JPH0372063A - Film thickness controller for hot dip metal coating - Google Patents

Film thickness controller for hot dip metal coating

Info

Publication number
JPH0372063A
JPH0372063A JP20688489A JP20688489A JPH0372063A JP H0372063 A JPH0372063 A JP H0372063A JP 20688489 A JP20688489 A JP 20688489A JP 20688489 A JP20688489 A JP 20688489A JP H0372063 A JPH0372063 A JP H0372063A
Authority
JP
Japan
Prior art keywords
molten metal
coils
coil
film thickness
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20688489A
Other languages
Japanese (ja)
Inventor
Kiyoshi Izumi
清 和泉
Kazuya Tsurusaki
一也 鶴崎
Mitsuo Kato
光雄 加藤
Mikio Hanamoto
花本 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20688489A priority Critical patent/JPH0372063A/en
Publication of JPH0372063A publication Critical patent/JPH0372063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To allow the control of a film thickness without generating noises with a hot dip metal coating device for approximately vertically pulling up a sheet material to be coated by specifically providing 1st to 3rd high-frequency coils to the sheet material to be coated. CONSTITUTION:The sheet material 1 to be coated is pulled up with the sheet surface positioned vertically from the inside of a molten metal 3 and is cooled to solidify the molten metal, by which the material is coated. The 1st coil 4 which horizontally encloses the plate material 1 above the liquid level of the molten metal 3 and the 2nd and 3rd coils 5a, 5b which are disposed approximately symmetrically on both sides of the sheet surface of the sheet material 1 and the coil 4 and have the axis approximately perpendicular to the sheet surface mentioned above are provided in this device. The high-frequency current of the same phase is supplied to the 1st to 3rd coils to generate eddy currents in the liquid films sticking to the surface of the sheet material. Magnetic fluxes are passed in the eddy currents to generate downward force and to reduce the thickness of the liquid film. Since the magnitude of the above-mentioned force is determined by the high-frequency current flowing in the coils, the film thickness is controllable by adjusting the high-frequency current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融金属めっき設備に適用されるめっき膜厚制
御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plating film thickness control device applied to hot-dip metal plating equipment.

〔従来の技術〕[Conventional technology]

第9図は、従来の溶融金属めっき設備の一例を示す概要
図、第10図は同じくガスジェットノズル周辺の詳細図
である。
FIG. 9 is a schematic diagram showing an example of conventional hot-dip metal plating equipment, and FIG. 10 is a detailed diagram of the vicinity of the gas jet nozzle.

被めっき材である板(1)は、還元炉(12)から溶融
金属用ポット(溶解炉)(2)内の溶融金属(3)中に
通され、次にデフレフクロール(13)によりほぼ鉛直
方向に方向転換されてポット上方に引上げられたのち、
冷却装置(14)によって冷却されてめっき板となる。
The plate (1), which is the material to be plated, is passed from the reduction furnace (12) into the molten metal (3) in the molten metal pot (melting furnace) (2), and then approximately reduced by the deflation crawl (13). After being turned vertically and being pulled up above the pot,
It is cooled by a cooling device (14) and becomes a plated plate.

このとき、被めっき板材(])は溶融金属(3)の自由
表面から外へ出、重力に対して反対方向に通板されるの
で、表面に液膜(11)が付着することになる。そして
、その金属液膜(11)の厚さを調整するために、ガス
をジェット状で噴出させるガスジェットノズル(10)
が設けられている。このガスジェットノズル(10)か
ら噴出するガスは、高速で被めっき板(1)に衝突し圧
力を発生ずる。板(1)表面に付着した液膜(11)は
その圧力によって所定の厚さに調整される。
At this time, the plate material to be plated ( ) comes out from the free surface of the molten metal (3) and is passed in a direction opposite to gravity, so that a liquid film (11) will adhere to the surface. In order to adjust the thickness of the metal liquid film (11), a gas jet nozzle (10) is used to eject gas in a jet shape.
is provided. The gas ejected from the gas jet nozzle (10) collides with the plated plate (1) at high speed and generates pressure. The liquid film (11) attached to the surface of the plate (1) is adjusted to a predetermined thickness by the pressure.

〔発明が解決しようとする課題] 従来の溶融金属めっきの膜厚制御装置は、ガスをジェッ
ト状で噴出させるので、騒音が大きいという欠点があっ
た。
[Problems to be Solved by the Invention] Conventional film thickness control devices for molten metal plating eject gas in the form of a jet, which has the disadvantage of producing large noise.

〔課題を解決するための手段] 本発明は、前記従来の課題を解決するために、被めっき
板材を板面をほぼ鉛直にして溶融金属中から上方に引上
げたのち冷却して溶融金属を凝固させる溶融金属めっき
において、上記溶融金属の液面上方で上記波めっき板材
を水平に取囲む第1のコイルと、上記波めっき板材の板
面と上記第1のコイルとをはさんでほぼ対称に配され、
軸線が上記板面にほぼ垂直な第2および第3のコイルと
、上記第1、第2および第3のコイルに同一位相の高周
波電流を供給する手段とを備えたことを特徴とする溶融
金属めっきの膜厚制御装置;ならびに被めっき板材を板
面をほぼ鉛直にして溶融金属中から上方に引上げたのち
冷却して熔融金属を凝固させる溶融金属めっきにおいて
、下方が広がった四角錐台状に巻かれ、上記溶融金属の
液面上方で上記波めっき板材を水平に取囲むコイルと、
同コイルに高周波電流を供給する手段とを備えたことを
特徴とする溶融金属めっきの膜厚制御装置を提案するも
のである。
[Means for Solving the Problems] In order to solve the above-mentioned conventional problems, the present invention provides a method in which a plate material to be plated is pulled upward from a molten metal with its surface substantially vertical, and then cooled to solidify the molten metal. In the molten metal plating, a first coil horizontally surrounding the wave-plated plate material above the liquid surface of the molten metal, and a substantially symmetrical coil sandwiching the plate surface of the wave-plated plate material and the first coil. arranged,
A molten metal comprising second and third coils whose axes are substantially perpendicular to the plate surface, and means for supplying high-frequency currents of the same phase to the first, second, and third coils. Plating film thickness control device; In molten metal plating, in which the plate to be plated is pulled upward from the molten metal with the plate surface almost vertical, and then cooled to solidify the molten metal, it is used to form a truncated pyramid shape with a widened bottom. a coil that is wound and horizontally surrounds the wave-plated plate material above the liquid level of the molten metal;
The present invention proposes a film thickness control device for molten metal plating, characterized by comprising means for supplying a high-frequency current to the coil.

〔作用〕[Effect]

本発明は前記のとおり構成されており、板表面に付着し
た液膜内に誘導加熱の原理で渦電流を発生させ、この尚
電流に磁束を通過させることにより、下向きの力を発生
させる。こうして液膜内に発生する力が推力となって、
液膜の厚さを薄くすることができる。この力の大きさは
コイルを流れる高周波電流で決まるので、高周波電流を
調節することによって、膜厚を制御できる。
The present invention is constructed as described above, and uses the principle of induction heating to generate an eddy current in a liquid film attached to a plate surface, and causes a magnetic flux to pass through this current to generate a downward force. In this way, the force generated within the liquid film becomes thrust,
The thickness of the liquid film can be reduced. Since the magnitude of this force is determined by the high frequency current flowing through the coil, the film thickness can be controlled by adjusting the high frequency current.

(実施例〕 第1図は本発明の第1実施例を示す縦断側面図、第2図
は同じく正面図、第3図は同じく平面図、第4図は同し
く電気配線図である。
(Embodiment) FIG. 1 is a longitudinal sectional side view showing a first embodiment of the present invention, FIG. 2 is a front view, FIG. 3 is a plan view, and FIG. 4 is an electrical wiring diagram.

これらの図において、被めっき板材(例えば鋼板)(1
)は板面を鉛直にして溶融金属(例えば溶融亜鉛)(3
)の中から上方に引上げられる。(4)は渦電流発生用
の第1のコイルであって、溶融金属(3)の液面上方で
、上記鋼板(1)を水平に取囲んでいる。
In these figures, the plate material to be plated (e.g. steel plate) (1
) is a molten metal (e.g. molten zinc) (3
) is pulled upwards. (4) is a first coil for generating an eddy current, and surrounds the steel plate (1) horizontally above the liquid level of the molten metal (3).

(5a) 、 (5b)は磁界発生用の第2および第3
のコイルであって、鋼板(1)の板面と第1のコイル(
4)とをはさんで対称に配され、軸線は鋼板(1)の板
面に垂直に向けられている。そして、上記3つのコイル
(4)、 (5a) 、 (5b)には、第4図に示さ
れるように、高周波電源(7)からケーブル(8)を介
して、同一位相の高周波電流が供給される。
(5a) and (5b) are the second and third
, the plate surface of the steel plate (1) and the first coil (
4), and their axes are perpendicular to the surface of the steel plate (1). As shown in Figure 4, the three coils (4), (5a), and (5b) are supplied with high-frequency currents of the same phase from the high-frequency power supply (7) via the cable (8). be done.

鋼板(1)を取囲む第1のコイル(4)に高周波電流が
流れることによって、鋼板(1)の表面に渦電流■が発
生する。渦電流Iの浸透深さδは式 ここに、ρ:比抵抗(Ω・m) μ:比透磁率(−) r:周波数(Hz ) で表わされるので、浸透深さが溶融金属液膜(11)の
膜厚よりも薄いかまたは膜厚と等しくなるように、高周
波電源の周波数を選んで、渦電流が金属液膜(11)内
のみを流れるよう乙こする。
When a high frequency current flows through the first coil (4) surrounding the steel plate (1), an eddy current (2) is generated on the surface of the steel plate (1). The penetration depth δ of the eddy current I is expressed by the formula where ρ: specific resistance (Ω・m) μ: relative permeability (-) r: frequency (Hz). The frequency of the high-frequency power source is selected so that the film thickness is thinner than or equal to the film thickness of (11), and the eddy current is caused to flow only within the metal liquid film (11).

次に、鋼板(1)をはさむように向い合せに配置された
第2、第3のコイル(5a) 、 (5b)に、上記渦
主流用のコイル(4)と同し電源から電流が流れること
によって、金属ン夜Di(11)を流れるン凸電流Iと
ほぼ同じ位相の磁界が発生する。このとき、コイルの巻
き方あるいは電源との接続を、向い合ったこれら磁界用
コイル(5a) 、 (5b)の作る磁束の向きが互い
に逆になるようにしておく。
Next, current flows from the same power source as the coil (4) for the vortex main flow into the second and third coils (5a) and (5b), which are arranged facing each other so as to sandwich the steel plate (1). As a result, a magnetic field having almost the same phase as the convex current I flowing through the metal diode Di (11) is generated. At this time, the coils are wound or connected to the power source so that the directions of the magnetic flux produced by the opposing magnetic field coils (5a) and (5b) are opposite to each other.

磁界の中で電流が流れると次式に示す力Pが発生する。When a current flows in a magnetic field, a force P expressed by the following equation is generated.

P = B X I X n   (N)ただし、1i
ft束密度(Wb/m”)■=電流の強さ(^) l:長さ(めっき板の幅) (m) 上記において、電流を金属液膜(11)を流れる渦電流
、磁界をるA法用コイル(5a) 、 (5b)がつく
るものと考えれば、金属液膜(II)にフレミングの左
手の法則による方向の力が生しる。そして第5図に示さ
れるように、渦電流と磁束の方向を調整すれば、力の方
向を下向きとすることができる。
P = B X I X n (N) However, 1i
ft Flux density (Wb/m") ■ = Strength of current (^) l: Length (width of plated plate) (m) In the above, the current is an eddy current flowing through the metal liquid film (11), and the magnetic field is If we consider that the A-method coils (5a) and (5b) are created, a force in the direction according to Fleming's left-hand rule is generated on the metal liquid film (II).As shown in Fig. 5, a vortex is generated. By adjusting the direction of the current and magnetic flux, the direction of the force can be directed downward.

さて、膜厚制御に必要な力Fは、 F=T (L−hlりα ここに、T:ン皮膜の密度(kgf/m3)L:液膜の
厚さ(m) h:膜厚制御する液膜の長さ (高さ)(m) g、:被めっき板の幅(m) α:加速度(m/s2) である。ここで、電流と磁界とによる上記力PがFに等
しいとし、δ−りとおけば、 1 ・B v”l−= r h a X 503 J曹
ンコーただし、ρい:液膜の比抵抗(Ω・m)となり、
これが本実施例により膜厚制御を行なうための条件とな
る。亜鉛めっきする場合を例にとり、 r =6900kgf/m” h =15X10−1m α−7000In/s”(ガスジエントの流速から推定
) p m = 38 X 10− ”  Ω−mμ=1(
亜鉛の比透磁率) B =0.071Wb/m2 として計算すると、 周波数r =lOOkllz 電流 ■主100OOA で膜厚制御が可能となる。
Now, the force F required for film thickness control is F=T (L-hlriα) where, T: Density of liquid film (kgf/m3) L: Thickness of liquid film (m) h: Film thickness control Length (height) of the liquid film (m) g: Width of plated plate (m) α: Acceleration (m/s2) Here, the above force P due to the current and magnetic field is equal to F. Then, if we set δ−, then 1 ・B v”l−= r h a X 503
This is the condition for controlling the film thickness according to this embodiment. Taking the case of zinc plating as an example, r = 6900 kgf/m" h = 15 x 10-1 m α-7000 In/s" (estimated from the gas flow rate) p m = 38 x 10-" Ω-mμ = 1 (
Calculating as B = 0.071Wb/m2 (relative magnetic permeability of zinc), the film thickness can be controlled with frequency r =lOOkllz current ■main 100OOA.

次に第6図は本発明の第2実施例を示す縦断側面図、第
7図は同しく正面図である。これらの図において、前記
第1実施例と同様の部分については同一の符号を付け、
詳しい説明を省く。
Next, FIG. 6 is a longitudinal sectional side view showing a second embodiment of the present invention, and FIG. 7 is a front view of the same. In these figures, the same parts as in the first embodiment are given the same reference numerals,
Detailed explanation will be omitted.

この実施例では、前記第1実施例における第1、第2お
よび第3のコイル(4)、 (5a) 、 (5b)の
代りに、下方が広がった円錐台状に巻かれたコイル(6
)を用い、溶融金属(3)の液面上方でこのコイル(6
)により鋼板(1)を取囲む。
In this embodiment, instead of the first, second, and third coils (4), (5a), and (5b) in the first embodiment, a coil (6
) above the liquid level of the molten metal (3).
) surrounding the steel plate (1).

第1実施例と同様、このコイル(6)に高周波電流を供
給する。そうすると、鋼板(11の表面に渦電流Iが発
生する。またコイル(6)が円錐台状に巻かれているの
で、コイルの中の磁束は水平方向成分BNを有する。し
たがって、第8図に示されるように、金属液膜(11)
内に下向きの力Pが生しる。
Similar to the first embodiment, a high frequency current is supplied to this coil (6). Then, an eddy current I is generated on the surface of the steel plate (11). Also, since the coil (6) is wound in the shape of a truncated cone, the magnetic flux in the coil has a horizontal component BN. Therefore, as shown in FIG. As shown, the metal liquid film (11)
A downward force P is generated inside.

〔発明の効果〕〔Effect of the invention〕

本発明においては、コイルに高周波電流を供給すること
により液膜内の渦電流と磁束の水平方向成分とを発生さ
せ、この電流と磁界によって生しる下向きの力を推力と
して膜厚制御を行なうので、従来の方法よりも格段に静
かな運転ができる。
In the present invention, eddy currents and horizontal components of magnetic flux are generated in the liquid film by supplying a high-frequency current to the coil, and the film thickness is controlled using the downward force generated by this current and magnetic field as thrust. This allows for much quieter operation than conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す縦断側面図、第2図
は同じく正面図、第3図は同じく平面図、第4図は同し
く電気配線図、第5図は同じく作用を説明するための斜
視図である。第6図は本発明の第2実施例を示す縦断側
面図、第7図は同しく正面図、第8図は同しく作用を説
明するための図である。第9図は従来の溶融金属めっき
設備の一例を示す概要図、第10図は同しくガスジェッ
トノズル周辺の詳細図である。 (1)・・・被めっき板材(鋼板)、 (2)・・・溶融金属ポット、 (3)・・・溶融金属
、(4) 、 (5a) 、 (5b) 、 (6) 
−−1イル、 (7)−・・電源、(8)・・・ケーブ
ル、  (10)・・・ガスジェットノズル、(11)
・・・金属′/&膜、   (12)・・・還元炉、(
I3〉・・・デフレフクロール、 (14)・・・冷却
装置、■・・・渦電流、      B、B、・・・磁
束、P・・・力。
Fig. 1 is a vertical side view showing the first embodiment of the present invention, Fig. 2 is a front view, Fig. 3 is a plan view, Fig. 4 is an electrical wiring diagram, and Fig. 5 is a functional diagram. It is a perspective view for explaining. FIG. 6 is a longitudinal sectional side view showing a second embodiment of the present invention, FIG. 7 is a front view thereof, and FIG. 8 is a diagram for explaining the operation. FIG. 9 is a schematic diagram showing an example of conventional hot-dip metal plating equipment, and FIG. 10 is a detailed diagram of the vicinity of the gas jet nozzle. (1) Plated plate material (steel plate), (2) Molten metal pot, (3) Molten metal, (4), (5a), (5b), (6)
--1 illumination, (7) --- power supply, (8) -- cable, (10) --- gas jet nozzle, (11)
...metal'/& film, (12)...reduction furnace, (
I3〉...Deflation crawl, (14)...Cooling device, ■...Eddy current, B, B,...Magnetic flux, P...Force.

Claims (2)

【特許請求の範囲】[Claims] (1)被めっき板材を板面をほぼ鉛直にして溶融金属中
から上方に引上げたのち冷却して溶融金属を凝固させる
溶融金属めっきにおいて、上記溶融金属の液面上方で上
記被めっき板材を水平に取囲む第1のコイルと、上記被
めっき板材の板面と上記第1のコイルとをはさんでほぼ
対称に配され、軸線が上記板面にほぼ垂直な第2および
第3のコイルと、上記第1、第2および第3のコイルに
同一位相の高周波電流を供給する手段とを備えたことを
特徴とする溶融金属めっきの膜厚制御装置。
(1) In molten metal plating, in which the plate material to be plated is pulled upward from the molten metal with the plate surface almost vertical, and then cooled to solidify the molten metal, the plate material to be plated is horizontally held above the liquid surface of the molten metal. and second and third coils that are arranged approximately symmetrically across the plate surface of the plate material to be plated and the first coil, and whose axes are substantially perpendicular to the plate surface. and means for supplying high frequency currents of the same phase to the first, second and third coils.
(2)被めっき板材を板面をほぼ鉛直にして溶融金属中
から上方に引上げたのち冷却して溶融金属を凝固させる
溶融金属めっきにおいて、下方が広がった四角錐台状に
巻かれ、上記溶融金属の液面上方で上記被めっき板材を
水平に取囲むコイルと、同コイルに高周波電流を供給す
る手段とを備えたことを特徴とする溶融金属めっきの膜
厚制御装置。
(2) In molten metal plating, in which the plate material to be plated is pulled upward from the molten metal with the plate surface almost vertical, and then cooled to solidify the molten metal, the plate material is rolled into a truncated quadrangular pyramid shape with the bottom widened, and the molten metal is A film thickness control device for molten metal plating, comprising: a coil horizontally surrounding the plate material to be plated above the liquid surface of the metal; and means for supplying a high frequency current to the coil.
JP20688489A 1989-08-11 1989-08-11 Film thickness controller for hot dip metal coating Pending JPH0372063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20688489A JPH0372063A (en) 1989-08-11 1989-08-11 Film thickness controller for hot dip metal coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20688489A JPH0372063A (en) 1989-08-11 1989-08-11 Film thickness controller for hot dip metal coating

Publications (1)

Publication Number Publication Date
JPH0372063A true JPH0372063A (en) 1991-03-27

Family

ID=16530647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20688489A Pending JPH0372063A (en) 1989-08-11 1989-08-11 Film thickness controller for hot dip metal coating

Country Status (1)

Country Link
JP (1) JPH0372063A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131983A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Method of and device for controlling deposition of continuous hot metal dip coating
AU2009222514B2 (en) * 2008-11-11 2014-09-18 Vijay Yeshwant Moghe Wiping Excess Coating From Hot Dip Metal Coated Wires
JPWO2018066171A1 (en) * 2016-10-06 2019-07-18 新東工業株式会社 Surface characteristic inspection method and surface characteristic inspection apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131983A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Method of and device for controlling deposition of continuous hot metal dip coating
JP4661172B2 (en) * 2004-11-09 2011-03-30 Jfeスチール株式会社 Adhesion amount control method and adhesion amount control device for continuous molten metal plating
AU2009222514B2 (en) * 2008-11-11 2014-09-18 Vijay Yeshwant Moghe Wiping Excess Coating From Hot Dip Metal Coated Wires
JPWO2018066171A1 (en) * 2016-10-06 2019-07-18 新東工業株式会社 Surface characteristic inspection method and surface characteristic inspection apparatus

Similar Documents

Publication Publication Date Title
JPH0372063A (en) Film thickness controller for hot dip metal coating
WO2010058837A1 (en) Electromagnetic vibration control device
EP2167697B1 (en) Method and device for controlling the thickness of coating of a flat metal product
JP2000000648A (en) Method and apparatus for continuously casting steel
Fautrelle et al. Free surface controlled by magnetic fields
JPS61266560A (en) Hot dipping method to low coating weight
JPH116046A (en) Method for removing dross in continuous hot-dipping metal coating line and device therefor
JP2009154172A (en) Continuous casting method of aluminum killed steel
JP4547818B2 (en) Method for controlling the coating amount of hot dip galvanized steel sheet
CN100560781C (en) Surface modification method and device, turning unit and fluid machinery
JP2006083472A (en) Apparatus and method for floating molten metal for continuous hot-dip plating of metal strip
JPH04231448A (en) Wiping device for galvanizing equipment
JP2601067B2 (en) Hot-dip galvanized steel sheet
JP4661172B2 (en) Adhesion amount control method and adhesion amount control device for continuous molten metal plating
JPH10273764A (en) Method for controlling coating weight of continuous hot dip metal coating line and device therefor
CN100436637C (en) Device for hot dip coating metal strands
EP3377667B1 (en) Method and apparatus for applying a metal coating
JPS61227158A (en) Hot dipping method for sticking thin film
JP2556220B2 (en) Hot-dip galvanized steel sheet
JPH06447Y2 (en) Hot dip plating equipment
JPH0721567Y2 (en) Hot dip plating equipment
JP2530909Y2 (en) Edge overcoat prevention equipment for hot-dip plating
JP2619474B2 (en) High-speed hot-dip galvanizing method
JPH02254147A (en) Method for controlling coating weight on hot dip metal coated steel sheet
JP2837059B2 (en) Hot-dip metal plating equipment