutoff frequency or impedance before and after the groove branches, matching becomes extremely easy. It has the design advantage of being easy to use.
またこの他にも、溝の分岐の前後における信号の波形も
かわらないので、管内に不要のモードなどが一切生じず
低損失給電線路を実現できるという特性上の利点もあり
、従来の導波管と遜色ない低損失性を維持しながら、複
雑な給電線路を容易に構成することができる。In addition to this, since the signal waveform before and after the branching of the groove remains the same, there is also the characteristic advantage that a low-loss feed line can be realized without any unnecessary modes occurring in the pipe, which is different from conventional waveguides. It is possible to easily configure a complex power supply line while maintaining a low loss comparable to that of a conventional power supply.
以下、本発明の実施例および比較例を述べる。Examples and comparative examples of the present invention will be described below.
(実施例1)
厚さ10m1長さ530mのABS樹脂の平板に、幅7
.9■、深さ7.9園の溝を平板の長さ方向に直線状に
切削加工し、溝の端から5閣の位置に左
ピッチ50111でφ3.2mの大台、溝に沿って溝の
両側に対称にあけた。ついでこの平板を無電解メツキで
銅被膜を10μmの厚さに形成した。(Example 1) A flat plate of ABS resin with a thickness of 10 m and a length of 530 m has a width of 7
.. 9. Cut a groove with a depth of 7.9mm in a straight line in the length direction of the plate, and cut a φ3.2m large base with a left pitch of 50111 at a position of 5 points from the edge of the groove, and cut a groove along the groove. Open symmetrically on both sides. Next, a copper coating was formed on this flat plate to a thickness of 10 μm by electroless plating.
このような表面が導電化された平板2枚を、溝が互いに
向き合うようにしてφ3.2mの穴を利用して3Mネジ
で固定して導波路を作製した。この導波管の11.7〜
12.0GHzに於ける特性を測定したところ、線路損
失は0.20 d Bであった。A waveguide was fabricated by fixing two such flat plates whose surfaces were made conductive with 3M screws using a φ3.2m hole so that the grooves faced each other. 11.7~ of this waveguide
When the characteristics at 12.0 GHz were measured, the line loss was 0.20 dB.
(実施例2)
長さ436m+*、幅324閤のABS樹脂の平板に深
さ7.9 tmの溝を次のような順序で加工した。(Example 2) A groove with a depth of 7.9 tm was machined in the following order on an ABS resin flat plate with a length of 436 m+* and a width of 324 m.
■ ABS樹脂平板の短辺のうち1辺の中央から幅7.
9 mm、長さ10.6mm?切削する。■ Width 7mm from the center of one of the short sides of the ABS resin flat plate.
9mm, length 10.6mm? Cut.
■ 平板の長さ方向に対し±20°の角度で分岐するよ
うに溝を切削する0分岐した溝の長さは20Lnで、幅
は3.95gaiから7.9 mまで広がるようにテー
パをつける。■ Cut the groove so that it branches at an angle of ±20° with respect to the length direction of the flat plate.The length of the branched groove is 20Ln, and the width is tapered to widen from 3.95gai to 7.9m. .
■ 平板の長さ方向に幅7.9 m、長さio、6mで
切削する。■ Cut the flat plate lengthwise to a width of 7.9 m and a length of io, 6 m.
■ 平板の長さ方向に対し±17°の角度で分岐するよ
うに溝を切削する。分岐した溝の長さは116mmで、
幅は3.95mから7.9 asまで広がるようにテー
パをつける。■ Cut grooves so that they diverge at an angle of ±17° to the length direction of the flat plate. The length of the branched groove is 116mm,
The width tapers from 3.95 m to 7.9 as.
■ 平板の長さ方向に幅7.9鵬、長さ10.6 s。■ Width 7.9 s and length 10.6 s in the length direction of the flat plate.
で切削する。Cut with.
■ 平板の長さ方向に対し±10@の角度で分岐するよ
うに溝を切削する。分岐した長さは95mで、幅は3.
95閣から7.9 tmまで広がるようにテーパをつけ
る。■ Cut grooves so that they diverge at an angle of ±10@ to the length direction of the flat plate. The length of the branch is 95m and the width is 3.
Taper so that it spreads from 95 kaku to 7.9 tm.
■ 平板の長さ方向に幅7.9閣、長さ10.6 rm
で切削する。■ Width 7.9 mm in length direction of flat plate, length 10.6 rm
Cut with.
このようにして第2図(a)のように計8個の溝が次第
に結合し、最後は1個の溝となる形状を得た。In this way, a total of eight grooves were gradually combined into a single groove as shown in FIG. 2(a).
次に、溝のふちから10mmの位置にピッチ50mでφ
3.2 mの穴を溝に沿ってあけた。ついで実施例1と
同様にして、LOum厚さの銅被膜を無電解メツキで形
成した。Next, at a pitch of 50 m at a position 10 mm from the edge of the groove, φ
A 3.2 m hole was drilled along the groove. Then, in the same manner as in Example 1, a copper coating having a thickness of LOum was formed by electroless plating.
このような加工1ff+2枚を、溝が互いに向き合うよ
うにしてφ3.2 mの穴を利用して3mmのネジで固
定して導波路を得た。この給電部導波管の11.7〜1
2.0GHzに於ける特性を測定したところ、反射−2
0dB以下、挿入損0.5 d B以下と小さく、8つ
の導波路の分配比は±0.5 d B以内であった。A waveguide was obtained by fixing such processed 1ff+2 sheets with 3 mm screws using a φ3.2 m hole so that the grooves faced each other. 11.7 to 1 of this feed waveguide
When we measured the characteristics at 2.0GHz, the reflection was -2.
The insertion loss was less than 0 dB, the insertion loss was less than 0.5 dB, and the distribution ratio of the eight waveguides was within ±0.5 dB.
(比較例1)
実施例1の場合と同じ導波路寸法(7,9mmX15.
8mm)をもつ丹銅のWRJ−140の引抜き導波管を
、実施例1と同じ長さの530閣に切断したものについ
て、■1.7〜12.0GHzでの特性を測定したとこ
ろ、線路損失は0.18 d Bであった。(Comparative Example 1) The same waveguide dimensions as in Example 1 (7.9 mm x 15 mm).
■ When we measured the characteristics at 1.7 to 12.0 GHz of a red copper WRJ-140 drawn waveguide cut into 530 pieces of the same length as in Example 1, we found that the line The loss was 0.18 dB.
(比較例2)
2枚の平板を貼合せる方法として、硬化後の体積抵抗率
が5X10−’Ω−ロである導電性接着剤を溝のエツジ
にすきまなく塗布して貼合せ、50℃で2時間硬化接着
させたこと以外は実施例1と同じ導波路について、11
.7〜12.0 GHzに於ける特性を測定したところ
、線路損失は0.20 dBであった。(Comparative Example 2) As a method of laminating two flat plates, a conductive adhesive having a volume resistivity of 5 x 10-'Ω- after curing was applied to the edges of the grooves without any gaps, and then laminated at 50°C. 11 for the same waveguide as in Example 1 except that it was cured and bonded for 2 hours.
.. When the characteristics at 7 to 12.0 GHz were measured, the line loss was 0.20 dB.
(比較例3)
溝幅15.8m、深さ3.95 waであり、2枚のプ
ラスチック板の貼合せ位置が8面中央であること以外は
実施例1と同じ導波路について、11.75〜12.0
GHzに於ける特性を測定したところ、線路損失は1.
1 d Bであった。(Comparative Example 3) The waveguide was the same as Example 1 except that the groove width was 15.8 m, the depth was 3.95 wa, and the bonding position of the two plastic plates was at the center of the 8th surface. ~12.0
When we measured the characteristics at GHz, the line loss was 1.
It was 1 dB.
以上のことから明らかなように、本発明に従うと従来の
金属導波管では極めて困難であった複雑な形状の給電部
を容易に加工できるだけでなく、軽量でしかも低損失な
給電線路を実現でき、例えば衛星放送受信用アンテナの
給電部に応用すれば、その低損失性から効率のすぐれた
平面アンテナを得ることが出来る。As is clear from the above, according to the present invention, it is not only possible to easily fabricate a power feed section with a complex shape, which was extremely difficult with conventional metal waveguides, but also to realize a lightweight and low-loss power feed line. For example, if applied to the power feeding part of a satellite broadcast receiving antenna, a planar antenna with excellent efficiency can be obtained due to its low loss property.
第1図および第2図は本発明による給電部導波挽回であ
る。また、第3図および第4図は従来の導波管アンテナ
の一例を示す図である。FIGS. 1 and 2 are feed waveguide recovery according to the present invention. Further, FIGS. 3 and 4 are diagrams showing an example of a conventional waveguide antenna.
Claims (1)
信した電波をコンバーターまで導く給電部とを基本構造
として組上げられ、かつ該アンテナ部と給電部は導波管
により構成されるアンテナに於いて、該給電部の導波路
は、その内側に溝が形成され、かつ該溝の内壁を含んで
その表面が導電化された2つのプラスチック成形体の組
合せにより構成されたものであり、かつ2つのプラスチ
ック成形体は導波路中のTE_1_0モードのH面中央
で貼合せられ、分岐はE面で分割されたものであること
を特徴とする導波管アンテナ。(1) The antenna is assembled with the basic structure of an antenna section that receives radio waves and a feeding section that guides the radio waves received by the antenna section to a converter, and the antenna section and the feeding section are constructed of waveguides. The waveguide of the power feeding section is constituted by a combination of two plastic molded bodies each having a groove formed inside thereof and whose surface including the inner wall of the groove is made conductive; A waveguide antenna characterized in that two plastic molded bodies are bonded together at the center of the H plane of the TE_1_0 mode in the waveguide, and the branch is divided at the E plane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20795189A JPH0373601A (en) | 1989-08-14 | 1989-08-14 | Waveguide antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20795189A JPH0373601A (en) | 1989-08-14 | 1989-08-14 | Waveguide antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0373601A true JPH0373601A (en) | 1991-03-28 |
Family
ID=16548241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20795189A Pending JPH0373601A (en) | 1989-08-14 | 1989-08-14 | Waveguide antenna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0373601A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5323169A (en) * | 1993-01-11 | 1994-06-21 | Voss Scientific | Compact, high-gain, ultra-wide band (UWB) transverse electromagnetic (TEM) planar transmission-line-array horn antenna |
US6727860B1 (en) * | 1999-09-08 | 2004-04-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Distribution network with overlapping branches and antenna arrangement comprising such a distribution network |
FR2916580A1 (en) * | 2007-05-25 | 2008-11-28 | Thales Sa | Electromagnetic wave i.e. hyper frequency wave, guiding structure for radiating plate slot antenna, has zone with element made of insulating material possessing dielectric characteristics, and dimensions and geometry equal to that of zone |
JP2011529284A (en) * | 2008-07-25 | 2011-12-01 | アストリウム・リミテッド | Equipment for antenna systems |
-
1989
- 1989-08-14 JP JP20795189A patent/JPH0373601A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5323169A (en) * | 1993-01-11 | 1994-06-21 | Voss Scientific | Compact, high-gain, ultra-wide band (UWB) transverse electromagnetic (TEM) planar transmission-line-array horn antenna |
US6727860B1 (en) * | 1999-09-08 | 2004-04-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Distribution network with overlapping branches and antenna arrangement comprising such a distribution network |
FR2916580A1 (en) * | 2007-05-25 | 2008-11-28 | Thales Sa | Electromagnetic wave i.e. hyper frequency wave, guiding structure for radiating plate slot antenna, has zone with element made of insulating material possessing dielectric characteristics, and dimensions and geometry equal to that of zone |
JP2011529284A (en) * | 2008-07-25 | 2011-12-01 | アストリウム・リミテッド | Equipment for antenna systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5872545A (en) | Planar microwave receive and/or transmit array antenna and application thereof to reception from geostationary television satellites | |
US4527165A (en) | Miniature horn antenna array for circular polarization | |
US5444453A (en) | Microstrip antenna structure having an air gap and method of constructing same | |
US5793263A (en) | Waveguide-microstrip transmission line transition structure having an integral slot and antenna coupling arrangement | |
EP3462543B1 (en) | Array antenna | |
EP0343322A2 (en) | Notch antenna with microstrip feed | |
US4792810A (en) | Microwave antenna | |
US8188805B2 (en) | Triplate line-to-waveguide transducer having spacer dimensions which are larger than waveguide dimensions | |
JP2007251936A (en) | Multiple-layer patch antenna | |
US3164790A (en) | Sinuously folded quarter wave stripline directional coupler | |
JPH1146114A (en) | Stacked aperture antenna and multi-layer circuit board containing the same | |
CN114843775A (en) | Novel palm leaf type coplanar Vivaldi array antenna and unit design | |
US3946339A (en) | Slot line/microstrip hybrid | |
CN110534920A (en) | Flexible Butler feeding network | |
JPH0373601A (en) | Waveguide antenna | |
US4458218A (en) | Dielectric waveguide reciprocal ferrite phase shifter | |
US4691208A (en) | Ferrite waveguide scanning antenna | |
US6452462B2 (en) | Broadband flexible printed circuit balun | |
CN113745833B (en) | Waveguide antenna and signal transmission device | |
CN102856655A (en) | Metamaterial frequency selection surface and metamaterial frequency selection antenna cover and antenna system manufactured by same | |
JPH037406A (en) | Waveguide antenna | |
JPH0376305A (en) | Waveguide antenna | |
JPS62210704A (en) | Waveguide type slot array antenna | |
JPS63275204A (en) | One body molded product of high frequency antenna substrate and its manufacture | |
JPS6223209A (en) | Circularly polarized wave plane array antenna |