JPH0372290A - Continuous measuring method for amount of low-energy electron beam - Google Patents

Continuous measuring method for amount of low-energy electron beam

Info

Publication number
JPH0372290A
JPH0372290A JP20866089A JP20866089A JPH0372290A JP H0372290 A JPH0372290 A JP H0372290A JP 20866089 A JP20866089 A JP 20866089A JP 20866089 A JP20866089 A JP 20866089A JP H0372290 A JPH0372290 A JP H0372290A
Authority
JP
Japan
Prior art keywords
electron beam
film
continuously
electrode
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20866089A
Other languages
Japanese (ja)
Inventor
Yosuke Kaneko
金子 洋輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP20866089A priority Critical patent/JPH0372290A/en
Publication of JPH0372290A publication Critical patent/JPH0372290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To enable execution of continuous measurement and monitoring by applying an electron beam continuously onto a film-form substance which is running and by taking out a transmitted electron beam as a current. CONSTITUTION:Electron beams 8 accelerated under a high voltage and in high vacuum pass through an irradiation window 7 and are transmitted through a film-form substance 15 which is running, and part of them falls on an electrode 9 located just below. The electron of the electron beam 8 caught thereby passes through an ammeter 10 and proceeds to the ground. This ammeter 10 is fitted in a pair discretely from others on an electrode plate provided in a plurality in the width direction, and a current value thereof is recorded continuously in a recorder 12 through an amplifier 11. Thereby it can be monitored continuously whether a change in the amount of the electron beams 8 at the time of irradiation in a regular operation, deflection of the amount in the width direction at that time, or the like occurs or not.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、例えば各種フィルム、シートや塗工被膜など
いわゆる膜状物を電子線で連続的に架橋するときの膜状
物に照射された電子線量を連続的に測定する方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the use of electron beams to continuously crosslink so-called film-like materials such as various films, sheets, and coated films. This invention relates to a method for continuously measuring electron dose.

〔従来の技術〕[Conventional technology]

電子線は高真空中(10−5Tart以下)にてタング
ステン・フィラメントを通電加熱することにより熱電子
を発生せしめ、同時にフィラメント側を陰極となるよう
、負の高電圧(150KV〜500KV)を荷電するこ
とにより、クローン反発ノコによって、負の電荷をもつ
電子を陽極側となる接地された照射窓に加速し、照射窓
を通して、大気または不活性ガス中に取り出し、照射窓
下を通過走行する被照射物面に電子を照射することによ
りイオン化あるいは活性化させ重合反応を起こさせるも
のである。
The electron beam generates thermoelectrons by heating a tungsten filament with electricity in a high vacuum (10-5 Tart or less), and at the same time charges a negative high voltage (150KV to 500KV) so that the filament side becomes a cathode. By using a clone repulsion saw, negatively charged electrons are accelerated to the grounded irradiation window, which is the anode side, and taken out into the atmosphere or inert gas through the irradiation window. By irradiating the material surface with electrons, it is ionized or activated to cause a polymerization reaction.

この電子線の照射線量の評価法は、従来、米国のFar
 West Technology社などから市販され
ているフィルム線量計でRadiachromic線量
計やブルーセロファン線量計あるいは、三酢酸セルロー
ス線量計があるが、これらはいずれも被照射物の上面に
貼り付けたものを照射窓下を通過させて電子線を照射さ
れることで、青色発色や脱色による吸光度の変化を測定
し間接的にまた、バッチ単位で線量を測定する方法であ
り、照射Hlの巾方向測定においても上記と同様にフィ
ルム線量計を被照射物上の巾方向に貼り付けて測定する
ため連続的に測定することができなかった。
This electron beam irradiation dose evaluation method has conventionally been used by Far
Film dosimeters such as Radiochromic dosimeters, blue cellophane dosimeters, and cellulose triacetate dosimeters are commercially available from West Technology, etc., but all of these dosimeters are attached to the top of the object to be irradiated and placed under the irradiation window. This method measures the change in absorbance due to blue coloring and decolorization by passing the electron beam through it, and indirectly measures the dose on a batch-by-batch basis. Similarly, continuous measurement was not possible because the film dosimeter was pasted across the width of the object to be irradiated.

〔発明が解決しようとする課題] これらのフィルム線量計は、太陽や蛍光灯の光によって
発色あるいは脱色したり、大気中の湿度を吸湿したりす
るため取り扱いにかなりの手間を要することや大きな誤
差ず生しやすい欠点がある。
[Problems to be solved by the invention] These film dosimeters change color or bleach due to sunlight or fluorescent light, and absorb humidity in the atmosphere, so they require considerable effort to handle and are subject to large errors. There is a drawback that it can easily occur.

さらに、被照射物に貼り付けて、バッチ単位でしか測定
できず、連続走行している膜状物に連続照射する時には
、常に照射線量を連続監視する必要があるが連続的測定
が困難である等の問題点があった。
Furthermore, it can only be measured in batches by attaching it to the object to be irradiated, and when continuously irradiating a continuously moving film-like object, it is necessary to continuously monitor the irradiation dose, but continuous measurement is difficult. There were problems such as.

本発明は、上記の問題点を鑑みてなされたものであり、
その目的とするところは、上述のような欠点のない走行
中の膜状物を連続的に照射しながら電子線の照射線量を
連続測定する方法を提供することにある。
The present invention has been made in view of the above problems,
The object thereof is to provide a method for continuously measuring the irradiation dose of an electron beam while continuously irradiating a moving film-like object without the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、走行する膜状物に、照射装置からの
電子線を連続的に照射するとともに、膜状物の直下に配
置した電極により透過した電子線を受けて電流として取
り出して照射線量を連続的に測定・監視することを特徴
とする低エネルギー電子線量の連続洲定方法に関する。
That is, the present invention continuously irradiates a moving film-like object with an electron beam from an irradiation device, and receives the transmitted electron beam by an electrode placed directly below the film-like object and extracts it as an electric current to reduce the irradiation dose. This invention relates to a method for continuously determining the low-energy electron dose, which is characterized by continuous measurement and monitoring.

以下図面を参照しながら説明すると、第1図に示すよう
に、走行する膜状物15の直下で透過してきた電子線8
を捕捉出来る位置に電極9を設置する。この電極と電気
的に接続されている導線を照射装置の外部に導き出し電
流計10のマイナス端子に接続する。また、電流計10
のプラス端子は接地する。ここに流れるTi流値は増幅
器11を介して記録計12で連続的に記録する。
The following explanation will be given with reference to the drawings. As shown in FIG.
The electrode 9 is installed at a position where it can capture the . A conductive wire electrically connected to this electrode is led out of the irradiation device and connected to the negative terminal of the ammeter 10. Also, ammeter 10
The positive terminal of is grounded. The Ti flow value flowing here is continuously recorded by a recorder 12 via an amplifier 11.

第2図に電極9の構造を示す。電極板21は3組になっ
ているが、これにこだわるものではない。
FIG. 2 shows the structure of the electrode 9. Although there are three sets of electrode plates 21, this is not restrictive.

全面を覆う程の大きい電極1個の場合や、幅方向に複数
、3個以上用いる場合もあるが、今、説明上図において
は3組が示されている。また、電極Fi21の形状とし
て矩形を用いて説明するが、特にこれにこだわるもので
はない。電極板21の材質は耐熱性、耐蝕性のものが望
ましい。架台17の上に電気絶縁板18が取り付けであ
る。この上に電極板21をのせるが、架台17とは電気
的に絶縁になるように設置する。各々の電極Fi、21
に導線20を接触不良が生じないように接続する。
There are cases in which one electrode is large enough to cover the entire surface, and there are also cases in which a plurality of electrodes, three or more electrodes are used in the width direction, but three sets are shown in the diagram for illustration purposes. Furthermore, although the shape of the electrode Fi21 will be described using a rectangle, the present invention is not particularly limited to this. The material of the electrode plate 21 is preferably heat resistant and corrosion resistant. An electrical insulating plate 18 is attached on top of the pedestal 17. The electrode plate 21 is placed on top of this, and is installed so as to be electrically insulated from the pedestal 17. Each electrode Fi, 21
Connect the conductive wire 20 to the terminal so that no contact failure occurs.

導線20の材質は耐熱、耐蝕性のものが望ましく、断面
積も十分なものが良い。電子線の照射を受は続けると電
子の運動エネルギーが熱エネルギーに変換されるため、
かなりの高温となるが、ビニールなどの被覆線では、被
覆材が炭化し、絶縁破壊され、装置内部で短絡を起こし
、正確な測定が不能となる。更に、発生した炭化ガスが
照射窓7のチタン箔に付着、汚染し、電子線8の透過が
著しく低下する。
The material of the conducting wire 20 is desirably heat resistant and corrosion resistant, and preferably has a sufficient cross-sectional area. As the electron beam continues to be irradiated, the kinetic energy of the electrons is converted into thermal energy.
The temperature is quite high, but if the wire is coated with vinyl or the like, the coating material will carbonize and break down, causing a short circuit inside the device and making accurate measurements impossible. Further, the generated carbonized gas adheres to and contaminates the titanium foil of the irradiation window 7, and the transmission of the electron beam 8 is significantly reduced.

よって、導線20は高耐熱性の被覆線か裸線をセラミッ
ク管内を通すなどの方法を講じなければならない。
Therefore, for the conducting wire 20, a method must be taken such as passing a highly heat-resistant coated wire or a bare wire through the ceramic tube.

また、透過してきた電子線8を導線20で直接受けると
電極として働いてしまうため、その点は十分考慮する必
要がある。
Further, if the conducting wire 20 directly receives the transmitted electron beam 8, it will act as an electrode, so this point needs to be taken into consideration.

〔作用〕[Effect]

第1図及び第3図に示されるように、高電圧、高真空中
で加速された電子線8は、照射窓7のチタン箔を透過し
て放出され、走行する膜状物15を透過して、この一部
分が電極9に降り注ぐ。ここで捉えられた電子線8の電
子は電流計10を通り、アースへと進む、電流計10は
、幅方向に複数設置された電極板21に、それぞれl対
ずつ独立して取り付けてあり、この電流値は増幅器ll
を介して記録計12により連続的に記録される。
As shown in FIGS. 1 and 3, the electron beam 8 accelerated in a high voltage and high vacuum is emitted after passing through the titanium foil of the irradiation window 7, and then passing through the traveling film-like material 15. A portion of this falls on the electrode 9. The electrons of the electron beam 8 captured here pass through the ammeter 10 and proceed to the ground. This current value is
The data are continuously recorded by the recorder 12 via the recorder 12.

これにより、定常運転照射時の電子線8の線量の変動や
幅方向での線量の偏りなどが発生していないかどうか、
連続的に監視することが出来る。
As a result, it is possible to check whether there are any fluctuations in the dose of the electron beam 8 during steady-state irradiation or unevenness in the dose in the width direction.
Can be continuously monitored.

従来から、膜状物15の幅方向及び全長に渡る線量の管
理が困難とされていたことに対し、本発明は非常に有用
な解決策となる。
The present invention provides a very useful solution to the conventional problem in which it has been difficult to manage the dose in the width direction and the entire length of the film-like material 15.

〔実施例〕 以下、実施例について、第2図及び第3図に示す様な装
置を用いた場合について説明する。
[Example] Hereinafter, an example will be described in which an apparatus as shown in FIGS. 2 and 3 is used.

電極Fi21は、厚さ11.5μm、幅10mm、長さ
60m5のチタン箔を用いた。導線20としては、銅の
裸線を使い、これが架台17や、電子線照射本体と接触
することを防ぐため、また直接電子線が当らないように
するため、セラミック管内を通した。
For the electrode Fi21, a titanium foil having a thickness of 11.5 μm, a width of 10 mm, and a length of 60 m5 was used. A bare copper wire was used as the conducting wire 20, and was passed through a ceramic tube to prevent it from coming into contact with the pedestal 17 and the electron beam irradiation body, and to prevent it from being directly exposed to the electron beam.

膜状物15としては、厚さ60μmのポリエチレンフィ
ルムを50m/分で走行させた。加速電圧165KVに
おいて、このポリエチレンフィルム面で吸収線量を3.
0. 4.8.6.5. 8、ORadの各々について
設定した。
As the membrane material 15, a polyethylene film having a thickness of 60 μm was run at a speed of 50 m/min. At an accelerating voltage of 165 KV, the absorbed dose on this polyethylene film surface was 3.
0. 4.8.6.5. 8. Settings were made for each of ORad.

このような条件下で、フィルム無し、フィルム1枚、フ
ィルム2枚、及び2枚の間に粘着剤(厚さ7.9μm)
を挟んだ場合のそれぞれについて、透過線量を測定電極
9によって測定した。
Under these conditions, there was no film, one film, two films, and an adhesive (7.9 μm thick) between the two films.
The transmitted dose was measured using the measuring electrodes 9 for each case in which the two electrodes were sandwiched.

その結果を表1及び第4図に示す。The results are shown in Table 1 and FIG.

表1 第4図に示すように吸収線量と電極電流との間には比例
関係が戒り立つから、透過線量を測定することにより、
間接的に膜状物上での吸収線量を管理することができる
。本方式を用いれば、製造ラインを止めることなく製品
への幅方向及び全長に渡り線量を監視することとなる。
Table 1 As shown in Figure 4, there is a proportional relationship between the absorbed dose and the electrode current, so by measuring the transmitted dose,
The absorbed dose on the film can be indirectly controlled. Using this method, the dose can be monitored across the width and entire length of the product without stopping the production line.

例えば長時間操業の末、棒状タングステン・フィラメン
トlの寿命が尽きて、電子線照射に不良が生じたとして
も、即、対応出来る。装置的対応としては、電極電流値
に上限及び下限を設け、この値に入らない場合には警報
を鳴らすか、ラインを止めてしまうなどということが考
えられる。製品上の対応としては、記録チャートを読み
取り、追跡して製品の不良箇所を摘出、検査することな
どが可能となり、品質管理上においても重要な役割の一
端を!旦うものとなる。
For example, even if a rod-shaped tungsten filament 1 reaches the end of its life after long-term operation and a failure occurs in electron beam irradiation, it can be dealt with immediately. As an equipment measure, it is possible to set upper and lower limits for the electrode current value, and if the electrode current value does not fall within these limits, an alarm is sounded or the line is stopped. In terms of product support, it is now possible to read and track record charts, identify and inspect product defects, and play an important role in quality control! It will become a thing.

〔発明の効果] 如上の如く本発明によれば、走行中の膜状物に対する電
子線量を連続的に測定・監視することができ、品質の安
定した製品を提供することが可能となる。
[Effects of the Invention] As described above, according to the present invention, it is possible to continuously measure and monitor the electron dose to a moving film-like object, and it is possible to provide products with stable quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は低エネルギー電子線照射装置の断面図第2図は
測定電極の正面図及び平面図、第3図は電子線照射装置
と測定電極装置の回路図である。 第4図は、膜状物上での吸収線量と電極電流の関係を示
す線図である。 符号の説明 1、棒状タングステン・フィラメント 2、制御電極1  3.制御電極2 真空室 遮蔽部 電子線 電流計 記録計 ガイドロール 巻取ロール 絶縁板 耐熱性外管 導線 (セラミンク管)
FIG. 1 is a sectional view of the low-energy electron beam irradiation device, FIG. 2 is a front view and plan view of the measurement electrode, and FIG. 3 is a circuit diagram of the electron beam irradiation device and the measurement electrode device. FIG. 4 is a diagram showing the relationship between the absorbed dose on the film-like material and the electrode current. Description of symbols 1, rod-shaped tungsten filament 2, control electrode 1 3. Control electrode 2 Vacuum chamber shielding part Electron beam ammeter recorder Guide roll Winding roll Insulation plate Heat-resistant outer tube conductor (ceramic tube)

Claims (1)

【特許請求の範囲】[Claims]  1、走行する膜状物に、照射装置からの電子線を連続
的に照射するとともに、膜状物の直下に配置した電極に
より透過した電子線を受けて電流として取り出して照射
線量を連続的に測定することを特徴とする低エネルギー
電子線量の連続測定方法。
1. The moving film-like object is continuously irradiated with an electron beam from an irradiation device, and the transmitted electron beam is received by an electrode placed directly below the film-like object and extracted as an electric current to continuously adjust the irradiation dose. A method for continuously measuring low-energy electron doses.
JP20866089A 1989-08-11 1989-08-11 Continuous measuring method for amount of low-energy electron beam Pending JPH0372290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20866089A JPH0372290A (en) 1989-08-11 1989-08-11 Continuous measuring method for amount of low-energy electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20866089A JPH0372290A (en) 1989-08-11 1989-08-11 Continuous measuring method for amount of low-energy electron beam

Publications (1)

Publication Number Publication Date
JPH0372290A true JPH0372290A (en) 1991-03-27

Family

ID=16559938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20866089A Pending JPH0372290A (en) 1989-08-11 1989-08-11 Continuous measuring method for amount of low-energy electron beam

Country Status (1)

Country Link
JP (1) JPH0372290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104002A1 (en) * 1999-11-29 2001-05-30 Ushiodenki Kabushiki Kaisha Electron beam measurement method and electron beam irradiation processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107184A (en) * 1980-01-31 1981-08-25 Jeol Ltd Beam measurement
JPS6089048A (en) * 1983-10-21 1985-05-18 Nec Corp Faraday cage for measuring beam current
JPS6099136A (en) * 1983-11-04 1985-06-03 Toa Nenryo Kogyo Kk Manufacture of film irradiated with electron ray
JPS63307383A (en) * 1987-06-09 1988-12-15 Seiko Instr & Electronics Ltd Charged particle beam monitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107184A (en) * 1980-01-31 1981-08-25 Jeol Ltd Beam measurement
JPS6089048A (en) * 1983-10-21 1985-05-18 Nec Corp Faraday cage for measuring beam current
JPS6099136A (en) * 1983-11-04 1985-06-03 Toa Nenryo Kogyo Kk Manufacture of film irradiated with electron ray
JPS63307383A (en) * 1987-06-09 1988-12-15 Seiko Instr & Electronics Ltd Charged particle beam monitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104002A1 (en) * 1999-11-29 2001-05-30 Ushiodenki Kabushiki Kaisha Electron beam measurement method and electron beam irradiation processing device
US6657212B2 (en) 1999-11-29 2003-12-02 Ushiodenki Kabushiki Kaisha Electron beam measurement method and electron beam irradiation processing device

Similar Documents

Publication Publication Date Title
RU2390042C2 (en) Sensor and system for generation of data from electron beam
EP1943542B1 (en) Exposed conductor system and method for sensing an electron beam
JPS6015888B2 (en) Analyzer for tomographic X-ray photography
JP3324343B2 (en) Apparatus and method for applying paste
EP0223304A1 (en) Dosimeter for ionizing radiation
JPH0372290A (en) Continuous measuring method for amount of low-energy electron beam
US5062129A (en) Device for slit radiography with image equalization
JPH0625798B2 (en) Electrical function tester for wiring area
JP2728986B2 (en) Radiation monitor
JP2001221897A (en) Device for measuring distribution of electron beam
Shao et al. Dielectric response of cross-linked polyethylene (XLPE) cable insulation material to radiation and thermal aging
US3522428A (en) Mass spectrometer having a plurality of relatively movable collectors
CN112067851A (en) Method for quantitatively measuring electric field force applied to organic polymer chain under action of electric field
US4280049A (en) X-ray spectrometer
CN112904401A (en) Ultra-thin beam profile detection system for particle therapy device
US4325029A (en) Alkali ionization detector
US4625117A (en) Multi-cell radiation detector
JPS597733Y2 (en) Ionization chamber type X-ray detector
Artusi et al. Limited streamer tubes for the OPAL hadron calorimeter
JPH0323563Y2 (en)
US20200393578A1 (en) System for characterizing a beam of charged particles and machine for producing a beam of charged particles comprising such a system
Miyamoto et al. An aging study of semiconductive microstrip gas chambers and a gas electron multiplier
US3514655A (en) Ion gauge for monitoring vapor flow
JPS5510517A (en) Defect detector by heating
CN114265103A (en) Beta particle beam measuring device