JPH037358Y2 - - Google Patents

Info

Publication number
JPH037358Y2
JPH037358Y2 JP14395385U JP14395385U JPH037358Y2 JP H037358 Y2 JPH037358 Y2 JP H037358Y2 JP 14395385 U JP14395385 U JP 14395385U JP 14395385 U JP14395385 U JP 14395385U JP H037358 Y2 JPH037358 Y2 JP H037358Y2
Authority
JP
Japan
Prior art keywords
refueling
negative pressure
flow rate
detection signal
rate control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14395385U
Other languages
Japanese (ja)
Other versions
JPS6252199U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14395385U priority Critical patent/JPH037358Y2/ja
Publication of JPS6252199U publication Critical patent/JPS6252199U/ja
Application granted granted Critical
Publication of JPH037358Y2 publication Critical patent/JPH037358Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、一回の給油操作で車輌の燃料タンク
に所定液面まで自動的に満タン給油しうるように
した、いわゆる自動満タン給油式の給油装置に関
する。
[Detailed description of the invention] [Field of industrial application] The present invention is a so-called automatic refueling system that automatically refuels a vehicle's fuel tank to a predetermined level with a single refueling operation. Relating to a type oil supply device.

〔従来技術〕[Prior art]

例えば、燃料タンク内の液面が所定液面に達し
たとき自動閉弁機構が作動して、ノズル本体内の
弁機構を自動閉弁せしめる自動閉弁式給油ノズル
は知られている。
For example, an automatic valve-closing type refueling nozzle is known in which an automatic valve-closing mechanism operates to automatically close a valve mechanism in a nozzle body when the liquid level in a fuel tank reaches a predetermined liquid level.

この種、自動閉弁式給油ノズルは、ノズル本体
内に自動閉弁機構の一部を構成する負圧室を設け
ると共に、吐出パイプの先端に該負圧室に連通す
る液面検知穴を設け、該液面検知穴が液面の上昇
によつて塞がれたときに前記負圧室が負圧になる
と、自動閉弁機構は作動し、操作レバーによつて
開弁状態に設定されている弁機構を自動的に閉弁
動作させる構成となつている(例えば、特開昭54
−21614号公報参照)。
This type of self-closing refueling nozzle has a negative pressure chamber that forms part of the automatic valve closing mechanism inside the nozzle body, and a liquid level detection hole that communicates with the negative pressure chamber at the tip of the discharge pipe. When the liquid level detection hole is blocked by a rise in the liquid level and the negative pressure chamber becomes negative pressure, the automatic valve closing mechanism is activated and the valve is set to the open state by the operating lever. The valve mechanism is configured to automatically close the valve mechanism (for example,
-Refer to Publication No. 21614).

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

ところで、自動閉弁式給油ノズルでは、ノズル
本体内に設けられた負圧発生機構によつて前記液
面検知穴から外気を吸込み、これをガソリン等と
共に吐出パイプから吐出させているから、車輌の
燃料タンク内にはガソリン等と共に吐出される空
気によつて多量の泡が発出する。そして、この泡
によつて液面検知穴が塞がれると、負圧室が負圧
となる結果、即座に自動閉弁機構が作動して、弁
機構を閉弁させてしまう。
By the way, in the automatic closing type refueling nozzle, the negative pressure generation mechanism provided in the nozzle body sucks in outside air from the liquid level detection hole and discharges it from the discharge pipe along with gasoline, etc. A large amount of bubbles are generated in the fuel tank due to the air discharged together with gasoline and the like. When the liquid level detection hole is blocked by the bubbles, the negative pressure chamber becomes negative pressure, and as a result, the automatic valve closing mechanism immediately operates to close the valve mechanism.

このため、従来技術では、実際に燃料タンク内
の液面が所定液面に達する前に、泡によつて自動
閉弁機構が誤作動し、給油が中断されるという欠
点がある。そして、追加給油を行う場合には、一
度給油ノズルを燃料タンクから引きあげ、操作レ
バーを再操作して追加給油を行わなければなら
ず、給油作業に余分な労力と時間を費やすという
欠点がある。
For this reason, the prior art has a drawback in that the automatic valve closing mechanism malfunctions due to the bubbles and refueling is interrupted before the liquid level in the fuel tank actually reaches a predetermined liquid level. When performing additional refueling, the refueling nozzle must be pulled up from the fuel tank and the operating lever must be operated again to perform additional refueling, which has the drawback of requiring extra labor and time for refueling.

本考案は上述した従来技術の欠点に鑑みなされ
たもので、一回の給油操作で車輌の燃料タンクに
所定液面まで自動的に満タン給油を行いうるよう
にした給油装置を提供することを目的とする。
The present invention was developed in view of the above-mentioned shortcomings of the prior art, and aims to provide a refueling device that can automatically refuel a vehicle's fuel tank to a predetermined level with a single refueling operation. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

上述した問題点を解決するために、本考案が採
用する構成は、流路の先端に設けられ、燃料タン
クの給油口に挿入される吐出パイプを有する給油
ノズルと、該給油ノズルよりも上流側に位置して
前記流路の途中に設けられ、該給油ノズルへの油
液の供給量の制御を行なう給油制御機構と、前記
給油ノズルの吐出パイプ先端側に開口した負圧通
路と負圧発生機構とに連通された圧力室内の負圧
状態に応じた大きさのアナログ検出信号を出力す
るセンサと、前記給油ノズル吐出パイプ先端側が
液面によつて完全に閉塞された状態となり、該セ
ンサから出力される検出信号が所定の大きさとな
つたときに、前記給油制御機構から前記給油ノズ
ルへの給油量を零とするように、該センサから出
力される検出信号の大きさに応じて予め定められ
た流量制御データを記憶する記憶回路と、前記セ
ンサから検出信号が入力されたとき、該記憶回路
から検出信号の大きさに対応した流量制御データ
を演算し、演算結果に基づく流量制御信号を前記
流量制御機構に出力し、この流量制御信号によつ
て前記流量制御機構からの供給量の制御を行なわ
せる制御回路とからなる。
In order to solve the above-mentioned problems, the configuration adopted by the present invention includes a refueling nozzle provided at the tip of a flow path and having a discharge pipe inserted into the refueling port of the fuel tank, and a refueling nozzle located upstream of the refueling nozzle. a refueling control mechanism that is located in the middle of the flow path and controls the amount of oil supplied to the refueling nozzle; a negative pressure passage that opens at the tip of the discharge pipe of the refueling nozzle; and a negative pressure generating mechanism. A sensor that outputs an analog detection signal of a magnitude corresponding to the negative pressure state in the pressure chamber communicated with the mechanism; Predetermined according to the magnitude of the detection signal output from the sensor so that the amount of oil supplied from the oil supply control mechanism to the oil supply nozzle is zero when the output detection signal reaches a predetermined magnitude. a storage circuit for storing the detected flow rate control data, and when a detection signal is input from the sensor, calculates flow rate control data corresponding to the magnitude of the detection signal from the storage circuit, and generates a flow rate control signal based on the calculation result. and a control circuit that outputs an output to the flow rate control mechanism and controls the amount of supply from the flow rate control mechanism based on the flow rate control signal.

〔作用〕[Effect]

このように構成することにより、給油作業中に
おいては、センサからは給油ノズルの吐出パイプ
先端側に開口した負圧通路が液または泡によつて
閉塞されることによつて生じる圧力室内の負圧状
態に応じて検出値の大きさの異なるアナログ検出
信号を出力しているから、制御回路にこの検出信
号が入力されることにより、該制御回路は流量制
御データを記憶している記憶回路からこの検出信
号の大きさに対応した流量制御データを演算し、
この演算結果を流量制御信号として電磁弁、ポン
プモータ等からなる流量制御機構に出力する。こ
の結果、流量制御機構は流量制御信号に基づいて
駆動され、給油ノズルの吐出パイプ先端に開口し
た負圧通路が液面によつて完全に閉塞され、セン
サからの検出信号が所定の大きさとなつた状態で
は、流量制御機構は給油ノズルへの油液の供給量
が零となるように制御され、一回の給油操作で自
動満タン給油を行なうことができる。
With this configuration, during refueling work, the sensor detects the negative pressure in the pressure chamber that is generated when the negative pressure passage that opens at the tip of the refueling nozzle's discharge pipe is blocked by liquid or foam. Since an analog detection signal with a detection value that differs in magnitude depending on the state is output, when this detection signal is input to the control circuit, the control circuit reads this signal from the storage circuit that stores the flow rate control data. Calculates flow control data corresponding to the magnitude of the detection signal,
This calculation result is output as a flow control signal to a flow control mechanism consisting of a solenoid valve, a pump motor, etc. As a result, the flow rate control mechanism is driven based on the flow rate control signal, the negative pressure passage opened at the tip of the discharge pipe of the refueling nozzle is completely blocked by the liquid level, and the detection signal from the sensor reaches a predetermined level. In this state, the flow rate control mechanism is controlled so that the amount of oil supplied to the refueling nozzle becomes zero, and automatic full refueling can be performed with a single refueling operation.

〔実施例〕〔Example〕

以下、本考案の実施例を第1図ないし第6図に
基づいて説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 6.

図において、1は固定式の給油装置本体で、該
本体1は下部ケース2と上部ケース3とから大略
構成されている。そして、下部ケース2内には一
端が地下タンンク(図示せず)内に連なる配管4
が設けられ、該配管4の途中にはモータ5によつ
て駆動されるポンプ6と、パルス発信器7Aを有
する流量計7と、常開の電磁弁8とが設けられて
おり、前記配管4の他端にはホース9と、該ホー
ス9に接続された給油ノズル10とが設けられて
いる。ここで、前記電磁弁8は給油ノズル10を
介して給油される給油量を後述の流量制御信号P
によつて自動的に制御する給油制御機構を構成し
ている。
In the figure, reference numeral 1 denotes a fixed oil supply device main body, and the main body 1 is roughly composed of a lower case 2 and an upper case 3. Inside the lower case 2, there is a pipe 4 with one end connected to an underground tank (not shown).
A pump 6 driven by a motor 5, a flow meter 7 having a pulse transmitter 7A, and a normally open solenoid valve 8 are provided in the middle of the pipe 4. A hose 9 and a refueling nozzle 10 connected to the hose 9 are provided at the other end. Here, the electromagnetic valve 8 controls the amount of oil supplied via the oil supply nozzle 10 by a flow rate control signal P, which will be described later.
This constitutes a refueling control mechanism that automatically controls the oil supply.

また、前記下部ケース2の側部には給油作業時
以外のときに給油ノズル10を掛けた状態で収納
しておくためのノズル収納部11と、該ノズル収
納部11に隣接して配設されたノズルスイツチ1
2とが設けられ、該ノズルスイツチ12はノズル
収納部11に給油ノズル10を掛けた時に開成
し、掛け外したときに閉成するようになつてい。
Further, on the side of the lower case 2, there is a nozzle storage part 11 for storing the refueling nozzle 10 in a hung state when not refueling, and a nozzle storage part 11 is arranged adjacent to the nozzle storage part 11. Nozzle switch 1
2, and the nozzle switch 12 is opened when the refueling nozzle 10 is hooked to the nozzle storage portion 11, and closed when the nozzle is unhooked.

一方、前記上部ケース3には給油量、金額、単
価等を表示する表示器13と、制御装置14とが
設けられ、該制御装置14は前記パルス発信器7
Aからの流量信号によつて表示器13に給油量等
を表示させる機能と、給油ノズル10が外されて
ノズルスイツチ12が閉成したときにモータ5を
起動し、給油ノズル10が掛けられてノズルスイ
ツチ12が開成したときにモータ5を停止する機
能とを有している。さらに、該制御装置14には
後述の制御回路29等が設けられ、該制御回路2
9を介して前記給油制御機構としての電磁弁8に
流量制御信号Pを出力するようになつている。
On the other hand, the upper case 3 is provided with a display 13 for displaying the amount of refueling, amount of money, unit price, etc., and a control device 14, and the control device 14 is connected to the pulse transmitter 7.
The function is to display the amount of refueling etc. on the display 13 based on the flow rate signal from A, and when the refueling nozzle 10 is removed and the nozzle switch 12 is closed, the motor 5 is started and the refueling nozzle 10 is applied. It has a function of stopping the motor 5 when the nozzle switch 12 is opened. Furthermore, the control device 14 is provided with a control circuit 29, etc., which will be described later, and the control circuit 29 is
A flow rate control signal P is outputted to the electromagnetic valve 8 as the oil supply control mechanism via the oil supply control mechanism 9.

次に、第2図は給油ノズル10の具体的構成を
示している。図中、15は一端がホース9に接続
されるノズル本体で、該ノズル本体15内には流
体流路16が設けられ、該流体流路16の途中に
は操作レバー17によつて開閉される弁機構18
が設けられている。19はノズル本体15の他端
側から突設された吐出パイプで、該吐出パイプ1
9は燃料タンクの給油口(図示せず)に挿入さ
れ、前記操作レバー17の操作によつて弁機構1
8が開弁されるとき、流体流路16からのガソリ
ン等の油液を燃料タンク内へと吐出するようにな
つている。
Next, FIG. 2 shows a specific configuration of the refueling nozzle 10. In the figure, 15 is a nozzle body whose one end is connected to the hose 9. A fluid flow path 16 is provided in the nozzle body 15, and the fluid flow path 16 is opened and closed by an operating lever 17 in the middle. Valve mechanism 18
is provided. 19 is a discharge pipe protruding from the other end of the nozzle body 15;
9 is inserted into a fuel filler port (not shown) of a fuel tank, and the valve mechanism 1 is opened by operating the operating lever 17.
When the valve 8 is opened, oil such as gasoline is discharged from the fluid passage 16 into the fuel tank.

20は吐出パイプ19の外周に中間部から基端
部にかけて外嵌され、該吐出パイプ19を燃料タ
ンクの給油口に係止させる係止用スプリング、2
1は吐出パイプ19の先端側に設けられ、燃料タ
ンク内の液面または泡面を検知するようになつた
検知穴で、該検知穴21は負圧管22を介して後
述の負圧室23と連通されている。そして、該検
知穴21は燃料タンク内に給油されたガソリン等
の油液または給油中に発生する泡によつて閉塞さ
れるときに、負圧室23内を負圧状態にすること
によつて後述のフオトインタラプタ26と共に液
面または泡面を検出するセンサを構成するように
なつている。
A locking spring 20 is fitted around the outer circumference of the discharge pipe 19 from the middle part to the base end, and locks the discharge pipe 19 to the filler port of the fuel tank;
1 is a detection hole provided at the tip side of the discharge pipe 19 to detect the liquid level or bubble level in the fuel tank, and the detection hole 21 is connected to a negative pressure chamber 23 to be described later through a negative pressure pipe 22. It is communicated. When the detection hole 21 is blocked by an oil liquid such as gasoline filled in the fuel tank or by bubbles generated during refueling, the detection hole 21 is activated by creating a negative pressure state in the negative pressure chamber 23. Together with a photo interrupter 26, which will be described later, it constitutes a sensor that detects the liquid level or foam level.

23はノズル本体15内に設けられ、ダイアフ
ラム24によつて大気室25から隔離された負圧
室で、該負圧室23は通路23Aを介して前記負
圧管22と接続され、その途中には流体流路16
内を流れる油液によつて前記検知穴21から外気
を吸引する負圧発生機構(図示せず)が設けられ
ている。そして、この負圧発生機構は給油中に検
知穴21が外気に開口している間は負圧管22を
介して外気を吸引し、負圧室23内を大気圧状態
におき、該検知穴21が油液または泡によつて次
第に閉塞されるに従い、負圧管22を介した外気
の吸引が不可能となると、負圧室23内から徐々
に空気を吸引して、該負圧室23内を負圧状態と
するようになつている。
A negative pressure chamber 23 is provided in the nozzle body 15 and isolated from the atmospheric chamber 25 by a diaphragm 24. The negative pressure chamber 23 is connected to the negative pressure pipe 22 through a passage 23A, and there is a Fluid channel 16
A negative pressure generating mechanism (not shown) is provided that sucks outside air from the detection hole 21 using oil flowing therein. This negative pressure generation mechanism sucks outside air through the negative pressure pipe 22 while the detection hole 21 is open to the outside air during refueling, and maintains the inside of the negative pressure chamber 23 at atmospheric pressure. When the suction of outside air through the negative pressure pipe 22 becomes impossible as the negative pressure pipe 22 gradually becomes blocked by oil or bubbles, air is gradually sucked from inside the negative pressure chamber 23 and the inside of the negative pressure chamber 23 is removed. It is designed to be in a negative pressure state.

26は前記大気室25側に固設され発光部26
Aと受光部26Bとからなるフオトインタラプタ
で、該フオトインタラプタ26の発光部26A、
受光部26B間には一端が前記ダイアフラム24
に固着された遮蔽板27の自由端が介挿され、該
遮蔽板27の自由端は前記負圧室23内が負圧状
態となるに従い、ダイアフラム24と共に図中下
向きに変位するようになつている。そして、該フ
オトインタラプタ26は前記検知穴21と共に液
面または泡面を検出するセンサを構成しており、
該検知穴21が油液または泡によつて閉塞され、
負圧室23内が負圧状態になるに従い、前記遮蔽
板27の変位量を第4図中に示す如きアナログ検
出信号Sに変換し、この検出信号Sを後述の制御
回路29へと出力するようになつている。
26 is a light emitting section 26 fixedly installed on the atmospheric chamber 25 side.
A and a light receiving section 26B, the photo interrupter 26 has a light emitting section 26A,
One end is connected to the diaphragm 24 between the light receiving parts 26B.
The free end of the shielding plate 27 fixed to the diaphragm 24 is inserted, and as the inside of the negative pressure chamber 23 becomes in a negative pressure state, the free end of the shielding plate 27 is displaced downward in the figure together with the diaphragm 24. There is. The photo interrupter 26 together with the detection hole 21 constitutes a sensor that detects the liquid level or foam level.
The detection hole 21 is blocked by oil liquid or bubbles,
As the negative pressure inside the negative pressure chamber 23 becomes negative, the amount of displacement of the shielding plate 27 is converted into an analog detection signal S as shown in FIG. 4, and this detection signal S is output to a control circuit 29 to be described later. It's becoming like that.

次に、第3図はフオトインタラプタ26からの
検出信号Sに基づき、前記給油制御機構としての
電磁弁8の閉弁動作を制御する回路図を示してい
る。
Next, FIG. 3 shows a circuit diagram for controlling the closing operation of the solenoid valve 8 as the oil supply control mechanism based on the detection signal S from the photo interrupter 26.

図中、28はフオトインタラプタ26からの検
出信号Sを増幅して後述の制御回路29へと出力
する増幅器、29は例えばCPU等からなる制御
回路、30はRAM,ROM等からなる記憶回路
としての関数発生器を示す。ここで、関数発生器
30にはフオトインタラプタ26からのアナログ
検出信号Sの大きさに応じて予め定められた流量
制御データが関数として記憶されており、この流
量制御データは第5図に示すように検出信号Sが
所定の大きさとなつたとき、電磁弁8を完全に閉
弁するような特性曲線となつている。また、前記
制御回路29は関数発生器30で予め定められた
関数に基づき、増幅器28からの検出信号の大き
さに対応した流量制御信号Pを電磁弁8へと出力
し、これによつて電磁弁8の弁開度を第5図に示
す特性曲線Tの如く制御するようになつており、
該制御回路29は増幅器28、関数発生器30と
共に前記上部ケース3の制御装置14内に設けら
れている。そして、該制御回路29は前記検知穴
21が燃料タンク内の液面上に発生する泡によつ
て塞がれはじめ、負圧室23内が次第に負圧状態
となつて、遮蔽板27の変位に対応しててフオト
インタラプタ26からの検出信号Sが所定値に達
すると、流量制御信号Pを介して電磁弁8の弁開
度を特性曲線Tで示す如く急激に絞り、該電磁弁
8から給油ノズル10へと流出する油液の流量を
大きく抑えると共に、その後、前記検出信号Sの
増加に対応して、電磁弁8の弁開度を徐々に絞つ
て前記油液の流量を徐々に抑えてゆく。そうし
て、燃料タンク内の液面が所定液面に達して、前
記検知穴21が油液で閉塞されたときには、負圧
室23内は所定の大きな負圧状態となり、これに
応じて遮蔽板27も大きく変化し、フオトインタ
ラプタ26からの検出信号Sは所定の大きな値と
なるから、このとき、制御回路29は流量制御信
号Pを介して電磁弁8を閉弁させるようになつて
いる。
In the figure, 28 is an amplifier that amplifies the detection signal S from the photo interrupter 26 and outputs it to a control circuit 29 (described later), 29 is a control circuit consisting of, for example, a CPU, and 30 is a storage circuit consisting of RAM, ROM, etc. Shows a function generator. Here, flow rate control data predetermined according to the magnitude of the analog detection signal S from the photo interrupter 26 is stored in the function generator 30 as a function, and this flow rate control data is stored as a function as shown in FIG. The characteristic curve is such that when the detection signal S reaches a predetermined magnitude, the solenoid valve 8 is completely closed. Further, the control circuit 29 outputs a flow rate control signal P corresponding to the magnitude of the detection signal from the amplifier 28 to the electromagnetic valve 8 based on a predetermined function by the function generator 30, thereby causing the electromagnetic The opening degree of the valve 8 is controlled as shown in the characteristic curve T shown in FIG.
The control circuit 29 is provided in the control device 14 of the upper case 3 together with the amplifier 28 and the function generator 30. Then, the control circuit 29 detects that the detection hole 21 begins to be blocked by bubbles generated on the liquid level in the fuel tank, and the inside of the negative pressure chamber 23 gradually becomes a negative pressure state, causing the displacement of the shielding plate 27. When the detection signal S from the photo interrupter 26 reaches a predetermined value in response to The flow rate of the oil liquid flowing into the oil supply nozzle 10 is greatly suppressed, and then, in response to the increase in the detection signal S, the valve opening of the solenoid valve 8 is gradually reduced to gradually suppress the flow rate of the oil liquid. I'm going to go. Then, when the liquid level in the fuel tank reaches a predetermined level and the detection hole 21 is blocked by the oil liquid, the inside of the negative pressure chamber 23 becomes a predetermined large negative pressure state, and the shielding is performed accordingly. Since the plate 27 also changes greatly and the detection signal S from the photo interrupter 26 becomes a predetermined large value, at this time the control circuit 29 closes the solenoid valve 8 via the flow rate control signal P. .

次に、以上の通り構成される給油装置の作動に
ついて、第6図を参照して説明する。
Next, the operation of the oil supply system configured as described above will be explained with reference to FIG. 6.

第6図は給油開始時から給油停止までの時間を
横軸に取り、この給油時間との関係で検出信号S
と電磁弁8の弁開度とをそれぞれ特性曲線S1
T1でもつて表すことにより、両者の関係を明示
したものである。そして、第6図中の領域は操
作レバー17を操作して弁機構18を開弁させ、
給油を開始した時から、給油中に燃料タンクの液
面上に発生する泡によつて給油ノズル10の検知
穴21が塞がれはじめるまでの時間領域を示して
いる。この間、該検知穴21は外気に開口してい
るから、負圧室23内は大気圧状態となり、遮蔽
板27は実質的に変位せず、検出信号Sは初期値
V0なる値に維持される。また、電磁弁8の弁開
度は検出信号Sに対応して制御回路29から出力
される流量制御信号Pにより全開状態に維持され
(第5図参照)、給油ノズル10から多量の油液が
燃料タンクへと給油される。
Figure 6 shows the time from the start of refueling to the stop of refueling on the horizontal axis, and the detection signal S in relation to this refueling time.
and the valve opening degree of the solenoid valve 8, respectively, are represented by characteristic curves S 1 ,
By also expressing T 1 , the relationship between the two is made clear. Then, in the area shown in FIG. 6, the operating lever 17 is operated to open the valve mechanism 18,
It shows the time range from the start of refueling until the detection hole 21 of the refueling nozzle 10 begins to be blocked by bubbles generated on the liquid surface of the fuel tank during refueling. During this time, since the detection hole 21 is open to the outside air, the inside of the negative pressure chamber 23 is at atmospheric pressure, the shielding plate 27 is not substantially displaced, and the detection signal S is at the initial value.
V is maintained at a value of 0 . Further, the valve opening degree of the solenoid valve 8 is maintained in the fully open state by the flow rate control signal P output from the control circuit 29 in response to the detection signal S (see FIG. 5), and a large amount of oil is discharged from the oil supply nozzle 10. Fuel is refilled into the fuel tank.

次に、領域において、前記検知穴21が泡に
よつて塞がれはじめると、負圧室23内は次第に
負圧状態となつて、遮蔽板27の変位に対応して
フオトインタラプタ26からの検出信号Sが所定
値を越える。この結果、該検出信号Sに対応して
制御回路29から出力される流量制御信号Pによ
り電磁弁8の弁開度は特性曲線T1に沿つて急激
に絞られ、該電磁弁8を通つて給油ノズル10へ
と流出する油液の流量は大きく抑えられ、給油ノ
ズル10から燃料タンクに吐出する油液の量を大
きく抑えることができる。
Next, when the detection hole 21 begins to be blocked by bubbles in the area, the inside of the negative pressure chamber 23 gradually becomes a negative pressure state, and the detection from the photo interrupter 26 corresponds to the displacement of the shielding plate 27. Signal S exceeds a predetermined value. As a result, the valve opening degree of the solenoid valve 8 is rapidly narrowed down along the characteristic curve T1 by the flow rate control signal P output from the control circuit 29 in response to the detection signal S, and the flow rate is reduced through the solenoid valve 8. The flow rate of the oil flowing out to the fuel nozzle 10 can be greatly suppressed, and the amount of oil discharged from the fuel nozzle 10 into the fuel tank can be greatly suppressed.

その後、領域では、検知穴21が泡によつて
塞がれ続けるから、負圧室23内はさらに負圧状
態となつて、遮蔽板27が変位し、フオトインタ
ラプタ26からの検出信号Sの値も大きくなる。
そして、該検出信号Sに対応して制御回路29か
ら出力される流量制御信号Pにより電磁弁8の弁
開度はさらに徐々に絞られてゆき、給油ノズル1
0から燃料タンクに吐出する油液の量を少量の状
態に抑えることができ、満タン時に備えて行過量
の発生を抑制できる。そして、燃料タンク内の液
面が所定液面に達して、前記検知穴21が油液で
閉塞されると、負圧室23内が所定の大きな負圧
状態となるから、遮蔽板27の変位に応じてフオ
トインタラプタ26からの検知信号Sが所定の大
きな値となつて、制御回路29は流量制御信号P
を介して電磁弁8を閉弁させ、給油を自動的に停
止できる。
Thereafter, since the detection hole 21 continues to be blocked by bubbles in the region, the inside of the negative pressure chamber 23 becomes further in a negative pressure state, the shielding plate 27 is displaced, and the value of the detection signal S from the photo interrupter 26 is also becomes larger.
Then, the valve opening degree of the solenoid valve 8 is further gradually reduced by the flow rate control signal P output from the control circuit 29 in response to the detection signal S, and the refueling nozzle 1
The amount of oil discharged into the fuel tank from zero can be suppressed to a small amount, and the occurrence of overflow can be suppressed in preparation for when the tank is full. When the liquid level in the fuel tank reaches a predetermined level and the detection hole 21 is blocked with oil, the inside of the negative pressure chamber 23 becomes a predetermined large negative pressure state, so that the displacement of the shielding plate 27 In response to this, the detection signal S from the photo interrupter 26 becomes a predetermined large value, and the control circuit 29 outputs the flow rate control signal P.
The solenoid valve 8 can be closed via the solenoid valve 8, and refueling can be automatically stopped.

従つて、本実施例によれば、給油時に燃料タン
クの液面上に発生する泡によつて吐出パイプ19
の先端側に位置する検知穴21が塞がれるに従
い、負圧室23内が徐々に負圧状態となるので、
これを遮蔽板27を介してフオトインタラプタ2
7から検出信号Sとして取出し、該検出信号Sの
大きさに対応して予め定められた流量制御信号P
を制御回路29から電磁弁8へと出力することに
より、電磁弁8の弁開度を、満タン時の行過量を
抑えるべく制御できる。さらに、燃料タンク内の
液面が所定液面に達した段階で、前記検知穴21
が油液によつて閉塞されると、負圧室23内が所
定の大きな負圧状態となるから、フオトインタラ
プタ26からの検出信号Sに対応した流量制御信
号Pを制御回路29から電磁弁8へと出力して電
磁弁8を閉弁でき、燃料タンク内が満タンとなつ
たときに、自動的に給油を停止でき、一回の給油
操作で自動的に満タン給油を実行できる。
Therefore, according to this embodiment, the discharge pipe 19 is caused by bubbles generated on the liquid level of the fuel tank during refueling.
As the detection hole 21 located at the tip side of the negative pressure chamber 23 is closed, the inside of the negative pressure chamber 23 gradually becomes a negative pressure state.
This is transmitted to the photo interrupter 2 via the shielding plate 27.
7 as a detection signal S, and a predetermined flow rate control signal P corresponding to the magnitude of the detection signal S.
By outputting this from the control circuit 29 to the solenoid valve 8, the valve opening degree of the solenoid valve 8 can be controlled to suppress the overflow amount when the tank is full. Further, when the liquid level in the fuel tank reaches a predetermined level, the detection hole 21
When the valve is blocked by oil, the inside of the negative pressure chamber 23 becomes a predetermined large negative pressure state, so a flow rate control signal P corresponding to the detection signal S from the photo interrupter 26 is sent from the control circuit 29 to the solenoid valve 8. The electromagnetic valve 8 can be closed by outputting an output to the fuel tank, and when the inside of the fuel tank is full, refueling can be automatically stopped, and full refueling can be automatically performed with a single refueling operation.

なお、前記各実施例では、給油制御機構として
電磁弁8を用いるものとして述べたが、これに替
えて、制御回路29からの流量制御信号Pをモー
タ5に出力し、該モータ5の回転数を制御するこ
とにより、該モータ5で駆動、停止されるポンプ
6の吐出量を制御してもよい。この場合、モータ
5とポンプ6とによつて給油制御機構を構成で
き、電磁弁8を省略してもよい。
In each of the above embodiments, the solenoid valve 8 is used as the oil supply control mechanism, but instead of this, the flow rate control signal P from the control circuit 29 is output to the motor 5, and the rotation speed of the motor 5 is controlled. The discharge amount of the pump 6 driven and stopped by the motor 5 may be controlled by controlling the motor 5. In this case, the motor 5 and the pump 6 can constitute an oil supply control mechanism, and the solenoid valve 8 may be omitted.

また、前記実施例では、特性曲線Tに沿つて電
磁弁8の弁開度を制御するものとしたが、これに
替えて、関数発生器30で他の関数を発生させて
制御回路29へと出力しておくことにより、例え
ば第5図中に点線または一点鎖線で示す如き特性
曲線等に沿つて電磁弁8の弁開度を制御すること
ができる。この場合も、電磁弁8に替えてモータ
5やポンプ6の回転数を制御するようにしてもよ
いことは勿論であるる。
Further, in the above embodiment, the valve opening degree of the solenoid valve 8 is controlled along the characteristic curve T, but instead of this, the function generator 30 generates another function and the control circuit 29 generates another function. By outputting the signal, the opening degree of the solenoid valve 8 can be controlled, for example, along a characteristic curve as shown by a dotted line or a chain line in FIG. Of course, in this case as well, the rotational speed of the motor 5 or pump 6 may be controlled instead of the solenoid valve 8.

さらに、前記各実施例において、制御回路29
中にタイマおよび記憶器等を組込み、各時点毎に
入力される検出信号Sを記憶器で記憶させ、次な
る時点で入力される検出信号Sと比較するように
し、検出信号Sが増加しない場合はこれをカツト
して、検出誤差等により制御回路29が誤作動す
るのを防止するようにしてもよい。
Furthermore, in each of the above embodiments, the control circuit 29
A timer, a memory device, etc. are incorporated in the device, and the detection signal S input at each time point is stored in the memory device, and compared with the detection signal S input at the next time point, and if the detection signal S does not increase. This may be cut to prevent the control circuit 29 from malfunctioning due to detection errors or the like.

〔考案の効果〕[Effect of idea]

以上詳述した通り、本考案によれば、給油ノズ
ルの吐出パイプ先端に開口した負圧通路が液また
は泡により閉塞される状況に応じて大きさの異な
るアナログ検出信号を出力するセンサを設け、該
センサからの検出信号が制御回路に入力される
と、該制御回路は記憶回路されている流量制御デ
ータに基づいて、検出信号の大きさに対応した流
量制御信号を演算し、この流量制御信号に基づい
て給油制御機構を駆動し、給油ノズルへの油液供
給量を制御し、前記センサからの検出信号が所定
の大きさとなつたとき給油制御機構による油液の
供給量を零とする構成としたから、燃料タンクへ
の給油中に液面上に発生する泡または液面による
吐出パイプ先端側に開口する負圧通路がこれらの
泡または液により閉塞される状況に応じて、適宜
に油液供給量を制御でき、満タン時の行過量を抑
えるようにしながら、燃料タンク内の液面が前記
負圧通路の開口を完全に閉塞するような所定液面
に達したとき、給油を自動的に停止させることが
でき、一回の給油操作で満タン給油を自動的に行
なうことができる。
As detailed above, according to the present invention, a sensor is provided that outputs an analog detection signal of different magnitude depending on the situation where the negative pressure passage opened at the tip of the discharge pipe of the refueling nozzle is blocked by liquid or bubbles, When the detection signal from the sensor is input to the control circuit, the control circuit calculates a flow control signal corresponding to the magnitude of the detection signal based on the flow control data stored in the memory circuit, and A configuration in which the oil supply control mechanism is driven based on the oil supply control mechanism to control the amount of oil supplied to the oil supply nozzle, and when the detection signal from the sensor reaches a predetermined level, the amount of oil supplied by the oil supply control mechanism is set to zero. Therefore, depending on the situation where the negative pressure passage opening at the tip of the discharge pipe is blocked by bubbles or liquid level that occur on the liquid surface during refueling into the fuel tank, the oil should be adjusted appropriately. The amount of liquid supplied can be controlled, and while the amount of overflow when the tank is full is suppressed, refueling is automatically performed when the liquid level in the fuel tank reaches a predetermined level that completely blocks the opening of the negative pressure passage. It is possible to automatically stop the tank and refill the tank automatically with a single refueling operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図は本考案の実施例を示し、
第1図は給油装置の全体構成図、第2図は第1図
中の給油ノズルを拡大して示す部分断面図、第3
図は給油時の給油量を制御する回路図、第4図は
第2図中に示す遮蔽板の変位量とフオトインタラ
プタから出力される検出信号との関係を示す特性
線図、第5図は検出信号と電磁弁の弁開度との関
係を示す特性線図、第6図は検出信号および電磁
弁の弁開度を給油中の時間との関係で示した特性
線図である。 8……電磁弁、10……給油ノズル、21……
検知穴、23……負圧室、26……フオトインタ
ラプタ、27……遮蔽板、29……制御回路、S
……検出信号、P……流量制御信号。
1 to 6 show embodiments of the present invention,
Figure 1 is an overall configuration diagram of the oil supply device, Figure 2 is a partial sectional view showing an enlarged view of the oil supply nozzle in Figure 1, and Figure 3 is an enlarged partial sectional view of the oil supply nozzle in Figure 1.
The figure is a circuit diagram for controlling the amount of oil supplied during refueling, Figure 4 is a characteristic line diagram showing the relationship between the displacement amount of the shielding plate shown in Figure 2 and the detection signal output from the photo interrupter, and Figure 5 is FIG. 6 is a characteristic diagram showing the relationship between the detection signal and the valve opening of the solenoid valve. FIG. 6 is a characteristic diagram showing the relationship between the detection signal and the valve opening of the solenoid valve in relation to the time during refueling. 8...Solenoid valve, 10...Refueling nozzle, 21...
Detection hole, 23... Negative pressure chamber, 26... Photo interrupter, 27... Shielding plate, 29... Control circuit, S
...detection signal, P...flow control signal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 流路の先端に設けられ、燃料タンクの給油口に
挿入される吐出パイプを有する給油ノズルと、該
給油ノズルよりも上流側に位置して前記流路の途
中に設けられ、該給油ノズルへの油液の供給量の
制御を行なう給油制御機構と、前記給油ノズルの
吐出パイプ先端側に開口した負圧通路と負圧発生
機構とに連通された圧力室内の負圧状態に応じた
大きさのアナログ検出信号を出力するセンサと、
前記給油ノズルの吐出パイプ先端側に開口した負
圧通路が液面によつて完全に閉塞された状態とな
り、該センサから出力される検出信号が所定の大
きさとなつたときに、前記給油制御機構から前記
給油ノズルへの給油量を零とするように、該セン
サから出力される検出信号の大きさに応じて予め
定められた流量制御データを記憶する記憶回路
と、前記センサから検出信号が入力されたとき、
該記憶回路から検出信号の大きさに対応した流量
制御データを演算し、演算結果に基づく流量制御
信号を前記流量制御機構に出力し、この流量制御
信号によつて前記流量制御機構からの供給量の制
御を行なわせる制御回路とから構成してなる給油
装置。
A refueling nozzle provided at the tip of the flow path and having a discharge pipe inserted into the refueling port of the fuel tank; A refueling control mechanism that controls the supply amount of oil fluid, a negative pressure passage opened at the distal end side of the discharge pipe of the refueling nozzle, and a negative pressure generation mechanism, the size of which corresponds to the negative pressure state in the pressure chamber. A sensor that outputs an analog detection signal,
When the negative pressure passage opened at the tip of the discharge pipe of the refueling nozzle is completely blocked by the liquid level and the detection signal output from the sensor reaches a predetermined magnitude, the refueling control mechanism a storage circuit that stores predetermined flow rate control data according to the magnitude of the detection signal output from the sensor so as to set the amount of oil supplied to the oil supply nozzle to zero; and a storage circuit that receives the detection signal from the sensor. When it is done,
Flow rate control data corresponding to the magnitude of the detection signal is calculated from the storage circuit, a flow rate control signal based on the calculation result is output to the flow rate control mechanism, and the supply amount from the flow rate control mechanism is controlled by this flow rate control signal. A refueling device consisting of a control circuit that controls the
JP14395385U 1985-09-20 1985-09-20 Expired JPH037358Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14395385U JPH037358Y2 (en) 1985-09-20 1985-09-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14395385U JPH037358Y2 (en) 1985-09-20 1985-09-20

Publications (2)

Publication Number Publication Date
JPS6252199U JPS6252199U (en) 1987-04-01
JPH037358Y2 true JPH037358Y2 (en) 1991-02-22

Family

ID=31054115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14395385U Expired JPH037358Y2 (en) 1985-09-20 1985-09-20

Country Status (1)

Country Link
JP (1) JPH037358Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972222B1 (en) * 2011-11-18 2012-07-11 株式会社中嶋製作所 Poultry feeding equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542721B2 (en) * 2001-04-25 2010-09-15 トキコテクノ株式会社 Lubrication device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972222B1 (en) * 2011-11-18 2012-07-11 株式会社中嶋製作所 Poultry feeding equipment

Also Published As

Publication number Publication date
JPS6252199U (en) 1987-04-01

Similar Documents

Publication Publication Date Title
JPH037358Y2 (en)
US5078188A (en) Flow rate limiting device for an automatic shut-off liquid dispensing nozzle
JPH06312799A (en) Oil feeder
JPS63640Y2 (en)
JPH0443518Y2 (en)
JPH0764396B2 (en) Liquid supply device
ES410556A1 (en) Nozzles of fluid dispensing valves of the automatic shutoff type
JPH0738235Y2 (en) Refueling device
JPH0223438B2 (en)
JPH0678118B2 (en) Refueling nozzle
JPH0443519Y2 (en)
JPH0130718B2 (en)
JPH0346398B2 (en)
JPH0615917Y2 (en) Refueling device
JPS6326039B2 (en)
FR2794238A1 (en) Flowmeter for use with a dosing pump that draws fluid from a storage tank has an extra buffer tank with level sensors and an electric valve for closing off the storage tank so that flow rate is determined from the buffer tank flow
JPS5882900A (en) Lubricating device
JPH037888B2 (en)
JPH0231437Y2 (en)
JPH0543600B2 (en)
JPH0231439Y2 (en)
JP2000079999A (en) Oil feed device
JPH02242793A (en) Oil feeding equipment
JPH044240B2 (en)
JPH03275497A (en) Oil feeder