JPH0373205A - Preload variable spindle - Google Patents

Preload variable spindle

Info

Publication number
JPH0373205A
JPH0373205A JP20936589A JP20936589A JPH0373205A JP H0373205 A JPH0373205 A JP H0373205A JP 20936589 A JP20936589 A JP 20936589A JP 20936589 A JP20936589 A JP 20936589A JP H0373205 A JPH0373205 A JP H0373205A
Authority
JP
Japan
Prior art keywords
ring spacer
preload
temperature
cooling fluid
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20936589A
Other languages
Japanese (ja)
Other versions
JP2841520B2 (en
Inventor
Hiroki Yoneyama
博樹 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP1209365A priority Critical patent/JP2841520B2/en
Publication of JPH0373205A publication Critical patent/JPH0373205A/en
Application granted granted Critical
Publication of JP2841520B2 publication Critical patent/JP2841520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly provide a preload to bearings in accordance with the temperature change of a main spindle housing by circulating cooling fluid, whose temperature and flow rate have been controlled in accordance with the rotating speed, to the outer circumference of an outer-ring spacer, and also by circulating cooling fluid of room temperature to the outer circumference of a main shaft housing. CONSTITUTION:Cooling fluid of room temperature is circulated to outer cylinder cooling grooves 20 in the operating condition to restrain the thermal displacement of an outer cylinder 2. The distance L2 between the outer rings of bearings 3, 4 depends on the length of an outer-ring spacer 6, and cooling fluid is circulated to outer-ring spacer cooling grooves 15 by setting the temperature and flow rate in such a way that the outer-ring spacer 6 can be maintained at room temperature at the time of low-speed heavy-cutting, so that the temperature rise of the outer-ring spacer 6 due to heat generation can be prevented. When it is changed over to light-cutting high-speed rotation, the temperature and flow rate of the cooling fluid to be supplied to the outer-ring spacer cooling grooves 15 are changed over to the values which have been previously obtained on experiment in accordance with the rotating speed detecting signal of a spindle shaft 1 for preventing the increase in preload caused by the thermal expansion of the outer-ring spacer 6 due to high-speed rotation. When the length of the outer-ring spacer 6 is shortened than an initially set length by the intensified cooling of the outer-ring spacer 6 to produce a clearance between the spacer and the outer ring 3B, the outer ring 3B is elastically pressed by the energizing force of a spring 11 of a bolt 12 for fitting a front cover 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スピンドルを支持する軸受に付与する予圧の
大きさを変え得るようにした予圧可変スピンドルの改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a variable preload spindle that is capable of changing the amount of preload applied to a bearing that supports the spindle.

〔従来の技術〕[Conventional technology]

工作機械の主軸を支持する軸受の予圧は、軸受間に介挿
される間座の長さを予め調整することにより、重切削を
行う低速回転時に高剛性となるように設定されている。
The preload of the bearing that supports the main shaft of a machine tool is set by adjusting the length of the spacer inserted between the bearings in advance so as to provide high rigidity during low-speed rotation during heavy cutting.

しかして高速回転時には、発熱による軸又は軸受の膨張
等により、軸受の予圧が一般に過大となるため、早期に
焼付を起こすという問題がある。そこで、予圧を回転速
度に対応させて必要なときに変化させるようにした予圧
可変型のスピンドルが用いられている。
However, during high-speed rotation, the preload on the bearing generally becomes excessive due to expansion of the shaft or bearing due to heat generation, which causes the problem of premature seizure. Therefore, a variable preload type spindle is used in which the preload is changed when necessary in accordance with the rotational speed.

従来のこの種の予圧可変スピンドルとしては、例えば特
開昭64−34602号公報に提示されたものがある。
As a conventional variable preload spindle of this type, there is one disclosed in, for example, Japanese Patent Laid-Open No. 64-34602.

このものは、スピンドルをハウジング内に回転可能に支
持する互いに間隔をあけて配置した第1および第2の軸
受を備えたスピンドルにおいて、少なくとも一方の軸受
の両側に圧電素子又は電歪素子を設け、それらの素子を
作動させて一方の軸受を軸線方向に往復動させることに
より、軸受に所定の予圧負荷を発生させるものである(
第1従来例)。
This spindle includes first and second bearings spaced from each other that rotatably support the spindle in a housing, and a piezoelectric element or an electrostrictive element is provided on both sides of at least one of the bearings, By operating these elements and causing one of the bearings to reciprocate in the axial direction, a predetermined preload load is generated on the bearing (
1st conventional example).

又、実開昭63−97440号公報には、工作機械の主
軸ベアリングにかかるプリロードを温度制御された油に
より一定に維持する装置が提示されている。これは、工
作機械の主軸ベアリングの外輪間に介装された、油室を
有する熱膨張率の大きい材質でなる油受は部材と、主軸
ハウジングに設けた油室に連通ずる通路と、油受は部材
の温度を検出する温度センサと、温度センサで検出した
温度から算出した油受は部材長と、主軸回転数から算出
した最適プリロード量を付与可能な油受は部材長とを比
較して、最適油受は部材長を得られる温度の油を、通路
を経て油室へ供給する油供給装置とを備えたものである
(第2従来例)。
Further, Japanese Utility Model Application Publication No. 63-97440 discloses a device for maintaining a constant preload on a main shaft bearing of a machine tool using temperature-controlled oil. This oil pan is made of a material with a high coefficient of thermal expansion and has an oil chamber, and is interposed between the outer ring of the main shaft bearing of a machine tool. is the temperature sensor that detects the temperature of the member, the oil receiver calculated from the temperature detected by the temperature sensor is the member length, and the oil receiver that can apply the optimal preload amount calculated from the spindle rotation speed is compared with the member length. The optimal oil receiver is equipped with an oil supply device that supplies oil at a temperature that allows the length of the member to be obtained through a passage to the oil chamber (second conventional example).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記第1従来例の圧電素子又は電歪素子
を用いるものにあっては、個々に特性がいくらか異なる
複数の素子を周方向に間隔をおいて配設したもので軸受
を軸線方向に往復動させるから、軸受の全周にわたり均
等に予圧荷重を付与することが困難であるという問題点
があった。
However, in the first conventional example using a piezoelectric element or an electrostrictive element, a plurality of elements each having somewhat different characteristics are arranged at intervals in the circumferential direction, and the bearing reciprocates in the axial direction. Because of the movement of the bearing, there was a problem in that it was difficult to apply a preload load evenly over the entire circumference of the bearing.

又、第2従来例にあっては、一対の軸受の軸受間隔を規
制する間座としての油受は部材の現在の長さを、温度セ
ンサで検出した油受は部材の温度から算出する。これに
対して、現在の主軸回転数における油受は部材の目標長
さを算出する。そして両算出値を比較し、差をゼロとす
るべく油供給装置の温度を制御して油受は部材の長さを
熱変位させることにより予圧を一定に維持しようとする
Further, in the second conventional example, the oil receiver serving as a spacer for regulating the spacing between a pair of bearings is calculated from the current length of the member, and the oil receiver detected by a temperature sensor is calculated from the temperature of the member. On the other hand, the oil receiver at the current spindle rotation speed calculates the target length of the member. The two calculated values are then compared, and the temperature of the oil supply device is controlled to make the difference zero, and the oil receiver attempts to maintain a constant preload by thermally displacing the length of the member.

しかし予圧は、間座である油受は部材の温度変化のみで
はなく、温度上昇による主軸ハウジングの伸びにも影響
される。したがって、専ら油受は部材の温度のみを制御
しても、主軸ハウジングの温度変化による変位に対処し
ない限り、正確な予圧制御は行い難いという問題点があ
った。
However, the preload of the oil receiver, which is a spacer, is affected not only by temperature changes in the members, but also by elongation of the main shaft housing due to temperature rise. Therefore, even if the oil pan only controls the temperature of the members, there is a problem in that it is difficult to perform accurate preload control unless displacement due to temperature changes in the main shaft housing is dealt with.

そこで本発明は、上記従来の問題点に着目してなされた
ものであり、その目的とするところは、均等に予圧荷重
を付与でき、且つ主軸ハウジングの温度変化にも対応し
て正確に予圧の大きさを制御できる予圧可変スピンドル
を提供して、上記従来の問題点を解決することにある。
Therefore, the present invention has been made by focusing on the above-mentioned conventional problems, and its purpose is to apply a preload load evenly and to accurately adjust the preload in response to temperature changes in the spindle housing. The object of the present invention is to provide a variable preload spindle whose size can be controlled to solve the above-mentioned conventional problems.

〔課題を解決するための手段〕[Means to solve the problem]

スピンドル軸と外筒との間に一対の軸受が間座を介して
軸方向に所定の間隔を隔てて配設され、熱膨張係数の大
きな材料からなる外輪間座の熱変位を制御して軸受の予
圧を調整するようにした予圧可変スピンドルにおいて、 前記スピンドル軸の回転数に対応して冷却流体の温度と
流量とを制御する手段と、前記外輪間座の外周面に前記
制御された冷却流体が流通する第1の冷却路を備えると
ともに、前記外筒の外周面に、ほぼ室温と同温度の冷却
流体が流通する第2の冷却路を備えたことを特徴とする
A pair of bearings is arranged between the spindle shaft and the outer cylinder at a predetermined distance in the axial direction via a spacer, and the bearing is created by controlling the thermal displacement of the outer ring spacer made of a material with a large coefficient of thermal expansion. The variable preload spindle is configured to adjust the preload of the spindle, comprising means for controlling the temperature and flow rate of the cooling fluid in accordance with the rotational speed of the spindle shaft, and a means for controlling the temperature and flow rate of the cooling fluid on the outer circumferential surface of the outer ring spacer. The cooling device is characterized in that it includes a first cooling path through which a cooling fluid of approximately the same temperature as room temperature flows, and a second cooling path through which a cooling fluid having approximately the same temperature as room temperature flows on the outer circumferential surface of the outer cylinder.

〔作用〕[Effect]

軸受には予め初期予圧が設定される。この予圧は、軸受
3,4の外輪3B、4Bの端面の全周に当接する円筒状
の外輪間座6を介して付与されるから、例えば従来の圧
電素子を使用した場合のように不均一になるおそれはな
く、均一に付与される。
An initial preload is set in advance for the bearing. Since this preload is applied via the cylindrical outer ring spacer 6 that abuts the entire circumference of the end surfaces of the outer rings 3B and 4B of the bearings 3 and 4, it is not uniform, for example, when conventional piezoelectric elements are used. It is applied evenly without the risk of it becoming a problem.

初期予圧は、両間座の温度が等しい状態でスピンドル軸
が低速回転して重切削する際に最適な大きさの定位置予
圧が軸受に与えられるように、軸受間に介装された外輪
間座と内輪間座との長さを設しておこなっている。
The initial preload is applied between the outer ring interposed between the bearings so that the optimal size of fixed position preload is applied to the bearing when the spindle shaft rotates at low speed and performs heavy cutting when the temperatures of both spacers are the same. This is done by setting the length of the seat and the inner ring spacer.

第2の冷却路には運転状態で常時、室温の冷却流体を流
す。これにより、外筒の熱変位で軸受間の外輪間距離が
変化して予圧に影響を与えることを防止する。
A cooling fluid at room temperature is constantly supplied to the second cooling path during operation. This prevents the distance between the outer rings between the bearings from changing due to thermal displacement of the outer cylinder and affecting the preload.

一方、第1の冷却路には、回転数に応じて上記第1の冷
却路の流体とは別途に制御された冷却流体を予め定めら
れた条件で流す。ここに、予め定められた条件とは、当
該型式のスピンドルにおいて、低速重切削から軽切削時
の高速回転数に及び、最適予圧量を与える外輪間座の長
さが得られる冷却流体の種類、温度、流量などの条件で
あり、予め回転数との関係を実験して求めておけばよい
On the other hand, a cooling fluid that is controlled separately from the fluid in the first cooling path is caused to flow in the first cooling path under predetermined conditions depending on the rotational speed. Here, the predetermined conditions are the type of cooling fluid that can be used for the spindle of the type, ranging from low speed heavy cutting to high speed light cutting, and that provides the length of the outer ring spacer that provides the optimum amount of preload; These are conditions such as temperature and flow rate, and the relationship with the rotation speed may be determined in advance through experiments.

かくして、高速回転に切り換えた場合も、スピンドル軸
の回転数検出信号(NC工作機械であればパルス信号と
して発信される速度信号)に応じて冷却流体を第1の冷
却路に送るのみでよく、わざわざ外輪間座の温度を検出
して外輪間座の長さを算出する必要はなく、したがって
温度センサも不要である。
In this way, even when switching to high-speed rotation, it is only necessary to send the cooling fluid to the first cooling path in response to the rotation speed detection signal of the spindle shaft (in the case of an NC machine tool, the speed signal is transmitted as a pulse signal). There is no need to take the trouble to detect the temperature of the outer ring spacer and calculate the length of the outer ring spacer, and therefore no temperature sensor is required.

〔実施例〕〔Example〕

以下、本発明の実施例を図とともに説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示すものである。FIG. 1 shows an embodiment of the present invention.

スピンドル軸1とハウジングである外筒2との間に、一
対の軸受3.4が円筒状の内輪間座5と同じく円筒状の
外輪間座6を介して軸方向に所定の間隔を隔てて配設さ
れている。各軸受3,4は、例えば2個のアンギュラ玉
軸受などの転がり軸受を並列に組み合わせてなる組合わ
せ軸受である。
A pair of bearings 3.4 are spaced apart from each other by a predetermined distance in the axial direction between the spindle shaft 1 and an outer cylinder 2, which is a housing, via a cylindrical inner ring spacer 5 and a cylindrical outer ring spacer 6. It is arranged. Each of the bearings 3 and 4 is a combination bearing formed by combining, for example, two rolling bearings such as angular contact ball bearings in parallel.

スピンドル1の外径は、前端(左@)部が最も大きく、
段部1aから以降は一段と細く形成されている。このス
ピンドル1の左端側から軸受3が挿通され、先方の軸受
の内輪3Aの端面が前記段部1aに係止している。予圧
を付与するための内輪間座5と外輪間座6もスピンドル
1の左端側から挿通され、更に軸受4が挿通され、ナツ
ト7がスピンドル1に螺合されて軸受4の後方の内輪4
Aの端面を押圧している。かくして、軸受3と軸受4と
の内輪間間隔Llが内輪間座5の長さで規制されている
The outer diameter of the spindle 1 is the largest at the front end (left @).
From the stepped portion 1a onward, the portion becomes thinner. A bearing 3 is inserted from the left end side of this spindle 1, and the end surface of the inner ring 3A of the front bearing is locked to the step portion 1a. The inner ring spacer 5 and the outer ring spacer 6 for applying preload are also inserted from the left end side of the spindle 1, and the bearing 4 is further inserted, and the nut 7 is screwed onto the spindle 1, and the inner ring 4 behind the bearing 4 is inserted.
The end face of A is pressed. Thus, the distance Ll between the inner rings between the bearings 3 and 4 is regulated by the length of the inner ring spacer 5.

一方、軸受4の後方の外輪4Bの端面が外筒2の内径段
部2aに係止し、軸受3の先方の外輪3Bの端面ば前蓋
8により押圧されている。この前蓋8は、外筒5の先端
面との間に幾らかのすきま10をおいて外筒5に軸方向
に移動可能に嵌合されており、皿ばね11を座金とする
六角穴付ボルト12を締めつけて取付けられている。か
くして、軸受3と軸受4との外輪間間隔L2が外輪間座
6の長さで規制されている。
On the other hand, the end surface of the outer ring 4B at the rear of the bearing 4 is engaged with the inner step 2a of the outer cylinder 2, and the end surface of the outer ring 3B at the front of the bearing 3 is pressed by the front cover 8. This front cover 8 is fitted into the outer cylinder 5 so as to be movable in the axial direction with a certain gap 10 between it and the front end surface of the outer cylinder 5, and has a hexagonal socket with a disc spring 11 as a washer. It is attached by tightening the bolt 12. Thus, the distance L2 between the outer rings of the bearing 3 and the bearing 4 is regulated by the length of the outer ring spacer 6.

上記内輪間座5の長さLlと外輪間座6の長さL2とは
、同温度の状態(この場合は室温)で軸受3,4に初期
予圧量が得られる長さに設定しである。通常、この初期
予圧量は、低速での重切削時に必要な剛性が保ち得る大
きさに設定する。
The length Ll of the inner ring spacer 5 and the length L2 of the outer ring spacer 6 are set to lengths that provide an initial preload amount to the bearings 3 and 4 at the same temperature (room temperature in this case). . Normally, this initial preload amount is set to a value that can maintain the necessary rigidity during heavy cutting at low speeds.

外輪間座6は、例えばステンレス鋼の5US304とか
快削黄銅のC3604などの熱膨張係数の大きな材料か
らなる。そして外周面に、第1の冷却路としての螺旋状
の外輪間座冷却溝15と、これに流通する冷却流体の外
部漏れを防止するシール材16用のシール溝17とが形
成されている。
The outer ring spacer 6 is made of a material with a large coefficient of thermal expansion, such as stainless steel 5US304 or free-cutting brass C3604. A spiral outer ring spacer cooling groove 15 as a first cooling path and a sealing groove 17 for a sealing material 16 to prevent external leakage of the cooling fluid flowing therethrough are formed on the outer circumferential surface.

外筒2に、外輪間座冷却流体入口18および外輪間座冷
却流休出ロエ9が設けられており、上記外輪間座冷却溝
15に連通している。これらの外輪間座冷却流体出入口
18.19は、図外の間座冷却流体供給装置に連結され
る。外筒2の外周面には、第2の冷却路としての螺旋状
の外筒冷却溝20と、これに流通する冷却流体の外部漏
れを防止するシール材21用のシール溝22とが形成さ
れている。
The outer cylinder 2 is provided with an outer ring spacer cooling fluid inlet 18 and an outer ring spacer cooling flow exit loe 9, which communicate with the outer ring spacer cooling groove 15. These outer ring spacer cooling fluid inlets and outlets 18, 19 are connected to a spacer cooling fluid supply device (not shown). On the outer peripheral surface of the outer cylinder 2, a spiral outer cylinder cooling groove 20 as a second cooling path and a seal groove 22 for a sealing material 21 to prevent external leakage of the cooling fluid flowing therein are formed. ing.

上記外筒2の外周面には、さらに外筒スリーブ23が嵌
合され、その外筒スリーブ23に外筒冷却流体人口24
および外筒冷却流体出口25が設けられており、上記外
筒冷却溝20に連通している。これらの外筒冷却流体出
入口24.25は、ほぼ室温と同温度に維持した冷却流
体を供給する図示しない外筒冷却流体供給装置に連結さ
れる。
An outer sleeve 23 is further fitted on the outer peripheral surface of the outer sleeve 2, and an outer sleeve cooling fluid 24 is fitted to the outer sleeve 23.
and an outer cylinder cooling fluid outlet 25 are provided, which communicate with the outer cylinder cooling groove 20. These outer cylinder cooling fluid inlets and outlets 24 and 25 are connected to an outer cylinder cooling fluid supply device (not shown) that supplies cooling fluid maintained at approximately the same temperature as room temperature.

上記の間座冷却流体供給装置は、外筒冷却流体供給装置
とは異なり、前記スピンドル軸1の回転数に対応させた
温度と流量に制御された冷却流体を供給するものである
The spacer cooling fluid supply device described above is different from the outer tube cooling fluid supply device in that it supplies cooling fluid whose temperature and flow rate are controlled to correspond to the rotational speed of the spindle shaft 1.

なお、このスピンドルの使用にあたっては、外筒2に設
けたフランジ2Fの右側面を機械面にあてて、ボルト孔
2Bに挿通したボルトで取付ける。
When using this spindle, place the right side of the flange 2F provided on the outer cylinder 2 against the machine surface and attach it with bolts inserted into the bolt holes 2B.

したがって、外筒スリーブ23は外気に曝されている。Therefore, the outer sleeve 23 is exposed to the outside air.

それ故、スピンドルの発熱に関しては、機械に殆ど影響
を与えないから、制御が簡単に行える。
Therefore, the heat generated by the spindle has almost no effect on the machine, so it can be easily controlled.

次に作用を述べる。Next, we will discuss the effect.

スピンドル軸1を支持する軸受3,4に予め設定されて
いる初期予圧は、スピンドル軸1に取り付けた工具で被
加工体を低速重切削するのに必要な剛性が確保できる最
適な大きさにしである。この予圧は、軸受3,4の外輪
3B、4Bの端面に均一に当接している円筒状の外輪間
座6を介して付与されるから、例えば従来の圧電素子を
使用した場合のように不均一になるおそれはなく、均一
に付与される。
The initial preload set in advance on the bearings 3 and 4 that support the spindle shaft 1 is set to an optimum value that ensures the rigidity necessary for low-speed heavy cutting of the workpiece with the tool attached to the spindle shaft 1. be. Since this preload is applied via the cylindrical outer ring spacer 6 that is in uniform contact with the end faces of the outer rings 3B and 4B of the bearings 3 and 4, it is not possible to use the preload, for example, when conventional piezoelectric elements are used. There is no risk of it becoming uniform, and it is applied uniformly.

第2の冷却路である外筒冷却溝20にはスピンドル運転
状態で常時、室温の冷却流体を流し、外筒2の熱変位を
抑制する。これにより、軸受3゜4の外輪間間隔L2の
長さは、外輪間座6の長さに依存することになる。一方
、第1の冷却路である外輪間座冷却溝15には、低速重
切削の回転数の時は、外輪間座6が室温を維持できるよ
うに温度、流量を設定した冷却流体を流す。回転する軸
受の発熱で外輪間座6の温度が上昇することを防止する
ためである。これにより、低速重切削の加工を継続して
も、外輪間座6の熱膨張で予圧が適正量を越える現象は
防止される。
Cooling fluid at room temperature is constantly supplied to the outer cylinder cooling groove 20, which is the second cooling path, in the spindle operating state, thereby suppressing thermal displacement of the outer cylinder 2. As a result, the length of the spacing L2 between the outer rings of the bearing 3.4 depends on the length of the outer ring spacer 6. On the other hand, a cooling fluid whose temperature and flow rate are set so that the outer ring spacer 6 can maintain the room temperature is passed through the outer ring spacer cooling groove 15, which is the first cooling path, when the rotation speed is low and heavy cutting. This is to prevent the temperature of the outer ring spacer 6 from rising due to heat generated by the rotating bearing. This prevents the preload from exceeding an appropriate amount due to thermal expansion of the outer ring spacer 6 even if low-speed heavy cutting continues.

工具を変えて、例えば穴開は加工のような軽切削高速回
転に切り換えると、スピンドル軸lの回転を表すパルス
信号が変化する。このスピンドル軸1の回転数の変化を
捉えて、外輪間座冷却溝15に供給する冷却流体の温度
、流量等の条件が予め回転数に応じて設定されている値
に切り換えられる。すなわち高速回転では、軸受3,4
の発熱量が増大するから、外輪間座6の熱膨張で予圧は
増加する傾向になる。これに対して予圧を低速重切削時
より小さく保つため、外輪間座6の冷却を強くする。こ
れにより、外輪間座6の長さが、初期予圧時の長さより
短縮され、予圧が軽減される。
When the tool is changed to high-speed rotation for light cutting such as hole drilling, the pulse signal representing the rotation of the spindle shaft l changes. Based on this change in the rotational speed of the spindle shaft 1, conditions such as the temperature and flow rate of the cooling fluid supplied to the outer ring spacer cooling groove 15 are switched to values set in advance according to the rotational speed. In other words, at high speed rotation, bearings 3 and 4
Since the amount of heat generated increases, the preload tends to increase due to thermal expansion of the outer ring spacer 6. On the other hand, in order to keep the preload smaller than during low-speed heavy cutting, the cooling of the outer ring spacer 6 is strengthened. As a result, the length of the outer ring spacer 6 is shorter than the length at the time of initial preload, and the preload is reduced.

この高速回転に切り換えた場合の外輪間座6の冷却強化
は、スピンドル軸1の回転数検出信号(NC工作機械で
あればパルス信号として発信される速度信号)に応じて
、予め実験的に求めである条件で冷却流体を外輪間座冷
却溝15に送るのみでよい。従来のように、わざわざ外
輪間座6の温度を検出して外輪間座6の長さを算出する
必要はなく、したがって温度センサも不要である。
The cooling enhancement of the outer ring spacer 6 when switching to high-speed rotation is experimentally determined in advance according to the rotation speed detection signal of the spindle shaft 1 (a speed signal transmitted as a pulse signal in the case of an NC machine tool). It is only necessary to send the cooling fluid to the outer ring spacer cooling groove 15 under certain conditions. It is not necessary to take the trouble of detecting the temperature of the outer ring spacer 6 to calculate the length of the outer ring spacer 6, as in the conventional case, and therefore a temperature sensor is also unnecessary.

なお、上記の外輪間座6に対する冷却の強化で、外輪間
座6の長さが初期設定長さより短縮され、そのままでは
軸受3の外輪3Bとの間にすきまだできる。しかし、外
筒2と前蓋8との間にはすき間10が設けられているか
ら、前蓋8を取付けている六角穴付ボルト12の皿ばね
11の弾性付勢力が作用し、前蓋8は外輪間座6の短縮
に追従して、軸受3の外輪3Bをすきまが生じないよう
に弾圧する。
In addition, by strengthening the cooling of the outer ring spacer 6, the length of the outer ring spacer 6 is shortened from the initial setting length, and a gap is created between the outer ring spacer 6 and the outer ring 3B of the bearing 3. However, since a gap 10 is provided between the outer cylinder 2 and the front lid 8, the elastic biasing force of the disc spring 11 of the hexagon socket head bolt 12 that attaches the front lid 8 acts, and the front lid 8 follows the shortening of the outer ring spacer 6 and presses the outer ring 3B of the bearing 3 so that no clearance is generated.

かくして、スピンドル軸1の回転速度の変化に応じて、
簡単な構成で、容易に、自動的に予圧の大きさを変更す
ることが可能である。
Thus, depending on the change in the rotational speed of the spindle shaft 1,
With a simple configuration, it is possible to easily and automatically change the magnitude of preload.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、間座による定位
置予圧を、熱膨張係数の大きな材料からなる外輪間座の
熱変位を制御して調整するようにした予圧可変スピンド
ルにおいて、外輪間座の外周面に、スピンドル軸の回転
数に対応して温度と流量を制御された冷却流体が流通す
る第1の冷却路を設けるとともに、主軸ハウジングの外
周面に、ほぼ室温と同温度の冷却流体が流通する第2の
冷却路を設けた構成とした。そのため軸受に対し均等に
予圧荷重を付与できると共に、主軸ハウジングの温度変
化にも対応して正確に予圧の大きさを制御できる予圧可
変スピンドルを提供できるという効果が得られる。
As explained above, according to the present invention, in a variable preload spindle in which the fixed position preload by the spacer is adjusted by controlling the thermal displacement of the outer ring spacer made of a material with a large coefficient of thermal expansion, A first cooling path is provided on the outer circumferential surface of the seat, through which a cooling fluid whose temperature and flow rate are controlled in accordance with the rotational speed of the spindle shaft flows, and a cooling passage at approximately the same temperature as room temperature is provided on the outer circumferential surface of the spindle housing. The structure includes a second cooling path through which fluid flows. Therefore, it is possible to provide a variable preload spindle that can uniformly apply a preload load to the bearings and can accurately control the magnitude of preload in response to temperature changes in the spindle housing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の半縦断面図である。 図中、1はスピンドル軸、2は外筒、3.4は軸受、5
は内輪間座、6は外輪間座、15は第1の冷却路、20
は第2の冷却路。
FIG. 1 is a half-longitudinal sectional view of an embodiment of the present invention. In the figure, 1 is the spindle shaft, 2 is the outer cylinder, 3.4 is the bearing, and 5
is an inner ring spacer, 6 is an outer ring spacer, 15 is a first cooling path, 20
is the second cooling path.

Claims (1)

【特許請求の範囲】[Claims] (1)スピンドル軸と外筒との間に一対の軸受が間座を
介して軸方向に所定の間隔を隔てて配設され、熱膨張係
数の大きな材料からなる外輪間座の熱変位を制御して軸
受の予圧を調整する予圧可変スピンドルにおいて、 前記スピンドル軸の回転数に対応して冷却流体の温度と
流量とを制御する手段と、前記外輪間座の外周面に前記
制御された冷却流体が流通する第1の冷却路を備えると
ともに、前記外筒の外周面に、ほぼ室温と同温度の冷却
流体が流通する第2の冷却路を備えたことを特徴とする
予圧可変式スピンドル。
(1) A pair of bearings are arranged between the spindle shaft and the outer cylinder at a predetermined distance in the axial direction via a spacer to control thermal displacement of the outer ring spacer made of a material with a large coefficient of thermal expansion. The variable preload spindle adjusts the preload of the bearing by adjusting the preload of the bearing. A variable preload spindle comprising: a first cooling passage through which cooling fluid flows, and a second cooling passage through which a cooling fluid having a temperature substantially the same as room temperature flows on the outer circumferential surface of the outer cylinder.
JP1209365A 1989-08-11 1989-08-11 Variable preload spindle Expired - Fee Related JP2841520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1209365A JP2841520B2 (en) 1989-08-11 1989-08-11 Variable preload spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1209365A JP2841520B2 (en) 1989-08-11 1989-08-11 Variable preload spindle

Publications (2)

Publication Number Publication Date
JPH0373205A true JPH0373205A (en) 1991-03-28
JP2841520B2 JP2841520B2 (en) 1998-12-24

Family

ID=16571732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1209365A Expired - Fee Related JP2841520B2 (en) 1989-08-11 1989-08-11 Variable preload spindle

Country Status (1)

Country Link
JP (1) JP2841520B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050470A1 (en) * 2006-10-27 2008-05-02 Ntn Corporation Preload adjustment method and device for rolling bearing
JP2015186828A (en) * 2014-03-26 2015-10-29 三菱重工業株式会社 Cooling structure of machine tool
JP2015186829A (en) * 2014-03-26 2015-10-29 三菱重工業株式会社 Cooling structure of machine tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397440U (en) * 1986-12-13 1988-06-23
JPS643119U (en) * 1987-06-24 1989-01-10

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397440U (en) * 1986-12-13 1988-06-23
JPS643119U (en) * 1987-06-24 1989-01-10

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050470A1 (en) * 2006-10-27 2008-05-02 Ntn Corporation Preload adjustment method and device for rolling bearing
JP2015186828A (en) * 2014-03-26 2015-10-29 三菱重工業株式会社 Cooling structure of machine tool
JP2015186829A (en) * 2014-03-26 2015-10-29 三菱重工業株式会社 Cooling structure of machine tool

Also Published As

Publication number Publication date
JP2841520B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US4613141A (en) Hydrostatic and hydrodynamic seal for rotating a rotating shaft
KR860000747B1 (en) Lubricant control device
US4611934A (en) Device for preloading bearings
US6505972B1 (en) Bearing with adjustable setting
CN101484716B (en) Tapered roller bearing with displaceable rib
WO2008050470A1 (en) Preload adjustment method and device for rolling bearing
GB2111136A (en) Skid control in rolling bearings
JPH0373205A (en) Preload variable spindle
JP5286983B2 (en) Rolling bearing device and method for adjusting the internal clearance of the bearing
JP2000237902A (en) Main shaft device
JP7206141B2 (en) bearing device
JP2509747Y2 (en) Variable preload spindle unit
JPH071204Y2 (en) A device that optimally controls the preload on the spindle bearing of machine tools
JP3822098B2 (en) Automatic transmission bearing device
JP7340445B2 (en) Spindle device
JPH0825106A (en) Pre-load adjusting device for bearing
JP2001054803A (en) Preload control type spindle unit
JPH05138408A (en) High speed main shaft device
JPH10286701A (en) Main shaft device for machine tool
JPH0822481B2 (en) Preload switching type spindle unit
JPH06341431A (en) Variable pre-load device of rolling bearing
JP3500530B2 (en) Spindle device of machine tool and monitoring method thereof
JPH10205537A (en) Rotary hydrostatic bearing device
JP2004036748A (en) Spindle device and preload control method
JP2679249B2 (en) Variable preload bearing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees