JPH0372665B2 - - Google Patents

Info

Publication number
JPH0372665B2
JPH0372665B2 JP58045026A JP4502683A JPH0372665B2 JP H0372665 B2 JPH0372665 B2 JP H0372665B2 JP 58045026 A JP58045026 A JP 58045026A JP 4502683 A JP4502683 A JP 4502683A JP H0372665 B2 JPH0372665 B2 JP H0372665B2
Authority
JP
Japan
Prior art keywords
propylene
ethylene
weight
inorganic filler
intrinsic viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58045026A
Other languages
Japanese (ja)
Other versions
JPS59170137A (en
Inventor
Hideyuki Hao
Tatsuyuki Mino
Teruhisa Koyama
Juji Ikezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP4502683A priority Critical patent/JPS59170137A/en
Publication of JPS59170137A publication Critical patent/JPS59170137A/en
Publication of JPH0372665B2 publication Critical patent/JPH0372665B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は特定構造を有するプロピレン−エチレ
ンブロツク共重合体に特定粒径の無機充填剤とを
配合することにより得られる、引張試験での伸び
および表面光沢度に優れた無機充填剤含有ポリプ
ロピレン樹脂組成物に関する。 無機充填剤含有ポリプロピレン樹脂はその優れ
た機械的強度および耐熱性ゆえに自動車部品及び
電気部品等への応用展開が極めて活発にはかられ
ている。しかしながら無機充填剤含有ポリプロピ
レン樹脂は概して引張試験での伸びおよび表面光
沢度が低下する。とくに引張試験での伸びは、イ
ンストルメントパネルなどで必要とされる面衝撃
強度の尺度となるものであり、該伸びの低下によ
り自動車部品の中でも内装部のインストルメント
パネルなどへの適用を阻害されるケースが多いと
いう問題が生じている。これらの問題点を改良す
る方法として一般に、(1)エチレン−α−オレフイ
ン系ゴム状重合体で代表されるようなエラストマ
ーを添加して引張試験での伸びを高める、(2)組成
物の流動性を向上させる、あるいは(3)平均粒径が
細かく、かつ球状に近い形状を有する無機充填剤
を添加して表面光沢度を向上させるなどの方法が
あげられる。 しかしながら、エラストマーを添加すると引張
試験での伸びは改良されるものの、反面剛性度及
び耐熱性の低下が大きく、とくに耐熱性が重視さ
れるインストルメントパネル材としては限界が生
じる。また、表面光沢度を高めるに組成物の流動
性を向上させると、金型鏡面への密着度も増し効
果が発揮されるものの、反面衝撃強度が著しく低
下する。さらに球状に近い形状を有する平均粒子
径の小さい無機充填剤の添加は、組成物の表面光
沢度改良に著しく寄与するものの、アスペクト比
(アスペクト比=長径/短径)が小さいために無
機充填剤を添加する本来の目的である剛性度およ
び耐熱性向上の効果が極めて小さい。このよう
に、剛性度、耐熱性および衝撃強度の低下を小さ
くとどめ引張試験での伸びおよび表面光沢度に優
れた無機充填剤含有ポリプロピレン樹脂組成物を
得るのは非常に難しいのが現状であつた。 本発明者等は、例えば自動車部品のインストル
メントパネル材料として要求される剛性度、耐熱
性、引張試験での伸びおよび表面光沢度の優れた
無機充填剤含有ポリプロピレン樹脂組成物を得る
方法について種々検討した結果、特定構造を有す
るプロピレン−エチレンコポリマーに特定粒径の
無機充填剤を配合することにより所期の目的が達
成されることを見出し本発明に至つた。 すなわち本発明は、135℃のテトラリン中にお
ける極限粘度が1.7〜2.5(dl/g)、エチレン含有
量5〜13重量%、プロピレン重合部の135℃のテ
トラリン中における極限粘度が1.60〜1.75(dl/
g)かつプロピレンとエチレンの共重合部のエチ
レン含有量が25〜40重量%であるプロピレン−エ
チレンブロツク共重合体65〜85重量%と平均粒子
径が4.0μ以下の無機充填剤、好ましくは平均粒子
径が4.0μ以下のタルク又はタルクと炭酸カルシウ
ムとの混合物からなる無機充填剤15〜35重量%と
からなるポリプロピレン樹脂組成物であり、該組
成物は優れた剛性度、耐熱性、引張試験での伸び
および表面光沢度を発揮する。 本発明においては使用されるプロピレン−エチ
レンブロツク共重合体はチーグラー・ナツタ系触
媒により、まずプロピレンを重合してポリプロピ
レン部を作り、引続きプロピレンとエチレンの混
合物を共重合させることにより得られる。さらに
詳しく述べると、例えばバツチ重合反応器に、溶
剤としてn−ヘプタン、分子量調節剤としてH2
を投入した後、約70℃に昇温する。次いで、三塩
化チタン系のチーグラーナツタ触媒及び助触媒と
してジエチルアルミニウムクロリドを添加する。
プロピレンで重合圧力を約9Kg/cm2Gまで昇圧し
て重合を開始し、プロピレンは重合圧力を保つよ
うに供給し、気相部におけるH2濃度を約4.5vol%
を保つ様にH2を供給しながら重合を継続する。
約3時間経過後、プロピレン重合部を終了し、反
応器内残プロピレンを常圧までパージして重合温
度60℃に調整する。次いで、プロピレンとエチレ
ン及びH2の濃度は気相部に於けるエチレン濃度
が約15vol%、H2濃度が約17vol%となるように、
プロピレン、エチレン及びH2の供給量を調整し
て、重合圧力を約3.5Kg/cm2Gまで昇圧した後、
重合圧力及び気相部ガス組成と維持する様に、プ
ロピレン、エチレン及びH2を供給しながら重合
を約1時間継続し、エチレン−プロピレン共重合
部分を重合する。 エチレンとプロピレン共重合体部分の重合量は
物質収支により算出する。全工程終了後回収され
たポリマーの量と、プロピレン重合部分の全モノ
マー供給量よりプロピレン重合終了時の反応器内
残モノマーを差し引いて算出したプロピレン重合
部分に於けるプロピレン重合体の量との差をもつ
て、プロピレンとエチレン共重合部分に於けるプ
ロピレンとエチレン共重合体の重合量とする。 エチレン含有量は赤外吸収スペクトルにより測
定し物質収支の結果と合わせてプロピレンとエチ
レン共重合部分のエチレン含有量を算出する。尚
重合の第1の工程および第2の工程で適宜重合体
のサンプリングを行い必要な分析を行う。該ブロ
ツク共重合体は135℃のテトラリン中における極
限粘度が1.7〜2.5(dl/g)、エチレン含有量5〜
13重量%、プロピレン重合部の135℃のテトラリ
ン中における極限粘度が1.60〜1.75(dl/g)か
つプロピレンとエチレンとの共重合部のエチレン
含有量が25〜40重量%であることを必須とする。
該ブロツク共重合体の極限粘度が1.7(dl/g)未
満の場合は無機充填剤含有ポリプロピレン樹脂組
成物(以下該樹脂組成物と略す)の物性、とくに
衝撃強度の低下が著しくなり一方、極限粘度が
2.5(dl/g)をこえると該樹脂組成物の流動性が
低下し、複雑な形状の金型での射出成形品は例え
ば表面光沢度が低下したり、又フローマークと呼
ばれるような外観を損う表面状態を呈して好まし
くなく又、該ブロツク共重合体中のエチレン含有
量が5重量%未満では該樹脂組成物の衝撃強度が
低下し、13重量%をこえると耐熱性が低下する。
さらに該ブロツク共重合体のプロピレン重合部の
極限粘度が1.60(dl/g)では本願発明で主張す
る該樹脂組成物の引張試験での伸びの向上が期待
できず、一方極限粘度が1.75(dl/g)を越える
と該樹脂組成物の流動性が低下し、かつ外観が不
良となる。該ブロツク共重合体中のプロピレンと
エチレンの共重合部のエチレン含有量が25〜40重
量%の範囲を外れると衝撃強度や伸びなどが低下
する。原因は明らかでないが上記範囲内にある該
ブロツク共重合体を用いると本願発明で主張する
もう一つの特徴である該樹脂組成物の表面光沢度
が極めて向上する。 本願発明で主張する特徴を有するには前述の如
き組成物であることが必須である。ここでいうエ
チレン含有量は赤外線吸収スペクトルより求めた
ものである。本発明で使用される無機充填剤は、
平均粒子径が4.0μ以下であり、好ましくはタル
ク、又はタルクと炭酸カルシウムの混合物とから
なるものであり、平均粒子径が4.0μより大きいも
のは衝撃強度の低下が大きく、とりわけ引張試験
での伸びが劣る結果となる。さらに表面光沢度等
の外観も悪くなる。ここでいう平均粒子径とは沈
降式粒度分布測定によるもので50%の累積分布に
相当する粒径である。無機充填剤は無処理のまま
使用してもよいが、ポリプロピレン樹脂との界面
接着性を向上させ、又分散性を向上させる目的で
通常知られている各種シランカツプリング剤、チ
タンカツプリング剤、高級脂肪酸、高級脂肪酸エ
ステル、高級脂肪酸アミド、高級脂肪酸塩類ある
いは他の界面活性剤で表面を処理したものを使用
することができる。 本発明で得られる無機充填剤含有ポリプロピレ
ン樹脂組成物は剛性度、耐熱性、引張試験での伸
び、および表面光沢度に優れたものでありこのた
め、プロピレン−エチレンブロツク共重合体65〜
85重量%と無機充填剤15〜35重量%とから構成さ
れるものであり、プロピレン−エチレンブロツク
共重合体が85重量%を越えると、剛性度が低く耐
熱性に劣り又65重量%未満では衝撃強度や引張試
験での伸びが小さく、かつ表面光沢度が劣つてく
るのでインストルメント材料としての適性に欠け
てくる。このような本発明の目的とする該樹脂組
成物は使用する各成分の構造を前述の如く特定範
囲にした上で、各成分の配合割合を特定化して初
めて得ることができるものである。本発明の樹脂
組成物は一軸又は二軸押出機、バンバリーミキサ
ー、熱ロールなどの混練機を用いて製造すること
ができる。混練に必要な温度は160〜260℃であり
時間は1〜20分である。さらにこれらの混練にお
いてこれらの基本成分以外に酸化防止剤、紫外線
吸収剤、滑剤、顔料、帯電防止剤、銅害防止剤、
難燃剤、中和剤、発泡剤、可塑剤、造核剤および
架橋剤等の添加剤を配合することができる。次に
本発明を実施例および比較例によりさらに具体的
に説明するがそれによつて範囲を限定されるもの
ではない。 本発明における物性測定は以下の方法による。 (1) メルトインデツクス:JIS K6758に準拠し
た。 (2) 引張試験での伸び:ASTMDに準拠し、23
℃で測定した。測定用試験片は住友重機械工業
(株)製スクリユーインライン型射出成形機を用い
て成形した。 (3) 曲げ弾性率:ASTM D790に準拠し23℃で
測定した。測定用試験片は引張試験用試験片と
同様に成形した。 アイゾツト衝撃強度:JIS K7110に準拠し、
23℃で測定した。 測定用試験片は引張試験用試験片と同様に成
形した。 (4) 表面光沢度:ASTM D532−53Tに準拠し
た。測定用試験片は住友重機械工業(株)製スクリ
ユーインライン型射出成形機にて厚さ2mmのシ
ートを成形した。 実施例 1 極限粘度が1.90でエチレン含有量が6.0重量%、
プロピレン重合部の極限粘度が1.72およびプロピ
レンとエチレンの共重合部のエチレン含有量が33
重量%であるプロピレン−エチレンブロツク共重
合体(PP−1とする)と平均粒子径が2.7μのタ
ルク(タルク−1とする)を75:25(重量部)の
割合で混合し、さらに上記の成分合計量100重量
部に対し、酸化防止剤イルガノツクス1010(チ
バ・ガイギー社製)を0.5重量部、紫外線吸収剤
サノールLS770(チバ・ガイギー社製)を0.2重
量部添加した後、バンバリーミキサーにて190℃
で10分間混練した。混練後、粉砕機にてペレツト
状化したものを樹脂温度230℃、圧力870Kg/cm2
トータルサイクル40秒の射出成形条件にて所定の
試験片に作成し、物性試験を行なつた。測定結果
を第1表に示す。 実施例 2 実施例2においてタルク−1の代わりに平均粒
子径が2.7μのタルクと平均粒子径が2.0μの炭酸カ
ルシウムとの重量比が4:1である混合物を用い
た以外は実施例1と同様の方法で実施した。物性
測定結果を第1表に示す。 比較例 1 実施例1においてPP−1の代わりに極限粘度
が2.2でエチレン含有量が6.9重量%、プロピレン
重合部の極限粘度が1.5及びプロピレンとエチレ
ンの共重合部のエチレン含有量が46重量%である
プロピレン−エチレンブロツク共重合体(PP−
2とする)を用いた以外は実施例1と同様の方法
で実施した。物性測定結果を第1表に示す。 比較例 2 実施例1においてPP−1の代わりに極限粘度
が2.6でエチレン含有量が6.3重量%、プロピレン
重合部の極限粘度が1.80およびプロピレンとエチ
レンの共重合部のエチレン含有量が40重量%であ
るプロピレン−エチレンブロツク共重合体(PP
−3とする)を用いた以外は実施例1と同様の方
法で実施した。物性測定結果を第1表に示す。 比較例 3 実施例1においてタルク1の代わりに平均粒子
径が10μのタルク(タルク−2)を用いた以外は
実施例1と同様の方法で実施した。物性測定結果
を第1表に示す。 比較例 4 実施例1においてPP−1とタルク−1との混
合割合を75:25(重量部)にする代りに該比を
90:10とした以外は実施例1と同様の方法で実施
した。物性測定結果を第1表に示す。 比較例 5 実施例1においてPP−1とタルク−1との混
合割合を75:25(重量部)にする代りに該比を
60:40とした以外は実施例1と同様の方法で実施
した。物性測定結果を第1表に示す。 比較例 6 実施例1において、PP−1の代わりに極限粘
度が2.10でエチレン含有量が7.2重量%、プロピ
レン重合部の極限粘度が1.50およびプロピレンと
エチレンの共重合部のエチレン含有量が30重量%
であるプロピレン−エチレンブロツク共重合体
(PP−4とする)を用いた以外は実施例1と同様
に実施した。物性測定結果を第1表に示す。 比較例 7 実施例1において、PP−1の代わりに極限粘
度が2.2でエチレン含有量が7.0重量%、プロピレ
ン重合部の極限粘度が1.68及びプロピレンとエチ
レンの共重合部のエチレン含有量が48重量%であ
るプロピレン−エチレンブロツク共重合体(PP
−5とする)を用いた以外は実施例1と同様の方
法で実施した。物性測定結果を第1表に示す。 比較例 8 実施例1において、PP−1の代わりに極限粘
度が1.90でエチレン含有量が6.0重量%、プロピ
レン重合部の極限粘度が1.80およびプロピレンと
エチレンの共重合部のエチレン含有量が33重量%
であるプロピレン−エチレンブロツク共重合体
(PP−6とする)を用いた以外は実施例1と同様
に実施した。物性測定結果を第1表に示す。
The present invention is an inorganic filler-containing polypropylene resin composition that is obtained by blending a propylene-ethylene block copolymer with a specific structure with an inorganic filler of a specific particle size, and has excellent elongation and surface gloss in a tensile test. relating to things. Due to its excellent mechanical strength and heat resistance, polypropylene resins containing inorganic fillers are being actively applied to automobile parts, electrical parts, and the like. However, polypropylene resins containing inorganic fillers generally have lower elongation in tensile tests and lower surface gloss. In particular, the elongation in a tensile test is a measure of the surface impact strength required for instrument panels, etc., and the decrease in elongation hinders its application to interior parts such as instrument panels among automobile parts. The problem is that there are many cases where Generally, methods to improve these problems include (1) adding an elastomer such as an ethylene-α-olefin rubber-like polymer to increase the elongation in a tensile test, and (2) fluidity of the composition. (3) Adding an inorganic filler having a fine average particle size and a nearly spherical shape to improve surface gloss. However, although the addition of an elastomer improves elongation in a tensile test, on the other hand, the rigidity and heat resistance are greatly reduced, which limits its use as an instrument panel material, where heat resistance is particularly important. Furthermore, if the fluidity of the composition is improved to increase the surface gloss, the degree of adhesion to the mirror surface of the mold will also increase, which will be effective, but on the other hand, the impact strength will drop significantly. Furthermore, the addition of an inorganic filler with a small average particle size and a shape close to a spherical shape significantly contributes to improving the surface gloss of the composition, but since the aspect ratio (aspect ratio = major axis / minor axis) is small, the inorganic filler The effect of improving rigidity and heat resistance, which is the original purpose of adding , is extremely small. As described above, it is currently extremely difficult to obtain an inorganic filler-containing polypropylene resin composition that exhibits small decreases in stiffness, heat resistance, and impact strength, and has excellent elongation and surface gloss in tensile tests. . The present inventors have conducted various studies on methods for obtaining inorganic filler-containing polypropylene resin compositions that have excellent rigidity, heat resistance, elongation in tensile tests, and surface gloss, which are required as instrument panel materials for automobile parts, for example. As a result, they discovered that the desired objective could be achieved by blending an inorganic filler with a specific particle size into a propylene-ethylene copolymer having a specific structure, leading to the present invention. That is, the present invention has an intrinsic viscosity of 1.7 to 2.5 (dl/g) in tetralin at 135°C, an ethylene content of 5 to 13% by weight, and an intrinsic viscosity of 1.60 to 1.75 (dl/g) of the propylene polymerized part in tetralin at 135°C. /
g) A propylene-ethylene block copolymer with an ethylene content of 25-40% by weight in the copolymerized portion of propylene and ethylene, 65-85% by weight, and an inorganic filler with an average particle diameter of 4.0μ or less, preferably an average It is a polypropylene resin composition consisting of 15 to 35% by weight of an inorganic filler consisting of talc or a mixture of talc and calcium carbonate with a particle size of 4.0μ or less, and the composition has excellent rigidity, heat resistance, and tensile test. Demonstrates elongation and surface gloss. The propylene-ethylene block copolymer used in the present invention is obtained by first polymerizing propylene to form a polypropylene portion using a Ziegler-Natsuta catalyst, and then copolymerizing a mixture of propylene and ethylene. More specifically, for example, in a batch polymerization reactor, n-heptane is used as a solvent and H 2 is used as a molecular weight regulator.
After adding the water, the temperature is raised to approximately 70℃. Next, a titanium trichloride-based Ziegler-Natsuta catalyst and diethylaluminium chloride as a co-catalyst are added.
Polymerization was started by increasing the polymerization pressure to approximately 9 Kg/cm 2 G with propylene, and propylene was supplied to maintain the polymerization pressure to reduce the H 2 concentration in the gas phase to approximately 4.5 vol%.
Polymerization is continued while supplying H 2 to maintain the temperature.
After about 3 hours, the propylene polymerization section is terminated, the remaining propylene in the reactor is purged to normal pressure, and the polymerization temperature is adjusted to 60°C. Next, the concentrations of propylene, ethylene, and H 2 were adjusted so that the ethylene concentration in the gas phase was approximately 15 vol%, and the H 2 concentration was approximately 17 vol%.
After increasing the polymerization pressure to approximately 3.5 Kg/cm 2 G by adjusting the supply amounts of propylene, ethylene, and H 2 ,
Polymerization is continued for about 1 hour while supplying propylene, ethylene, and H 2 to maintain the polymerization pressure and gas phase gas composition, and the ethylene-propylene copolymer portion is polymerized. The amount of polymerization of the ethylene and propylene copolymer portion is calculated by mass balance. The difference between the amount of polymer recovered after the completion of all steps and the amount of propylene polymer in the propylene polymerization section calculated by subtracting the monomers remaining in the reactor at the end of propylene polymerization from the total monomer supply amount in the propylene polymerization section. is the amount of polymerized propylene and ethylene copolymer in the propylene and ethylene copolymer portion. The ethylene content is measured by infrared absorption spectrum, and combined with the material balance results, the ethylene content of the propylene and ethylene copolymerized portion is calculated. Incidentally, in the first step and the second step of polymerization, sampling of the polymer is performed as appropriate and necessary analysis is performed. The block copolymer has an intrinsic viscosity of 1.7 to 2.5 (dl/g) in tetralin at 135°C and an ethylene content of 5 to 5.
13% by weight, the intrinsic viscosity of the propylene polymerized part in tetralin at 135°C is 1.60 to 1.75 (dl/g), and the ethylene content of the propylene and ethylene copolymerized part is 25 to 40% by weight. do.
If the intrinsic viscosity of the block copolymer is less than 1.7 (dl/g), the physical properties of the inorganic filler-containing polypropylene resin composition (hereinafter referred to as the resin composition), especially the impact strength, will be significantly reduced, and the ultimate The viscosity
When it exceeds 2.5 (dl/g), the fluidity of the resin composition decreases, and injection molded products using complex-shaped molds, for example, may have a decreased surface gloss or an appearance called flow marks. If the ethylene content in the block copolymer is less than 5% by weight, the impact strength of the resin composition will decrease, and if it exceeds 13% by weight, the heat resistance will decrease.
Furthermore, if the intrinsic viscosity of the propylene polymerized portion of the block copolymer is 1.60 (dl/g), it cannot be expected to improve the elongation of the resin composition in the tensile test as claimed in the present invention; /g), the fluidity of the resin composition decreases and the appearance becomes poor. If the ethylene content of the copolymerized portion of propylene and ethylene in the block copolymer is outside the range of 25 to 40% by weight, impact strength, elongation, etc. will decrease. Although the cause is not clear, when the block copolymer within the above range is used, the surface gloss of the resin composition, which is another feature claimed by the present invention, is significantly improved. In order to have the characteristics claimed in the present invention, it is essential that the composition be as described above. The ethylene content here is determined from an infrared absorption spectrum. The inorganic filler used in the present invention is
It has an average particle size of 4.0μ or less, and is preferably made of talc or a mixture of talc and calcium carbonate.Those with an average particle size of more than 4.0μ have a large drop in impact strength, especially in tensile tests. This results in poor elongation. Furthermore, the appearance such as surface glossiness is also deteriorated. The average particle size here is determined by sedimentation particle size distribution measurement and is a particle size corresponding to a 50% cumulative distribution. The inorganic filler may be used without treatment, but various commonly known silane coupling agents, titanium coupling agents, Those whose surfaces have been treated with higher fatty acids, higher fatty acid esters, higher fatty acid amides, higher fatty acid salts, or other surfactants can be used. The inorganic filler-containing polypropylene resin composition obtained in the present invention has excellent rigidity, heat resistance, elongation in a tensile test, and surface gloss.
It is composed of 85% by weight and 15 to 35% by weight of an inorganic filler, and if the propylene-ethylene block copolymer exceeds 85% by weight, the rigidity will be low and the heat resistance will be poor, and if it is less than 65% by weight, it will have poor heat resistance. Its impact strength and elongation in tensile tests are low, and its surface gloss is poor, making it unsuitable as an instrument material. Such a resin composition, which is the object of the present invention, can only be obtained by adjusting the structure of each component used within a specific range as described above and specifying the blending ratio of each component. The resin composition of the present invention can be produced using a kneader such as a single-screw or twin-screw extruder, a Banbury mixer, or a heated roll. The temperature required for kneading is 160 to 260°C and the time is 1 to 20 minutes. Furthermore, in addition to these basic ingredients, antioxidants, ultraviolet absorbers, lubricants, pigments, antistatic agents, copper damage inhibitors,
Additives such as flame retardants, neutralizing agents, blowing agents, plasticizers, nucleating agents, and crosslinking agents can be blended. Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the scope is not limited thereby. Physical properties in the present invention are measured by the following method. (1) Melt index: Compliant with JIS K6758. (2) Elongation in tensile test: Based on ASTMD, 23
Measured at °C. The test piece for measurement is Sumitomo Heavy Industries.
Molding was performed using a screw in-line injection molding machine manufactured by Co., Ltd. (3) Flexural modulus: Measured at 23°C in accordance with ASTM D790. The test piece for measurement was molded in the same manner as the test piece for the tensile test. Izotsu impact strength: Compliant with JIS K7110,
Measured at 23°C. The test piece for measurement was molded in the same manner as the test piece for the tensile test. (4) Surface gloss: Compliant with ASTM D532-53T. The test piece for measurement was molded into a sheet with a thickness of 2 mm using a screw in-line injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. Example 1 Intrinsic viscosity is 1.90, ethylene content is 6.0% by weight,
The intrinsic viscosity of the propylene polymerization part is 1.72 and the ethylene content of the propylene and ethylene copolymerization part is 33.
Propylene-ethylene block copolymer (referred to as PP-1) and talc (referred to as talc-1) with an average particle size of 2.7μ are mixed in a ratio of 75:25 (referred to as talc-1), and then the above After adding 0.5 parts by weight of the antioxidant Irganox 1010 (manufactured by Ciba-Geigy) and 0.2 parts by weight of the ultraviolet absorber Sanol LS770 (manufactured by Ciba-Geigy) to 100 parts by weight of the total amount of ingredients, the mixture was placed in a Banbury mixer. 190℃
The mixture was kneaded for 10 minutes. After kneading, the pellets were pelletized using a crusher at a resin temperature of 230℃ and a pressure of 870Kg/cm 2 .
Specified test pieces were prepared under injection molding conditions with a total cycle of 40 seconds, and physical property tests were conducted. The measurement results are shown in Table 1. Example 2 Example 1 except that in Example 2, a mixture of talc with an average particle size of 2.7μ and calcium carbonate with an average particle size of 2.0μ in a weight ratio of 4:1 was used instead of Talc-1. It was carried out in the same manner as. The physical property measurement results are shown in Table 1. Comparative Example 1 In Example 1, instead of PP-1, the intrinsic viscosity was 2.2 and the ethylene content was 6.9% by weight, the intrinsic viscosity of the propylene polymerization part was 1.5, and the ethylene content of the propylene and ethylene copolymerization part was 46% by weight. Propylene-ethylene block copolymer (PP-
Example 1 was carried out in the same manner as in Example 1, except that 2) was used. The physical property measurement results are shown in Table 1. Comparative Example 2 In Example 1, instead of PP-1, the intrinsic viscosity was 2.6 and the ethylene content was 6.3% by weight, the intrinsic viscosity of the propylene polymerization part was 1.80, and the ethylene content of the propylene and ethylene copolymerization part was 40% by weight. Propylene-ethylene block copolymer (PP
-3) was used in the same manner as in Example 1. The physical property measurement results are shown in Table 1. Comparative Example 3 A test was carried out in the same manner as in Example 1 except that talc (talc-2) having an average particle diameter of 10 μm was used instead of talc 1 in Example 1. The physical property measurement results are shown in Table 1. Comparative Example 4 Instead of setting the mixing ratio of PP-1 and talc-1 to 75:25 (parts by weight) in Example 1, the ratio was changed to
It was carried out in the same manner as in Example 1 except that the ratio was 90:10. The physical property measurement results are shown in Table 1. Comparative Example 5 Instead of setting the mixing ratio of PP-1 and talc-1 to 75:25 (parts by weight) in Example 1, the ratio was changed to
It was carried out in the same manner as in Example 1 except that the ratio was 60:40. The physical property measurement results are shown in Table 1. Comparative Example 6 In Example 1, instead of PP-1, the intrinsic viscosity was 2.10 and the ethylene content was 7.2% by weight, the intrinsic viscosity of the propylene polymerization part was 1.50, and the ethylene content of the propylene and ethylene copolymerization part was 30% by weight. %
The same procedure as in Example 1 was carried out except that a propylene-ethylene block copolymer (referred to as PP-4) was used. The physical property measurement results are shown in Table 1. Comparative Example 7 In Example 1, instead of PP-1, the intrinsic viscosity was 2.2 and the ethylene content was 7.0% by weight, the intrinsic viscosity of the propylene polymerized part was 1.68, and the ethylene content of the propylene and ethylene copolymerized part was 48% by weight. % propylene-ethylene block copolymer (PP
-5) was used in the same manner as in Example 1. The physical property measurement results are shown in Table 1. Comparative Example 8 In Example 1, instead of PP-1, the intrinsic viscosity was 1.90 and the ethylene content was 6.0% by weight, the intrinsic viscosity of the propylene polymerization part was 1.80, and the ethylene content of the propylene and ethylene copolymerization part was 33% by weight. %
The same procedure as in Example 1 was conducted except that a propylene-ethylene block copolymer (referred to as PP-6) was used. The physical property measurement results are shown in Table 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 135℃のテトラリン中における極限粘度が1.7
〜2.5(dl/g)、エチレン含有量5〜13重量%、
プロピレン重合部の135℃のテトラリン中におけ
る極限粘度が1.60〜1.75(dl/g)かつプロピレ
ンとエチレンの共重合部のエチレン含有量が25〜
40重量%であるプロピレン−エチレンブロツク共
重合体(A)65〜85重量%と、平均粒子径が4.0μ以下
の無機充填剤(B)15〜35重量%とからなる無機充填
剤含有ポリプロピレン樹脂組成物。 2 無機充填剤(B)は平均粒子径が4.0μ以下のタル
ク又はタルクと炭酸カルシウムとの混合物とから
なることを特徴とする特許請求範囲の第1項記載
の無機充填剤含有ポリプロピレン樹脂組成物。
[Claims] 1. Intrinsic viscosity in tetralin at 135°C is 1.7
~2.5 (dl/g), ethylene content 5-13% by weight,
The intrinsic viscosity of the propylene polymerization part in tetralin at 135℃ is 1.60 to 1.75 (dl/g), and the ethylene content of the propylene and ethylene copolymerization part is 25 to 1.75 (dl/g).
An inorganic filler-containing polypropylene resin consisting of 40% by weight of a propylene-ethylene block copolymer (A) from 65 to 85% by weight and an inorganic filler (B) having an average particle size of 4.0 μ or less from 15 to 35% by weight. Composition. 2. The inorganic filler-containing polypropylene resin composition according to claim 1, wherein the inorganic filler (B) consists of talc or a mixture of talc and calcium carbonate with an average particle size of 4.0 μ or less .
JP4502683A 1983-03-16 1983-03-16 Polypropylene resin composition containing inorganic filler Granted JPS59170137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4502683A JPS59170137A (en) 1983-03-16 1983-03-16 Polypropylene resin composition containing inorganic filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4502683A JPS59170137A (en) 1983-03-16 1983-03-16 Polypropylene resin composition containing inorganic filler

Publications (2)

Publication Number Publication Date
JPS59170137A JPS59170137A (en) 1984-09-26
JPH0372665B2 true JPH0372665B2 (en) 1991-11-19

Family

ID=12707815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4502683A Granted JPS59170137A (en) 1983-03-16 1983-03-16 Polypropylene resin composition containing inorganic filler

Country Status (1)

Country Link
JP (1) JPS59170137A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364257A (en) * 1976-11-22 1978-06-08 Toyoda Gosei Co Ltd Impact-resistant resin composition
JPS5755952A (en) * 1980-09-22 1982-04-03 Ube Ind Ltd Polypropylene composition for bumper material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364257A (en) * 1976-11-22 1978-06-08 Toyoda Gosei Co Ltd Impact-resistant resin composition
JPS5755952A (en) * 1980-09-22 1982-04-03 Ube Ind Ltd Polypropylene composition for bumper material

Also Published As

Publication number Publication date
JPS59170137A (en) 1984-09-26

Similar Documents

Publication Publication Date Title
CA1329436C (en) Thermoplastic resin composition
JP3352282B2 (en) Thermoplastic resin composition and injection molded article thereof
JP2785607B2 (en) Ethylene-propylene block copolymer
US6011102A (en) Polypropylene-based resin composition and injection molded article thereof
US6441081B1 (en) Polypropylene-base resin composition and products of injection molding thereof
AU708576B2 (en) Thermoplastic resin composition and injection molded article thereof
US6759465B1 (en) Thermoplastic resin composition and injection-molded object thereof
EP0336320B1 (en) Polypropylene composition
JP2010105402A (en) Method for producing dynamically vulcanized thermoplastic elastomer
KR960007935B1 (en) Process for producing impact resistant polyamide resin composition
CA1329435C (en) Modified polypropylene resin composition
JP3873652B2 (en) Thermoplastic resin composition and injection-molded body thereof
JPH02212543A (en) Resin composition for bumper
JP3873708B2 (en) Thermoplastic resin composition and injection-molded body thereof
US4185067A (en) Method of rotationally molding plastic articles
CA2175119A1 (en) Thermoplastic resin composition and injection molded article thereof
JPS5914064B2 (en) Improved composition for anti-vibration rubber
JPH0372665B2 (en)
JPS5998157A (en) Resin composition for bumper
EP0368345B1 (en) Thermoplastic olefin resin composition
JPH1129690A (en) Polypropylene-based resin composition and its injection molding product
JPS6121145A (en) Thermoplastic resin composition
JPH1129669A (en) Polypropylene-based resin composition and its injection molded material
JPH0931299A (en) Propylene polymer composition and its production
JPS6197344A (en) Resin composition for fascia