JPH0372590B2 - - Google Patents

Info

Publication number
JPH0372590B2
JPH0372590B2 JP11860981A JP11860981A JPH0372590B2 JP H0372590 B2 JPH0372590 B2 JP H0372590B2 JP 11860981 A JP11860981 A JP 11860981A JP 11860981 A JP11860981 A JP 11860981A JP H0372590 B2 JPH0372590 B2 JP H0372590B2
Authority
JP
Japan
Prior art keywords
particle size
specific gravity
floating
hollow body
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11860981A
Other languages
Japanese (ja)
Other versions
JPS5818214A (en
Inventor
Tadao Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11860981A priority Critical patent/JPS5818214A/en
Publication of JPS5818214A publication Critical patent/JPS5818214A/en
Publication of JPH0372590B2 publication Critical patent/JPH0372590B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、比重1.0以下の浮きコンクリート
材料と、その材料を使用して水中浮揚構造物を製
作する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a floating concrete material with a specific gravity of 1.0 or less and a method for manufacturing an underwater floating structure using the material.

浮き魚礁や浮き消波提・浮き棧橋・人工浮島
等々の各種水中浮揚構造物は、その経済性と重要
性の故に、近年の海洋開発の発展に伴なつて国民
の関心も昴まつてきているが、この発明は、上記
構造物の構築を可能とするために、水中で充分浮
揚し、吸水率が小さく、耐圧深度の大きな浮きコ
ンクリート材料によつて、所望の浮力と安全な強
度を有する堅牢な水中浮揚鉄筋コンクリート構造
物を製作する方法を提供するものである。
Due to their economic efficiency and importance, various types of underwater floating structures such as floating fish reefs, floating wave-dissipating structures, floating bridges, and artificial floating islands have attracted increasing public interest as marine development has developed in recent years. However, in order to enable the construction of the above-mentioned structure, this invention uses a floating concrete material that floats sufficiently in water, has a low water absorption rate, and has a large pressure resistance depth. The present invention provides a method for manufacturing a submerged floating reinforced concrete structure.

ところで、比重が1.0以下のコンクリートとし
ては、従来の気泡コンクリートと共に、天然軽石
や発泡スチロール、パーライト、シラスバルーン
等の中空体をセメントと混合・固結させた超軽量
コンクリートが知られているが、これらは中空体
製品をそのままの状態で使用していたため、水中
に浸漬するといずれも吸水し、破壊し、沈降して
しまうものであつた。また、従来のシンタクチツ
クフオームでは、ガラスバルーンや耐圧ガラス球
等の中空体を樹脂中に充填・固結させているが、
配合が単品か二製品止まりであり、粒度分布は、
不連続的で狭い範囲に限定されており、充填率に
も一定の限界が生じていたことから、重いセメン
ト結合材を使用して水より軽い複合体を得ること
は困難であつた。従がつて水中で浮揚し、かつ安
心して使用できる浮きコンクリートは未だ知られ
ていない現状であつた。
By the way, as well as conventional aerated concrete, ultra-lightweight concrete in which hollow bodies such as natural pumice, expanded polystyrene, perlite, and shirasu balloons are mixed and solidified with cement is known as concrete with a specific gravity of 1.0 or less. Because hollow products were used as they were, they all absorbed water, broke, and settled when immersed in water. In addition, in conventional syntactic foam, hollow bodies such as glass balloons and pressure-resistant glass bulbs are filled and solidified in resin.
The formulation is limited to a single product or two products, and the particle size distribution is
It has been difficult to obtain lighter-than-water composites using heavy cement binders because they are discontinuous, confined to narrow areas, and have certain limitations on filling rates. Floating concrete that floats underwater and can be used safely has not yet been known.

以下この発明を詳細に説明すると、本願発明は
セメントを主体とした結合材中に、浮力材として
の中空体を充填して固結させるセメント複合材料
に係わるものである。
The present invention will be described in detail below. The present invention relates to a cement composite material in which a hollow body as a buoyancy material is filled into a cement-based binder and solidified.

セメントを結合材として使用することは、安価
で、無害で、取扱い容易なこと等多くの利点が挙
げられる反面、例えば、水セメント比が50パーセ
ントの時のセメントペーストの比重が1.82前後と
なつて重過ぎるため、浮体用として利用するのは
非常に困難であつた。
Using cement as a binder has many advantages such as being cheap, harmless, and easy to handle. However, for example, when the water-cement ratio is 50%, the specific gravity of cement paste is around 1.82. Because it was too heavy, it was extremely difficult to use it as a floating body.

処で、複合材料というものは、結合材と充填材
との双方の性状と分量割合とによつて、その複合
体の大方の性質が左右されるものであることに本
願発明者は着眼して、充填材の中空体について、
素材の選定や製品の選別及び粒度の調整を行なう
ことによつて、セメント複合体を水中で浮揚可能
とさせたものである。
However, the inventor of the present application has focused on the fact that most of the properties of a composite material are determined by the properties and proportions of both the binder and the filler. , regarding the hollow body of the filler,
By selecting materials, sorting products, and adjusting particle size, cement composites can be made to float in water.

中空体の素材としては、セメントとの結合力が
強固で安定しており、圧縮強度が大きくて、真密
度の小さいことが必要で、現在の各種中空体の中
では、天然及び人工のガラス質物質から造成され
た微小中空球体や中空多胞体、粒状泡ガラス等の
製品が一般に利用可能である。
The material for the hollow body must have a strong and stable bond with cement, high compressive strength, and low true density. Products such as micro hollow spheres, hollow multivesicular bodies, and granular foam glass made from substances are generally available.

浮力材として充填する中空体は、これら製品の
中から、内部空間に吸水しない様に表面殻壁が完
全に密閉されていて、かつ、余剰浮力が大きくな
る様に見掛比重が充分に小さなもので、同時に、
水圧で破壊しない様に使用潜水深度よりも大きな
最大耐圧深度を有しているものを選別し、しか
も、充填率が充分大きくなる様に、これら選別し
たものの粒度を調整して使用するものである。
Among these products, the hollow body to be filled as a buoyancy material must have a completely sealed surface shell wall so as not to absorb water into the internal space, and have a sufficiently small apparent specific gravity so as to have a large surplus buoyancy. And at the same time,
In order to avoid destruction by water pressure, those with a maximum pressure resistance depth that is greater than the diving depth used are selected, and the particle size of these selected items is adjusted and used so that the filling rate is sufficiently large. .

処で、小さな見掛比重で大きな最大耐圧深度を
得ることは互いに相反する関係にあり、かつ、粒
径が異なる物どうしの関係は未だ不明のことであ
つた。
However, the relationship between obtaining a large maximum pressure depth with a small apparent specific gravity is contradictory to each other, and the relationship between particles having different particle sizes is still unclear.

本願発明は、中空体の粒径や材質が異なる時の
浮力性能と力学的強度についての関係を解明する
ことによつて、異なる粒径や材質のものからで
も、必要な見掛比重と最大耐圧深度の双方を満足
させるものが得られる事が判明したため、これら
を組み合わせることによつて、粒度を広範囲で連
続的な分布となる様に調整して、充填率を一層向
上させることができる様になり、セメント複合体
を水中で浮揚可能とさせたものである。
By elucidating the relationship between buoyancy performance and mechanical strength when the particle size and material of the hollow body are different, the present invention is capable of determining the required apparent specific gravity and maximum withstand pressure even when the particle size and material are different. It has been found that a product that satisfies both depths can be obtained, so by combining these methods, the particle size can be adjusted to have a continuous distribution over a wide range, and the filling rate can be further improved. This allows the cement composite to float in water.

すなわち第1図は、中空の球体で、表面殻壁の
厚さと直径の比の値が相等しく、粒径の異なる2
つの相似体を示したもので、表面積は直径に反比
例をしている。同様にして、素材が同一のもので
造られている時には、両者の見掛比重や最大耐圧
力等の力学的性質は相等しくなる。また、これら
粒径の異なる相似中空球体を、各々同一配列(例
えば立方体配列)とさせた時には、海水中での単
位体積当たりの余剰浮力や最大耐圧深度等の浮力
性質は相等しくなる。従がつて、これらを夫々結
合材で固結させた時の複合体についても、充填率
が等しいため、比重や耐圧力及び結合材の含有量
による材質強度等も、全て相等しくなることが分
かる。
In other words, Figure 1 shows a hollow sphere with two particles having the same thickness and diameter ratio of the surface shell wall and different particle sizes.
The surface area is inversely proportional to the diameter. Similarly, when they are made of the same material, their mechanical properties such as apparent specific gravity and maximum withstand pressure are the same. Furthermore, when these similar hollow spheres with different particle sizes are arranged in the same manner (for example, in a cubic arrangement), the buoyancy properties such as the excess buoyancy per unit volume in seawater and the maximum pressure resistance depth become the same. Therefore, it can be seen that in the case of a composite obtained by solidifying each of these with a binder, the filling ratio is the same, so the specific gravity, pressure resistance, and material strength due to the content of the binder are all the same. .

すなわち、同一素材で造られた相似の中空球体
では、粒径が大径と小径のものとでは、表面積が
異なるだけで、浮力性質や力学的性質は全て相等
しくなる。従がつて中空体は、所望の見掛比重と
最大耐圧深度を満たす様に、殻壁厚と直径の比の
値である相似比が一定の範囲内にある相似体群を
選別することによつて、浮力材としての安全性が
確保できるようになる。
In other words, among similar hollow spheres made of the same material, large and small diameter particles differ only in surface area, but have the same buoyancy and mechanical properties. Therefore, hollow bodies are created by selecting a group of similar bodies whose similarity ratio, which is the ratio of shell wall thickness to diameter, is within a certain range in order to satisfy the desired apparent specific gravity and maximum pressure depth. As a result, safety as a buoyancy material can be ensured.

従がつて、前記中空体の製品の中から浮力材を
選別する方法は、先ず水樋方法等によつて、表面
殻壁に破損や小孔等のあるもの及び粘土等の沈降
する成分は沈降除去させて、内部空間に吸水しな
いものを粗選し、品質の向上を計る。次ぎに、所
望の見掛比重と必要な最大耐圧深度が得られる様
に、圧力容器中での加圧液体による耐圧残留方法
や比重液による浮選方法等によつて、相似中空体
群を得ると、これらは水中で安心して使用できる
浮力材料となる。
Therefore, the method for selecting buoyant materials from among the hollow products is to first remove those with damage or small holes on the surface shell wall, and sedimentation components such as clay, by using a water gutter method or the like. We aim to improve quality by removing water and selecting those that do not absorb water into the internal space. Next, a group of similar hollow bodies is obtained by a pressure-resistant residual method using a pressurized liquid in a pressure vessel, a flotation method using a specific gravity liquid, etc. so as to obtain the desired apparent specific gravity and required maximum pressure-resistant depth. This makes them buoyant materials that can be safely used underwater.

また、材質や製法の異なる各種中空体について
も、その素材の真密度と圧縮強度に応じて、前記
相似比の範囲が異なるだけであるため、上記の如
き方法で、前者と同一の見掛比重と最大耐圧深度
を満たす範囲のものを選別して利用すれば、大小
各種粒径のものを広範囲で得ることができる様に
なる。従がつて、これら細粒分から粗粒分までを
適当な粒度分布となる様に配合すると、普通コン
クリートの配合方法と同様に、中空体の充填率を
上げ、同時に、混合性や流動性も良好にさせるこ
とができる様になる。
Furthermore, for various hollow bodies of different materials and manufacturing methods, the range of the above-mentioned similarity ratio differs depending on the true density and compressive strength of the material. By selecting and using particles that meet the maximum pressure resistance depth, it becomes possible to obtain particles of various sizes in a wide range of sizes. Therefore, if these fine particles to coarse particles are mixed to have an appropriate particle size distribution, the filling rate of the hollow body will be increased in the same way as the mixing method for ordinary concrete, and at the same time, the mixability and fluidity will be good. You will be able to make it happen.

すなわち、浮力材の粒度の調整は、例えば微小
中空球体を細粒分として使用することにより、セ
メント結合材と混合時の浮上分離が殆んど生じな
くなり、分散・混合性も良好となる。また、上記
細粒分に、例えば小粒径から粗粒径の中空多胞体
を粗粒分として配合すれば、全体の浮力材の体積
実績率が向上する。また、これら細粒分から粗粒
分の全体の粒度分布を調整することによつて、流
動性やワーカビリテイが向上するので、成形は型
枠中へ流し込む注型法によつて容易に可能とな
り、脱型後の製品も均質な比重と強度を有するも
のが得られる様になる。
That is, by adjusting the particle size of the buoyant material, for example, by using micro hollow spheres as fine particles, flotation separation when mixed with the cement binder hardly occurs, and dispersion and mixing properties are also improved. Furthermore, if hollow polyvesicular bodies having a small to coarse particle size are added to the above-mentioned fine particle fraction as a coarse particle fraction, the overall volume performance rate of the buoyancy material will be improved. In addition, by adjusting the overall particle size distribution of these fine particles to coarse particles, fluidity and workability are improved, so molding can be easily performed by pouring into a mold, and molding can be easily performed by pouring into a mold. After molding, a product with uniform specific gravity and strength can be obtained.

この様にして得られたセメント複合体は、中空
体の充填率の向上に伴なつて、水中で充分浮揚す
る様になる反面、結合材の分量の減少に伴なつて
強度が低下してくる。従がつて、先かじめ中空体
の各種製品毎に、充填率と複合体の強度との関係
を実験等から求めておくと、所望の強度と比重と
耐圧力を有するセメント複合体を得るために必要
な、中空体の充填率と見掛比重と最大耐圧深度が
与えられるため、これらを満たす相似体群の選定
範囲も自ずから決まつてくる。
The cement composite thus obtained becomes sufficiently buoyant in water as the filling rate of the hollow body increases, but its strength decreases as the amount of binder decreases. . Therefore, in order to obtain a cement composite having the desired strength, specific gravity, and pressure resistance, it is recommended to first determine the relationship between the filling rate and the strength of the composite for each type of hollow product through experiments. Since the filling ratio, apparent specific gravity, and maximum pressure-resisting depth of the hollow body required for this are given, the selection range of the group of analogues that satisfies these is also automatically determined.

浮力性能並びに材質強度の優れた複合体を得る
ためには、中空体について、既述の如く、素材は
圧縮強度が大きく真密度の小さいものを利用し、
相似体群の選定範囲を狭域とすること等によつ
て、品質の優れたものを厳選すると同時に、結合
材についても、セメントの種類の選定や混和剤の
添加・各種加工法の適用等の技術手段を構じて、
結合強度を大きくすることによつても可能であ
る。
In order to obtain a composite with excellent buoyancy performance and material strength, as mentioned above, for the hollow body, a material with high compressive strength and low true density is used,
By narrowing the selection range of similar groups, we carefully select those with excellent quality, and at the same time, we also carefully select the type of binder, the addition of admixtures, and the application of various processing methods. By arranging technical means,
This is also possible by increasing the bonding strength.

以上詳述した如く、本願発明は、中空体の粒径
や材質が異なる時の浮力性質と力学的性質につい
ての関係を解明することによつて、前述の如き難
点を解決したものであつて、充填する中空体は、
所望の見掛比重と最大耐圧深度を満たす様な相似
体群を選別した後、所望の充填率と混合性や流動
性が得られる様に、細粒分から粗粒分まで配合し
て、広範囲で連続的な粒度分布の調整をすること
によつて、水中で安心して使用できる浮きコンク
リート材料の提供に成巧したものである。
As detailed above, the present invention solves the above-mentioned difficulties by elucidating the relationship between buoyancy properties and mechanical properties when the particle size and material of the hollow body are different. The hollow body to be filled is
After selecting a group of analogues that satisfy the desired apparent specific gravity and maximum pressure resistance depth, blending from fine particles to coarse particles is carried out over a wide range to obtain the desired filling rate, mixability, and fluidity. By continuously adjusting the particle size distribution, we have succeeded in providing a floating concrete material that can be safely used underwater.

上記浮きコンクリート材料を使用して、水中浮
揚構造物を製作するには、構造物としての必要な
強度を補償するために、内部に鉄筋構造を封入す
るものである。すなわち、水中浮揚構造物の製作
方法は、構造物の形状・大きさ・水中抵抗力及び
使用潜水深度と所望の浮力または水中重量等か
ら、使用する浮きコンクリート材料の強度・比
重・耐圧力を決め、構造計算上必要な配筋構造物
を組み立てて、型枠中に設置しておき、上記材料
を打ち込むことによつて一体成形させるものであ
る。
In order to manufacture an underwater floating structure using the above-mentioned floating concrete material, a reinforcing steel structure is enclosed inside to compensate for the necessary strength of the structure. In other words, the manufacturing method for underwater floating structures involves determining the strength, specific gravity, and pressure resistance of the floating concrete material to be used based on the structure's shape, size, underwater resistance, diving depth, desired buoyancy, underwater weight, etc. , the reinforcing structure required for structural calculations is assembled, placed in a mold, and then integrally formed by pouring the above-mentioned materials into the mold.

この様にして製作された水中浮揚鉄筋コンクリ
ート構造物は、全体として均質な比重と強度を有
する剛体であるため、水中に浮揚係留させると、
波による揺動に対しても浮心・重心の移動がない
ため安定であり、かつ、堅牢で耐久性の高いもの
となる。勿論、耐圧深度が大きくて、吸水率の小
さな材質でできており、必要な浮力と安全な強度
を有しているため、長期間の水中係留に対しても
安全である。また、海藻の付着基盤としても効果
があるため、例えば適当な水中重量となる様に調
整したものを海底に敷設すれば、軟弱な浮泥質の
海底でも藻場の造成が可能となる。
The underwater floating reinforced concrete structure manufactured in this way is a rigid body with homogeneous specific gravity and strength as a whole, so when it is floating and moored underwater,
Even when shaken by waves, the center of buoyancy and center of gravity do not shift, making it stable, sturdy, and highly durable. Of course, it is made of a material with a large pressure resistance depth and low water absorption, and has the necessary buoyancy and safe strength, so it is safe for long-term underwater mooring. It is also effective as a base for seaweed to adhere to, so if it is adjusted to have an appropriate underwater weight and placed on the seabed, it is possible to create a seaweed bed even on a soft floating muddy seabed.

この様に、本願発明の水中浮揚コンクリート構
造物は、水中での浮力性能に優れ、安価で、大量
生産が可能なこと等から、各種の海洋構造物とし
て広範な利用が可能であり、例えば、海洋を立体
的に利用する海洋牧場の構築等に使用すれば、多
大な効果があげられるものと期待されるものであ
る。
As described above, the underwater floating concrete structure of the present invention has excellent underwater buoyancy performance, is inexpensive, and can be mass-produced, so it can be widely used as various marine structures, such as: It is expected that it will have great effects if used for constructing ocean farms that make use of the ocean three-dimensionally.

<実施例> 浮力材料は細粒径の微小中空球体(2種類混
合)嵩体積1.2気乾重量188gと小粒径の中空多
胞体(3種混合)1.6、500gと粗粒径の中空多
胞体1.6、265gとを使用した。これら浮力材料
は先かじめ表面殻壁に欠陥のあるものは除去され
ており、粒度は良好なワーカビリテイと充分な体
積実績率が得られる様に調整されている。
<Example> The buoyancy materials are micro hollow spheres with a fine particle size (a mixture of two types) with a bulk volume of 1.2 and an air dry weight of 188 g, a hollow multivesicular body with a small particle size (a mixture of three types) of 1.6 and 500 g, and a hollow multivesicular body with a coarse particle size. 1.6, 265g was used. These buoyant materials have previously had surface shell wall defects removed, and the particle size has been adjusted to provide good workability and sufficient volume performance.

結合材としては、普通ポルトランドセメント
800gと水密化材(微粒径活性シリカ)150gと高
性能減水剤15gと水242c.c.から成るセメントペー
ストを使用した。このペーストだけを単独固結さ
せた時の比重Cは2.017であつた。水密な結合材
によつて吸水が小さくなる他、コンクリート成形
体中への海水侵入による鉄筋腐蝕が防止できるよ
うになり有効である。
Ordinary Portland cement is used as a binding material.
A cement paste consisting of 800 g, 150 g of watertightening material (fine particle size activated silica), 15 g of high performance water reducer, and 242 c.c. of water was used. When this paste alone was solidified, the specific gravity C was 2.017. The water-tight binding material reduces water absorption and is effective in preventing corrosion of reinforcing steel due to seawater intrusion into the concrete molded body.

上記浮力材と係合材を混合水293c.c.を追加して
混練・打設すると、体積V=2975c.c.、重量W=
2362g、余剰浮力Q2=612g、比重J=0.794の浮
きコンクリートが得られた。
When the above buoyant material and engagement material are mixed and mixed with 293 c.c. of water and mixed and cast, the volume V = 2975 c.c. and the weight W =
Floating concrete with an excess buoyancy of 2362 g, an excess buoyancy Q 2 of 612 g, and a specific gravity J of 0.794 was obtained.

ここで、追加混合水293c.c.だけが全部、浮力材
の表面吸着水として使用されたと仮定して、空隙
も生じなかつたとすれば、浮力材全体の見掛け比
重Zは0.478、充填率gは0.799と計算される。従
がつて、結合材の密度C=2.017が非常に大きい
にも係わらす、Z≪1.0でg≫0.524の為、浮きコ
ンクリートの比重、J=Z×g+C*(1−g)
=0.794となり、水中で浮揚し、鉄筋コンクリー
ト構造物としても、なお充分な水中浮力を有する
ものと成つている。
Here, assuming that only the 293 c.c. of additional mixed water was used as water adsorbed on the surface of the buoyancy material, and no voids were formed, the apparent specific gravity Z of the entire buoyancy material is 0.478, and the filling rate g is Calculated as 0.799. Therefore, even though the density of the binder C=2.017 is very large, since Z≪1.0 and g≫0.524, the specific gravity of floating concrete, J=Z×g+C*(1−g)
= 0.794, it floats underwater and has sufficient underwater buoyancy even as a reinforced concrete structure.

試みに、この浮きコンクリートの圧縮破壊強度
は、打設后33日目でσ33=46.3Kg/cm2であつた。
As a trial, the compressive fracture strength of this floating concrete was σ 33 =46.3 Kg/cm 2 on the 33rd day after pouring.

また、この浮きコンクリートを打設13日目から
28日目までは水深0.20mに、28日から210日目ま
では水深2.20mに連続水中浸漬をしたが、各日附
での比重測定値は0.806、0.808、0.813であつた事
から、約200日間の水中浸漬でも、比重増加は
0.007に止まり、吸水は極めて小さかつた。
Also, from the 13th day after pouring this floating concrete,
It was continuously immersed in water at a depth of 0.20 m until the 28th day, and at a depth of 2.20 m from the 28th to the 210th day, and the measured specific gravity values on each day were 0.806, 0.808, and 0.813, so it was found that approximately Even after 200 days of immersion in water, the specific gravity does not increase.
The water absorption was only 0.007, and the water absorption was extremely small.

以上の実施例からも、この発明は、全く新規な
浮きコンクリートを実際に製造可能としかつ有用
なものであることが明らかとなつたが、ここに示
した数値や配合例は偶々の実験値を挙げたもので
あつて、これによつて浮きコンクリートの性質の
範囲や限界を示すものでは決してない。同様に結
合材あるいは浮力材の種類や性状、成形方法等の
変化に応じても、上記実施例以外の最適技術手段
を構じることは無論可能である。
From the above examples, it has become clear that this invention actually makes it possible to produce a completely new floating concrete and is useful. These are in no way intended to indicate the scope or limits of the properties of floating concrete. Similarly, depending on changes in the type and properties of the binder or buoyant material, molding method, etc., it is of course possible to construct optimal technical means other than the above embodiments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、大粒径と小粒径の2つの相似体の中
空球について、両者の浮力性質や力学的性質及び
複合体の諸性質を比較して示したものである。
FIG. 1 shows a comparison of the buoyancy and mechanical properties of two similar hollow spheres, one with a large particle size and one with a small particle size, and the various properties of the composite.

Claims (1)

【特許請求の範囲】 1 セメントを主体とした結合材と、該結合材と
の結合力が強固で安定な素材で造成された中空体
とを、均一に混合・固結させて成るセメント複合
材料に於いて、該中空体は、表面殻壁が完全に密
閉されており、かつ、所望の見掛比重と最大耐圧
深度との双方を満足させるものを選別して浮力材
と成し、該浮力材の粒径を細粒分から粗粒分まで
配合して、所望の充填率と流動性が得られる様に
粒度調整を行なつた、水中で浮揚することを特徴
とする浮きコンクリート材料。 2 セメントを主体とした結合材と、該結合材と
の結合力が強固で安定な素材で造成された中空体
とを、均一に混合・固結させて成るセメント複合
材料に於いて、該中空体は、表面殻壁が完全に密
閉されており、かつ、所望の見掛比重と最大耐圧
深度との双方を満足させるものを選別して浮力材
と成し、該浮力材の粒径を細粒分から粗粒分まで
配合して、所望の充填率と流動性が得られる様に
粒度調整を行なつた、水中で浮揚することを特徴
とする浮きコンクリート材料を、固結後に所望の
強度と比重と耐圧力が得られる様に調整してお
き、構造物の設計上必要な配筋構造物を組み立て
て、設置しておいた型枠中に、上記材料を打設し
て一体成形させる、水中浮揚鉄筋コンクリート構
造物の製作方法。
[Claims] 1. A cement composite material made by uniformly mixing and solidifying a binding material mainly made of cement and a hollow body made of a material that has a strong and stable bonding force with the binding material. In this process, the hollow body is selected as a buoyancy material whose surface shell wall is completely sealed and which satisfies both the desired apparent specific gravity and maximum pressure resistance depth, and the buoyancy material is A floating concrete material that is characterized by being able to float in water, by blending the material's particle size from fine to coarse and adjusting the particle size to obtain the desired filling rate and fluidity. 2. In a cement composite material, which is made by uniformly mixing and solidifying a binding material mainly composed of cement and a hollow body made of a material that has a strong bonding force with the binding material and is stable, the hollow body The body is selected as a buoyant material whose surface shell wall is completely sealed and which satisfies both the desired apparent specific gravity and maximum pressure resistance depth, and the particle size of the buoyant material is reduced. The floating concrete material, which is characterized by its ability to float in water, is made by blending everything from particles to coarse particles and adjusting the particle size to obtain the desired filling rate and fluidity. Adjust the specific gravity and pressure resistance to be obtained, assemble the reinforcing structure necessary for the design of the structure, and cast the above material into the installed formwork to integrally form it. Method for manufacturing underwater floating reinforced concrete structures.
JP11860981A 1981-07-28 1981-07-28 Manufacture of floating concrete Granted JPS5818214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11860981A JPS5818214A (en) 1981-07-28 1981-07-28 Manufacture of floating concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11860981A JPS5818214A (en) 1981-07-28 1981-07-28 Manufacture of floating concrete

Publications (2)

Publication Number Publication Date
JPS5818214A JPS5818214A (en) 1983-02-02
JPH0372590B2 true JPH0372590B2 (en) 1991-11-19

Family

ID=14740787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11860981A Granted JPS5818214A (en) 1981-07-28 1981-07-28 Manufacture of floating concrete

Country Status (1)

Country Link
JP (1) JPS5818214A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094040A (en) * 1983-10-31 1985-05-27 太平洋セメント株式会社 Artificial seaweed bank

Also Published As

Publication number Publication date
JPS5818214A (en) 1983-02-02

Similar Documents

Publication Publication Date Title
US3754954A (en) Altering the properties of concrete by altering the quality or geometry of the intergranular contact of filler materials
US4588443A (en) Shaped article and composite material and method for producing same
US3927163A (en) Altering the properties of concrete by altering the quality or geometry of the intergranular contact of filler materials
US4657810A (en) Fired hollow ceramic spheroids
NO852216L (en) SEPARATION STABLE EXTREMELY EASY CONCRETE MASS
US4330632A (en) Lightweight concrete using polymer filled aggregate for ocean applications
JPH0372590B2 (en)
CN206620706U (en) A kind of multifunction manual fish shelter
US4333765A (en) Sandless concrete
JP2013538905A (en) Pressure resistant material and method for producing such material
JP2003116398A (en) Fishing bank or rocky shore animal-protecting bank using scallop shell
CN110078428A (en) A kind of cork and cement mixing materials for wall
JP3037890B2 (en) Hardened cement body with continuous voids
JPS6323465Y2 (en)
US1316071A (en) Process for making concrete
JP2980831B2 (en) Method for producing expanded beads mixed treated soil and expanded beads mixed treated soil for underwater casting
JP2001048618A (en) Block for living of organism
JPH0559684B2 (en)
JP2847145B2 (en) Water casting structure and construction method thereof
JPH10298949A (en) Buoyancy member for offshore three-dimensional skeleton structure
KR20010099193A (en) A Composites of Porous Concrete for the Habitat of Aquatic Life and the Purification of the Water Quality, and Its Manufacture Method and Its Productions
JPH0213608A (en) Improving method of weak ground
JP3101881B2 (en) Floating body
JP3055033B2 (en) Creating artificial islands
JPH0830330B2 (en) Lightweight prepared concrete method