JPH0371877B2 - - Google Patents

Info

Publication number
JPH0371877B2
JPH0371877B2 JP58180798A JP18079883A JPH0371877B2 JP H0371877 B2 JPH0371877 B2 JP H0371877B2 JP 58180798 A JP58180798 A JP 58180798A JP 18079883 A JP18079883 A JP 18079883A JP H0371877 B2 JPH0371877 B2 JP H0371877B2
Authority
JP
Japan
Prior art keywords
koji
cells
strain
aspergillus
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58180798A
Other languages
Japanese (ja)
Other versions
JPS6075280A (en
Inventor
Shigeomi Ushijima
Tadanobu Nakadai
Kinji Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp filed Critical Kikkoman Corp
Priority to JP58180798A priority Critical patent/JPS6075280A/en
Publication of JPS6075280A publication Critical patent/JPS6075280A/en
Publication of JPH0371877B2 publication Critical patent/JPH0371877B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/02Preparation of hybrid cells by fusion of two or more cells, e.g. protoplast fusion
    • C12N15/04Fungi

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Soy Sauces And Products Related Thereto (AREA)
  • Molecular Biology (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、プロトプラスト融合による高プロテ
アーゼ生産能を有し且つ高グルタミナーゼ生産能
を有する麹菌の製造法に関する。 醤油は、アミノ酸の旨味を主体とする調味料で
あるので、醤油の醸造に於いては窒素利用率の向
上とグルタミン酸生成量の向上に多大の考慮が払
われており、このようなことから醤油醸造業界に
とつて強大にプロテアーゼとグルタミナーゼを生
産する麹菌を得ることは極めて重要である。 一般に醤油用麹菌のプロテアーゼ生産能は208
単位/g麹であり、またグルタミナーゼ生産能は
3.19単位/g麹であることが知られている(醤研
Vol.7,No.4,1981,p166〜172「醤油用麹菌の分
類種による醸造特性の差異」における、p169の
「表4(醤油麹の酵素力の差)参照)。 従来、このような優良な麹菌を得る方法の1手
段として人工変異により酵素生産能を高くする方
法が知られているが、取得される変異株はプロテ
アーゼ或いはグルタミナーゼのうち一方について
親株に比べ高くとも他方は逆に低い場合が多く、
両方とも親株に比べ高い菌株を取得することは困
難であつた。 そこで、本発明者らは、高プロテアーゼ生産能
を有し且つ高グルタミナーゼ生産能を有する麹菌
を得る目的で種々検討を重ねた結果、アスペルギ
ルス属に属する、高プロテアーゼ生産株と高グル
タミナーゼ生産株とをプロトプラスト融合させ、
該融合細胞を高張再生培地に培養したところ、そ
こから高プロテアーゼ生産能を有し且つ高グルタ
ミナーゼ生産能を有する麹菌が取得できることを
知り、この知見に基いて本発明を完成した。 すなわち本発明は、アスペルギルス属に属す
る、210単位/g麹言以上の高プロテアーゼ生産
株と3.2単位/g麹以上の高グルタミナーゼ生産
株のそれぞれの培養細胞からプロトプラストを
得、これらをプロトプラスト融合させ、該融合細
胞を高張再生倍地に培養し、培養物から300単
位/g麹以上の高プロテアーゼ生産能を有し且つ
1.0単位/g麹以上の高グルタミナーゼ生産能を
有する麹菌を採取することを特徴とする麹菌の製
造法である。 以下、本発明で詳細に説明する。 先ず、本発明で使用される、アスペルギルス属
に属する210単位/g麹以上の高プロテアーゼ生
産株としては、アスペルギルス属に属し、プロテ
アーゼ生産能が上記値を有する菌株であればいず
れでもよく、醤油、味噌、清酒等の製造に用いら
れる醸造用麹菌の中からプロテアーゼ生産能の高
い菌株を検索することにより容易に入手すること
ができる。その具体例としてはアスペルギルス・
ソーヤATCC42249、同42250、同42251等が挙げ
られるが、更にこれらの変種又は変異株も使用す
ることができる。 また、アスペルギルス属に属する3.2単位/g
麹以上の高グルタミナーゼ生産株としては、アス
ペルギルス属に属し、グルタミナーゼ生産能が上
記値を有する菌株であればいずれでもよく、例え
ば醸造用麹菌の中からグルタミナーゼ生産能の高
い菌株を検索することにより容易に入手すること
ができる。その具体例としては、アスペルギル
ス・ソーヤ262(FERM−P2128)、同2165(FERM
P−7280)等が挙げられるが、更にこれらの変種
又は変異株も使用することができる。 次に上記生産株の培養細胞を得る方法としては
該生産株の分生胞子を栄養培地に培養することに
より得られる。ここに用いられる栄養培地として
は、麹菌が必要とする栄養源を含有するものであ
ればいずれでもよく、合成培地、半合成培地また
は天然培地が用いられる。合成培地としては炭素
源としてグルコース、サツカロース等、窒素源と
して硫安、硝安等が用いられる。その具体例とし
て例えばツアペツク(Czapek)培地に酵母エキ
ス0.5%及びカザミノ酸0.2%を加え、PH6.0に調
製したものを水で10倍に希釈した倍地(以下、ツ
アペツク変形培地と略記する)が挙げられる。ま
た天然培地の組成としては、炭素源として割砕小
麦、〓等、窒素源としてスキムミルク、脱脂大豆
粉等が挙げられる。また上記培地にリン酸、カリ
ウム、マグネシウム、カルシウム等の適当な無機
塩類を適宜使用することができ、さらに必要に応
じて菌の生育に必要なアミノ酸、ビタミン類等を
培地に添加使用することができる。 培養方法としては、上記の適当な培地、例えば
ツアペツク変形培地を常法により加熱殺菌処理し
たものに、純粋培養した麹菌の分生胞子を接種
し、25〜35℃で殆んど発芽胞子(胞子とそこから
伸びる菌子の長さを合わせたもの)の長さがもと
の胞子(培養開始時)外径の5〜15倍に生育する
のに充分な5〜15時間、静置、振盪、通気培養
等、好気的に培養する。また固定培養を行う場合
は、〓、小麦などの炭素源、大豆などの窒素源、
その他の有機質あるいは無機質を原料とし、これ
らを蒸煮など殺菌処理を行つた固体培地に種菌を
接種混合し、25〜38℃で、発芽胞子の長さがもと
の胞子外径の5〜15倍に生育するのに充分な時
間、無菌的に培養するのが好ましい。 本発明において、発芽胞子の長さがもとの胞子
外径の5〜15倍に生育した培養細胞を用いること
は重要である。即ち5倍未満であるときは麹菌の
プロトプラストの殆んど形成することができず、
また反対に15倍を越えると、麹菌のプロトプラス
トの形成率が低くなるので好ましくない。 次に、こうして得られた培養細胞からプロトプ
ラストを得るには、上記各々の発芽胞子につい
て、106〜108個/ml(高張液)の濃度の発芽胞子
懸濁液を調製し、各調製懸濁液を等量混合し、遠
心分離して集菌したのち、これに予じめ無菌処理
した細胞壁溶解酵素を添加し処理するか、又は
各々の発芽胞子懸濁液を遠心分離して集菌したの
ち、これを最初、細胞壁溶解酵素を添加して処理
を行い、次いで各処理液を等量混合することによ
り得られる。 ここに用いられる細胞壁溶解酵素としては、麹
菌の細胞壁を溶解する活性を有するものであれば
いずれもよく、セルラーゼ、β−1,3−グルカ
ナーゼ及びキナチーゼ等を単独、または混合して
用い、或いは一般に細胞壁溶解酵素として用いら
れている混合酵素等を用いることができる。本発
明者らが実験したところ、これらの酵素のうちβ
−1,3−グルカナーゼとキチナーゼを併用する
と、麹菌のプロトプラストの形成率を著しく高め
ることが判明したので、上記2つの酵素を併用す
ることが好ましい。 上記キチナーゼとしては、キチナーゼ活性を有
する酵素剤が用いられ、例えば米国ICN社製キチ
ナーゼ、No.100466、米国シグマ社製キチナーゼNo.
C−6137、生化学工業社販売キチナーゼ・フアン
ガル(fungal)No.100290等が挙げられる。 またβ−1,3−グルカナーズとしてはキリン
ビール社製、ザイモリアーゼ(Zymolyase)
5000、同60000及び本発明者らが微生物パチラ
ス・サーキユランスIAM1165及びストレプトマ
イセス0143(FERM P−7276)のそれぞれの培
養液から調製した2つの粗酵素等が挙げられる
が、特に後者の2つの粗酵素が好ましい。 上記バチラス・サーキユランスIAM1165から
調製した粗酵素及びストレプトマイセス0143株か
ら調製した粗酵素は以下のようにして得られたも
のである。 〔〕 パチラス・サーキユランスIAM1165からの
粗酵素調製法 肉エキス1%、ポリペプトン1%、麹菌湿潤
菌体2%及び水からなる倍地(PH7.2)1を
5容三角フラスコに入れ、高圧減菌としたも
のに、麹菌湿潤菌体を入れない以外は上記と全
く同じ培地で前培養(30℃で48時間)したパチ
ラス・サーキユランスIAM1165の種菌液10ml
を接種し、30℃で48時間、振盪培養(170r.p.
m.)した。こうして得た培養液から粗酵素を
得るには、これを遠心分離して上清液を分離取
得し、これに硫安を加えて常法により塩析し、
生成した沈澱区分を採取した。これを水25mlに
溶解し、セロフアンチユーブに入れ、1夜5℃
で蒸留水を用いて透析処理し、得られた透析内
液を凍結乾燥し、粗酵素(以下、「バチラス・
サーキユランス起源の粗酵素」と称す)を得
た。 〔〕 ストレプトマイセス0143からの粗酵素調製
法 培地組成 1 KH2PO4 0.2% 酵母エキス 0.05% Kc1 0.05% グルコース 0.25% MgSO4・7H2O 0.1% ネオペプトン 0.1% NaC1 0.05% NaNO3 0.1% 麹菌湿潤菌体 2.1% 蒸留水 1.0 PH 5.0 上記組成の倍地1(PH5.0)に、これと同一組
成の倍地にて前培養したストレプトマイセス
0143(FERM−P−7276)の種菌液10mlを接種
し、30℃で培養液のPHが7.0に上昇する迄(7
日間)、振盪培養(170r.p.m.)した。以下、上
記パチラス・サーキユランスの培養液から粗酵
素を得る方法と全く同様にして、培養液から粗
酵素(以下、「ストレプトマイセス起源の粗酵
素」と称す)を得た。 尚、上記で得られる2つの粗酵素は、β−1,
3−グルカンを基質として、常法によりβ−1,
3−グルカナーゼ活性の有無を調べた結果、強力
に基質を分解することが確認され、β−1,3−
グルカナーゼとして使用できることが判明した。 また、洗滌し、ホモゲナイズされた麹菌湿潤菌
体を含む寒天平板培地に上記の両粗酵素は作用
し、透明なハローを形成することから、該粗酵素
はいずれも麹菌菌体の細胞壁を溶解することも確
認された。 次に、麹菌の発芽胞子と細胞壁溶解酵素との処
理条件について説明する。すなわち、細胞壁溶解
酵素の使用濃度は、麹菌発芽胞子の細胞壁を溶解
し、完全なプロトプラストを得るのに充分な濃度
とすることが好ましく、例えばバチラス・サーキ
ユランス起源の粗酵素の場合、10〜50mg/ml、好
ましくは25〜35mg/mlである。またキチナーゼを
併用する場合、その使用濃度は1〜10mg/ml、好
ましくは3〜5mg/mlである。酵素処理の時間は
麹菌の細胞壁を溶解し、プロトプラストを得るの
に充分な時間とすることが必要で、通常30分〜6
時間が好ましい。またPHは6.0〜7.0、特に6.5が好
ましい。 次いで、酵素処理が終了したら、菌体を保護す
る洗滌液、例えば0.7〜1.5Mソルビトール或いは
0.5〜1.0M塩化カリウム溶液等で、菌体を洗滌
し、麹菌の細胞壁が溶解除去されたプロトプラス
トを得る。 次に、ここで得られたプロトプラストの融合処
理及び融合プロトプラストの再生は、例えば、
Ann′e等の方法〔J.Gen.Microbiol.,92,413
(1976)〕に準じて行うことができる。 即ち、0.7〜1.5M.ソルビトール、5〜100mM.
CaC2及び30〜80mMグリシンを含む15〜33%ポ
リエチレングリコール6000(PH7.5)中に、上記で
得られた高プロテアーゼ生産株と高グルタミナー
ゼ生産株のそれぞれの洗滌プロトプラストを添加
混合し、20〜30℃で15〜45分処理することにより
プロトプラスト融合細胞を得ることができる。 次に、こうして得られたプロトプラスト融合細
胞の再生は、プロトプラストを保護しつつ細胞壁
を再生することが可能な高張再生培地、例えば
0.7〜1.5Mのソルビトールを含む米麹汁(又は麦
芽汁)に寒天2%を含有させた高張再生寒天培地
(PH6.5)及び、0.7〜1.5Mのソルビツトをツアペ
ツク液体培地に寒天2%を含有させた高張最少再
生寒天培地(PH6.5)に上記で得られたプロトプ
ラスト融合細胞を移し、25℃〜35℃で2〜10日間
培養する方法により行われる。こうして、プロト
プラストの融合細胞は、その周囲に細胞壁が再生
し、培地上で生育して再生コロニーを形成する。 次に、こうして得られた再生コロニーから、プ
ロトプラスト融合細胞の選別は、予じめその親株
である高プロテアーゼ生産株と、親株である高グ
ルタミナーゼ生産株の洗滌プロトプラストについ
て、それぞれ融合細胞の場合と同様に再生させ、
得られた再生コロニーの形態学的性質(色相、色
彩、明度、光沢、形状、大きさ等)及び生理学的
性質等の特徴を把握しておくことによつて、それ
らとは異なる特徴を備えた再生コロニーとして、
選別採取することができる。 尚、上記高プロテアーゼ生産株と高グルタミナ
ーゼ生産株のそれぞれの親株の分生胞子に、人工
変異処理(X線、紫外線等の照射、ニトロソグア
ニジン、エチルメチルサルフイート等の化学変異
処理)を施して、それぞれ親株の分生胞子に特徴
ある色や各種の栄養要求性、例えばアラニン、メ
チオニン等のアミノ酸要求性、ビオチン、ニコチ
ン酸、パラアミノ安息香酸等の要求性を付与した
変異株を得、この変異株を親株として上記と同様
に酵素処理、プロトプラスト融合処理を行い、次
いで再生し、再生コロニーとすると、親株である
変異株は特徴ある色を有し、この色を有しないプ
ロトプラスト融合細胞を明確に区別し、採取する
ことができる。また栄養要求変異株のプロトプラ
ストは再生の際、特定の栄養源が存在しないと生
育出来ないので、特定の栄養源が存在しなくても
生育できるプロトプラスト融合細胞を容易に区別
し採取することができる。このように両親株に色
及び栄養要求性等のマーカーを付しておくと、目
的とする融合細胞の分離操作が極めて容易とな
る。 上記で得られる高プロテアーゼ生産株の変異株
としては、例えば分生胞子が白色で、パラアミノ
安息香酸要求性の付与されたアスペルギルス・ソ
ーヤW2−91(FERM P−7277)が挙げられ、ま
た高グルタミナーゼ生産株の変異株としては、例
えば分生胞子が黄色で、ニコチン酸要求生の付与
されたアスペルギルス・ソーヤM12−2−61
(FERM P−7281)等が挙げられる。 次に、こうして高張再生培地で再生したプロト
プラスト融合株は親株に戻り易いヘテロカリオン
である場合が多く、不安定である。そこで、これ
らヘテロカリオン株の分生胞子に、小田等の方法
〔Agric.Biol.Chem.,27,758(1963)〕に従つて、
紫外線照射(距離39cm、1〜5分)を施し、検定
することによつて、安定な2倍体、即ち目的とす
る麹菌菌体を得ることができる。 例えば、アスペルギルス・ソーヤD−78は、こ
うして得た高プロテアーゼ生産能を有し且つ高グ
ルタミナーゼ生産能を有する安定な2倍体株であ
り、工業技術院微生物工業技術研究所に微工研菌
寄第7279号として寄託されている。 本発明の利点は次の通りである。従来一般に採
用されていた紫外線照射等の変異処理による変異
株の分離は、極めて偶然性が高く、スクリーニン
グに膨大な労力を要するなど効率が極めて悪く、
また、たまたま酵素生産性にすぐれた変異株が得
られても、直ちに復帰突然変異を起したりして実
用に供し得ないものが多かつた。そして、変異処
理による変異株の取得法で最も大きな欠点は、取
得される変異株はプロテアーゼ或いはグルタミナ
ーゼのうち一方については親株に比べ高くとも、
他方は逆に低い場合が多く、両方とも親株に比べ
高い菌株を取得することは困難であつたことであ
る。 これに対し、本発明によれば、高プロテアーゼ
生産能を有し且つ高グルタミナーゼ生産能を有す
る麹菌を効率よく採取り、製造することができ
る。 また、本発明で得られた麹菌を醤油麹原料に接
種培養して麹をつくり、この麹を用いて仕込みを
行い醤油を醸造すると、醤油原料は良く分解され
て窒素利用率が約3〜10%向上するばかりか、グ
ルタン酸が著しく増加するので、非常に旨味の強
い醤油が得られるという、産業上画期的な効果を
奏する。(実験例1、第1表の結果参照) また、従来、プロトプラス融合による醤油麹菌
や醸造用麹菌の育種法がいくつか知られている
が、麹菌のプロトプラストの形成率が低くプロト
プラスト融合技術を用いる研究の大きな障害とな
つていたが、培養細胞として、発芽胞子の長さが
もとの胞子外径の5〜15倍の発芽胞子を用いるこ
とにより、麹菌のプロトプラストの形成率を著し
く高めることが可能となり、本発明方法によれば
目的とする麹菌菌体を効率良く得ることができ
る。(実験例2の第2表の結果参照) 以下、本発明の効果を実験例を挙げて説明す
る。 実験例 1 下記実施例2で得られた高プロテアーゼ生産能
を有し且つ高グルミナーゼ生産能を有する麹菌ア
スペルギルス・ソーヤD−78(FERM P−7279)
を、脱脂大豆300gと炒熬割砕小麦300gからなる
醤油原料に接種し、麹蓋にて通常の醤油麹製造法
に従つて製麹し、得られた麹を25%食塩水1200ml
に仕込み、常法の諸味発酵管理を行い、30℃で3
ケ月発酵熟成させた。また対称方法として、両親
株を用いて同様に熟成醤油諸味を得た。こうして
得られた諸味液汁について総窒素(TNと略記す
る)、グルタミン酸(Glu)、Glu/TN及び窒素利
用率を測定した。その結果を第1表に示す。
The present invention relates to a method for producing Aspergillus oryzae having a high protease-producing ability and a high glutaminase-producing ability by protoplast fusion. Soy sauce is a seasoning whose flavor is mainly derived from amino acids, so when brewing soy sauce, great consideration is given to improving the nitrogen utilization rate and increasing the amount of glutamic acid produced. It is extremely important for the brewing industry to obtain koji molds that can produce powerful protease and glutaminase. In general, the protease production capacity of koji mold for soy sauce is 208
Unit/g koji, and glutaminase production ability is
It is known that 3.19 units/g of koji (Shoken)
Vol. 7, No. 4, 1981, p 166-172 "Differences in brewing characteristics depending on the classification of koji mold for soy sauce", p 169 "Table 4 (differences in enzymatic power of soy sauce koji)"). One method of obtaining superior koji molds is to increase enzyme production ability through artificial mutation, but the obtained mutant strain may have higher levels of protease or glutaminase than the parent strain, but conversely the other may be lower. In many cases,
In both cases, it was difficult to obtain strains that were higher than the parent strain. Therefore, as a result of various studies aimed at obtaining Aspergillus aspergillus having high protease-producing ability and high glutaminase-producing ability, the present inventors have developed a high-protease-producing strain and a high-glutaminase-producing strain belonging to the genus Aspergillus. protoplast fusion,
When the fused cells were cultured in a hypertonic regeneration medium, it was found that Aspergillus oryzae having a high protease-producing ability and a high glutaminase-producing ability could be obtained therefrom, and based on this knowledge, the present invention was completed. That is, the present invention obtains protoplasts from cultured cells of a high protease producing strain of 210 units/g Koji or more and a high glutaminase producing strain of 3.2 units/g Koji or more belonging to the genus Aspergillus, and fuses these with protoplasts. The fused cells are cultured in a hypertonic regeneration medium, and the culture has a high protease production ability of 300 units/g or more of koji and
This is a method for producing koji mold, which is characterized by collecting koji mold having a high glutaminase production ability of 1.0 units/g koji or more. The present invention will be explained in detail below. First, the strain belonging to the genus Aspergillus used in the present invention and producing a high protease of 210 units/g or more of koji may be any strain as long as it belongs to the genus Aspergillus and has the above-mentioned protease production ability. It can be easily obtained by searching for strains with high protease production ability from among the brewing koji molds used in the production of miso, sake, etc. A specific example is Aspergillus
Examples include Sawyer ATCC 42249, ATCC 42250, and 42251, but variants or mutant strains of these can also be used. Also, 3.2 units/g belonging to the Aspergillus genus
As a strain producing glutaminase higher than that of koji, any strain belonging to the genus Aspergillus and having the above-mentioned glutaminase production ability may be used. can be obtained. Specific examples include Aspergillus sawyer 262 (FERM-P2128) and Aspergillus sawyer 2165 (FERM-P2128).
P-7280), but variants or mutant strains of these can also be used. Next, cultured cells of the above production strain can be obtained by culturing conidia of the production strain in a nutrient medium. The nutrient medium used here may be any medium as long as it contains the nutrients required by Aspergillus oryzae, and a synthetic medium, a semi-synthetic medium, or a natural medium may be used. As a synthetic medium, glucose, sutucarose, etc. are used as a carbon source, and ammonium sulfate, ammonium nitrate, etc. are used as a nitrogen source. A specific example is Czapek medium, which is prepared by adding 0.5% yeast extract and 0.2% casamino acids to a pH of 6.0 and then diluted 10 times with water (hereinafter abbreviated as Czapek modified medium). can be mentioned. Further, the composition of the natural medium includes cracked wheat, etc. as a carbon source, and skim milk, defatted soybean flour, etc. as a nitrogen source. In addition, appropriate inorganic salts such as phosphoric acid, potassium, magnesium, and calcium can be appropriately used in the above medium, and amino acids, vitamins, etc. necessary for the growth of bacteria can be added to the medium as necessary. can. As for the culture method, pure cultured conidia of Aspergillus oryzae are inoculated into the above-mentioned suitable medium, such as Czapetz modified medium, which has been heat sterilized by a conventional method. Leave it still, shake it for 5 to 15 hours, which is enough for the spores to grow to 5 to 15 times the outer diameter of the original spores (the sum of the length of the mycelium extending from the spores). Cultivate in an aerobic manner, such as by aerobic cultivation. In addition, when performing fixed culture, carbon sources such as wheat, nitrogen sources such as soybeans,
Inoculum is inoculated and mixed into a solid medium that has been sterilized by steaming or other sterilization using other organic or inorganic materials as raw materials, and the germinated spore length is 5 to 15 times the original spore outer diameter. It is preferable to culture aseptically for a sufficient period of time to ensure proper growth. In the present invention, it is important to use cultured cells in which the length of germinated spores has grown to 5 to 15 times the outer diameter of the original spores. That is, when the amount is less than 5 times, almost no protoplasts of Aspergillus oryzae can be formed,
On the other hand, if it exceeds 15 times, the formation rate of protoplasts of Aspergillus oryzae becomes low, which is not preferable. Next, to obtain protoplasts from the cultured cells thus obtained, a germinated spore suspension with a concentration of 10 6 to 10 8 cells/ml (hypertonic solution) is prepared for each of the above-mentioned germinated spores, and After mixing equal amounts of the suspension and centrifuging to collect the bacteria, either add a cell wall lytic enzyme that has been previously sterilized and treat the suspension, or centrifuge each germinated spore suspension to collect the bacteria. Thereafter, this is first treated by adding a cell wall lytic enzyme, and then equal amounts of each treatment solution are mixed. The cell wall lytic enzyme used here may be any enzyme as long as it has the activity of lysing the cell wall of Aspergillus oryzae, and cellulase, β-1,3-glucanase, quinatase, etc. may be used alone or in combination, or in general. Mixed enzymes used as cell wall lytic enzymes can be used. Experiments conducted by the present inventors revealed that among these enzymes, β
It has been found that the combination of -1,3-glucanase and chitinase significantly increases the protoplast formation rate of Aspergillus oryzae, so it is preferable to use the above two enzymes together. As the chitinase, an enzyme agent having chitinase activity is used, such as Chitinase No. 100466 manufactured by ICN, USA, Chitinase No. 100466, manufactured by Sigma Corporation, USA.
C-6137, Chitinase Fungal No. 100290 sold by Seikagaku Kogyo Co., Ltd., and the like. In addition, as β-1,3-glucanase, Zymolyase manufactured by Kirin Brewery Co., Ltd.
5000, 60000, and two crude enzymes prepared by the present inventors from the respective culture solutions of the microorganisms Pachirus circulans IAM1165 and Streptomyces 0143 (FERM P-7276). Enzymes are preferred. The crude enzyme prepared from Bacillus circulans IAM1165 and the crude enzyme prepared from Streptomyces strain 0143 were obtained as follows. [] Crude enzyme preparation method from Pacillus circulans IAM1165 Place 1 medium (PH7.2) consisting of 1% meat extract, 1% polypeptone, 2% wet bacterial cells of Aspergillus and water in a 5-volume Erlenmeyer flask and sterilize under high pressure. Add 10 ml of the inoculum solution of Pacillus circulans IAM1165, which was precultured (48 hours at 30°C) in the same medium as above, except that the wet cells of Aspergillus oryzae were not added.
was inoculated and incubated at 30°C for 48 hours with shaking (170 r.p.
m.) did. To obtain the crude enzyme from the culture solution obtained in this way, centrifuge it to separate and obtain the supernatant, add ammonium sulfate to this and salt out using a conventional method.
The produced precipitate fraction was collected. Dissolve this in 25ml of water, put it in a cellophane tube, and keep it at 5℃ overnight.
The resulting dialyzed fluid was lyophilized and purified with crude enzyme (hereinafter referred to as "Bacillus Bacillus").
circulans-derived crude enzyme) was obtained. [] Crude enzyme preparation method from Streptomyces 0143 Medium composition 1 KH 2 PO 4 0.2% Yeast extract 0.05% Kc1 0.05% Glucose 0.25% MgSO 4・7H 2 O 0.1% Neopeptone 0.1% NaC1 0.05% NaNO 3 0.1% Aspergillus oryzae Wet bacterial cells 2.1% Distilled water 1.0 PH 5.0 Streptomyces precultured in medium 1 (PH5.0) with the above composition and the same composition as this.
0143 (FERM-P-7276) was inoculated with 10 ml of inoculum solution and kept at 30℃ until the pH of the culture solution rose to 7.0 (7.
(days) and shaking culture (170 r.pm). Hereinafter, a crude enzyme (hereinafter referred to as "crude enzyme originating from Streptomyces") was obtained from the culture solution in exactly the same manner as the method for obtaining the crude enzyme from the culture solution of Pacillus circulans. The two crude enzymes obtained above are β-1,
Using 3-glucan as a substrate, β-1,
As a result of examining the presence or absence of 3-glucanase activity, it was confirmed that it strongly degrades substrates, and β-1,3-
It was found that it can be used as a glucanase. In addition, since both of the above crude enzymes act on the agar plate medium containing the washed and homogenized wet cells of Aspergillus oryzae and form a transparent halo, both of the crude enzymes dissolve the cell wall of the Aspergillus oryzae cells. This was also confirmed. Next, conditions for treating germinated spores of Aspergillus oryzae with a cell wall lytic enzyme will be explained. That is, the concentration of the cell wall lytic enzyme used is preferably a concentration sufficient to dissolve the cell wall of the germinating spores of Aspergillus oryzae and obtain a complete protoplast; for example, in the case of a crude enzyme derived from Bacillus circulans, the concentration is 10 to 50 mg/ ml, preferably 25-35 mg/ml. When chitinase is used in combination, the concentration used is 1 to 10 mg/ml, preferably 3 to 5 mg/ml. The enzyme treatment time needs to be long enough to dissolve the cell wall of the koji mold and obtain protoplasts, and is usually 30 minutes to 6 minutes.
time is preferable. Further, the pH is preferably 6.0 to 7.0, particularly 6.5. Next, after the enzyme treatment is completed, wash with a washing solution that protects the bacterial cells, such as 0.7-1.5M sorbitol or
The cells are washed with a 0.5-1.0M potassium chloride solution, etc., to obtain protoplasts in which the cell wall of Aspergillus aspergillus is dissolved and removed. Next, the fusion treatment of the protoplasts obtained here and the regeneration of the fused protoplasts are carried out by, for example,
The method of Ann′e et al. [J.Gen.Microbiol., 92 , 413
(1976)]. i.e. 0.7-1.5M. Sorbitol, 5-100mM.
The washed protoplasts of the high protease producing strain and the high glutaminase producing strain obtained above were added and mixed in 15 to 33% polyethylene glycol 6000 (PH7.5) containing CaC 2 and 30 to 80 mM glycine, and then mixed for 20 to 30 minutes. Protoplast fusion cells can be obtained by treatment at 30°C for 15 to 45 minutes. The protoplast-fused cells thus obtained are then regenerated using a hypertonic regeneration medium capable of regenerating the cell wall while protecting the protoplasts, e.g.
A hypertonic regenerated agar medium (PH6.5) containing 2% agar in rice koji juice (or wort) containing 0.7 to 1.5M sorbitol, and 2% agar in a Czapek liquid medium containing 0.7 to 1.5M sorbitol. The protoplast fusion cells obtained above are transferred to a hypertonic minimally regenerating agar medium (PH6.5) containing the culture medium and cultured at 25° C. to 35° C. for 2 to 10 days. In this way, the protoplast fused cell regenerates a cell wall around it, grows on the medium, and forms a regenerated colony. Next, from the regenerated colonies obtained in this way, protoplast fusion cells are selected in advance by washing the protoplasts of the parent strain, the high protease producing strain, and the parent strain, the high glutaminase producing strain, in the same manner as for the fused cells. to play,
By understanding the morphological properties (hue, color, brightness, gloss, shape, size, etc.) and physiological properties of the obtained regenerated colonies, we can identify the characteristics that are different from those. As a regenerating colony,
Can be selectively collected. In addition, the conidia of the parent strains of the high protease producing strain and the high glutaminase producing strain were subjected to artificial mutation treatment (irradiation with X-rays, ultraviolet rays, etc., chemical mutation treatment with nitrosoguanidine, ethyl methyl sulfate, etc.). , we obtained mutant strains that gave the conidia of the parent strain a characteristic color and various nutritional requirements, such as amino acid requirements such as alanine and methionine, and requirements for biotin, nicotinic acid, and para-aminobenzoic acid. When the parent strain is subjected to enzyme treatment and protoplast fusion treatment in the same manner as above, and then regenerated to form a regenerated colony, the mutant strain that is the parent strain has a characteristic color, and protoplast fusion cells that do not have this color can be clearly identified. Can be distinguished and collected. Additionally, protoplasts of auxotrophic mutants cannot grow unless a specific nutrient source is present during regeneration, so protoplast fusion cells that can grow even in the absence of a specific nutrient source can be easily distinguished and collected. . By attaching markers such as color and auxotrophy to the parent strains in this way, it becomes extremely easy to separate the desired fused cells. Examples of mutant strains of the high protease producing strain obtained above include Aspergillus sawjae W2-91 (FERM P-7277), which has white conidia and is endowed with a para-aminobenzoic acid requirement; Examples of mutant strains of the production strain include Aspergillus sojae M12-2-61, which has yellow conidia and is endowed with nicotinic acid auxotrophs.
(FERM P-7281), etc. Next, protoplast fusion strains regenerated in this hypertonic regeneration medium are often heterokaryons that easily return to the parent strain and are therefore unstable. Therefore, conidia of these heterokaryon strains were treated according to the method of Oda et al. [Agric.Biol.Chem., 27 , 758 (1963)].
By applying ultraviolet irradiation (distance 39 cm, 1 to 5 minutes) and assaying, stable diploid, ie, the desired koji mold cells can be obtained. For example, Aspergillus sojae D-78 is a stable diploid strain that has a high protease-producing ability and a high glutaminase-producing ability, and was submitted to the Institute of Microbiological Technology, Agency of Industrial Science and Technology. Deposited as No. 7279. The advantages of the invention are as follows. Isolation of mutant strains by mutation treatments such as ultraviolet irradiation, which have been commonly used in the past, is highly random, requires a huge amount of labor for screening, and is extremely inefficient.
Moreover, even if mutant strains with excellent enzyme productivity were obtained by chance, many of them immediately underwent reverse mutation and could not be put to practical use. The biggest drawback of the method of obtaining mutant strains through mutation treatment is that even though the obtained mutant strain has a higher level of protease or glutaminase than the parent strain,
On the other hand, it was often low, and it was difficult to obtain strains that were higher than the parent strain in both cases. In contrast, according to the present invention, Aspergillus oryzae having high protease-producing ability and high glutaminase-producing ability can be efficiently collected and produced. In addition, when the koji mold obtained in the present invention is inoculated and cultured into soy sauce koji raw material to make koji, and this koji is used to prepare and brew soy sauce, the soy sauce raw material is well decomposed and the nitrogen utilization rate is approximately 3 to 10%. Not only does this improve the glutaric acid content, but it also significantly increases the amount of glutaric acid, producing a soy sauce with an extremely strong flavor, which is an industrially groundbreaking effect. (Refer to the results in Experimental Example 1 and Table 1) In addition, several breeding methods for soy sauce koji mold and brewing koji mold using protoplast fusion have been known, but the protoplast formation rate of koji mold is low, and the protoplast fusion technology is not suitable. However, by using germinated spores with a length 5 to 15 times the original spore outer diameter as cultured cells, the rate of protoplast formation of Aspergillus aspergillus can be significantly increased. According to the method of the present invention, the desired koji mold cells can be obtained efficiently. (See the results in Table 2 of Experimental Example 2) Hereinafter, the effects of the present invention will be explained with reference to experimental examples. Experimental Example 1 Koji mold Aspergillus sojae D-78 (FERM P-7279) having high protease production ability and high gluminase production ability obtained in Example 2 below
was inoculated into a soy sauce raw material consisting of 300 g of defatted soybeans and 300 g of roasted cracked wheat, and made into koji using a koji lid according to the usual soy sauce koji manufacturing method.
The moromi fermentation is controlled by the usual method, and the fermentation temperature is 30°C.
Fermented and aged for a month. In addition, as a symmetrical method, aged soy sauce moromi was similarly obtained using both parent strains. Total nitrogen (abbreviated as TN), glutamic acid (Glu), Glu/TN, and nitrogen utilization rate were measured for the moromi soup thus obtained. The results are shown in Table 1.

【表】 実験例 2 後記実施例1において、培養細胞として発芽胞
子の長さがいろいろと異なる発芽胞子を用いる以
外は、実施例1と全く同様にして、麹菌のプロト
プラストを得、その形成率を調べた。 その結果を第2表に示す。
[Table] Experimental Example 2 In Example 1 described later, protoplasts of Aspergillus oryzae were obtained in exactly the same manner as in Example 1, except that germinated spores with various lengths were used as cultured cells, and their formation rate was determined. Examined. The results are shown in Table 2.

【表】【table】

【表】 実施例 1 高プロテアーゼ生産株(アスペルギルス・ソー
ヤATCC42251)及び、高グルタミナーゼ生産株
〔アスペルギルス・ソーヤ2165(FERM P−
7280)〕を、それぞれ30℃で66時間培養した米麹
汁スラント培地より分生胞子を採取し、これをそ
れぞれ0.01%ソルビタン脂肪酸エステル溶液「ソ
ルゲンTW−60(第1工業製薬社製)」に分散し、
1〜5×107個/mlの胞子懸濁液を調製した。 次いで、この胞子懸濁液1mlをツアペツク変形
培地30mlに接種し、150ml容三角フラスコ内で30
℃で12時間振盪培養し、発芽胞子の長さがもとの
胞子外径の10倍の発芽胞子(培養細胞)懸濁液を
得た。 次いで、発芽胞子懸濁液を遠心分離(4500g、
20分)して発芽胞子を集め、これを充分水洗滌
し、水切りしたのち、細胞壁溶解酵素1mlと混和
し、27℃で2時間、ゆるやかに振盪(毎分50〜60
回往復)して酵素処理し、それぞれ麹菌のプロト
プラストを得た。 ここに用いた細胞壁溶解酵素は、バチラス・サ
ーキユランス起源の粗酵素と市販のキチナーゼ
(米国ICN社製)をそれぞれ溶液1mlに30mg及び
5mgの割合で溶解し得られたものである。 次に、こうして得たプロトプラストをG−3規
格のガラスフイルターによる分離し、これを高張
液(0.8Mソルビトール溶液)で数回繰り返し洗
滌し、得られた洗滌プロトプラストを高張液1ml
に移し、懸濁する。 次いで、それぞれプロトプラストが懸濁された
高張液を混合し、20℃で遠心分離(700g、15分)
して、混合プロトプラストのペレツトを採取し
た。これを0.8Mソルビトール、10mMCaCl2C2
び50mMグリシンを含む20%ポリエチレングリコ
ール6000(PH7.5)溶液1mlと混合し、25℃で30
分プロトプラスト融合反応を行い、プロトプラス
ト融合細胞を得た。 次いで、プロトプラスト融合細胞の再生は、該
融合細胞を高張液で適当な細胞の濃度まで希釈し
これを予じめシヤーレ内に流し固めた高張再生寒
天培地〔0.8Mソルビトールを含む糖濃度8度の
米麹汁寒天培地(寒天2%)〕に播種し、その上
から、寒天0.5%以外は上記と全く同じ高張再生
寒天培地を流し固化重層させ、30℃で2〜5日間
培養し、プロトプラスト融合細胞の再生コロニー
を得た。 次に、ここで得られた再生コロニーの中から、
両親株のプロトプラストが形成するコロニーとは
異なる形質を有する再生コロニーを選び、そこか
らプロトプラスト融合再生株を採取した。 次いで、採取したプロトプラスト融合再生株を
米麹汁スラント培地に接種し、30℃で4日培養し
て分生胞子を得、この胞子懸濁液に39cmの距離か
ら紫外線を1分間照射し、得られた胞子を米麹汁
平板培地に塗布し、30℃で4日間培養し、生じた
コロニーの中から、本発明の目的とする高プロテ
アーゼ活性を有し且つ高グルタミナーゼ活性を有
する麹菌菌体〔アスペルギルス・ソーヤD−24
(FERM P−7278)〕を採取した。 得られた本発明麹菌菌体とその両親株の酵素生
産能について調べた。 その結果を第3表に示す。
[Table] Example 1 High protease producing strain (Aspergillus sojae ATCC42251) and high glutaminase producing strain [Aspergillus sojae 2165 (FERM P-
7280)] was cultured for 66 hours at 30°C, conidia were collected from rice malt juice slant medium, and each was added to a 0.01% sorbitan fatty acid ester solution "Sorgen TW-60 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)". dispersed,
A spore suspension of 1 to 5×10 7 cells/ml was prepared. Next, 1 ml of this spore suspension was inoculated into 30 ml of Czapek modified medium, and 30 ml of this spore suspension was inoculated in a 150 ml Erlenmeyer flask.
The cells were cultured with shaking at ℃ for 12 hours to obtain a suspension of germinated spores (cultured cells) in which the length of the germinated spores was 10 times the outer diameter of the original spores. Then, the germinated spore suspension was centrifuged (4500g,
20 minutes), collect the germinated spores, wash them thoroughly with water, drain the water, mix with 1 ml of cell wall lytic enzyme, and gently shake at 27°C for 2 hours (50 to 60 times per minute).
The cells were then treated with enzymes to obtain protoplasts of Aspergillus oryzae. The cell wall lytic enzyme used here was obtained by dissolving a crude enzyme originating from Bacillus circulans and a commercially available chitinase (manufactured by ICN, USA) at a ratio of 30 mg and 5 mg in 1 ml of solution, respectively. Next, the protoplasts obtained in this way were separated using a G-3 standard glass filter, and washed several times with a hypertonic solution (0.8M sorbitol solution).
Transfer to and suspend. Next, the hypertonic solutions in which protoplasts were suspended were mixed and centrifuged at 20°C (700g, 15 minutes).
A pellet of mixed protoplasts was collected. This was mixed with 1 ml of 20% polyethylene glycol 6000 (PH 7.5) solution containing 0.8 M sorbitol, 10 mM CaCl 2 C 2 and 50 mM glycine and heated at 25°C for 30 min.
A minute protoplast fusion reaction was performed to obtain protoplast fused cells. Next, the protoplast fused cells are regenerated using a hypertonic regeneration agar medium [containing 0.8 M sorbitol and a sugar concentration of 8°C] that has been diluted to an appropriate cell concentration with a hypertonic solution and poured in advance into a shear dish. Rice malt juice agar medium (2% agar)] was plated with the same hypertonic regeneration agar medium as above except for 0.5% agar, solidified and overlaid, and cultured at 30°C for 2 to 5 days to induce protoplast fusion. A regenerated colony of cells was obtained. Next, from among the regenerated colonies obtained here,
A regenerated colony with traits different from those formed by the protoplasts of the parent strains was selected, and a protoplast-fused regenerated strain was collected from it. Next, the collected protoplast fusion regenerated strain was inoculated into rice malt juice slant medium and cultured at 30°C for 4 days to obtain conidia, and this spore suspension was irradiated with ultraviolet rays for 1 minute from a distance of 39 cm. The resulting spores were applied to a rice malt juice plate medium and cultured at 30°C for 4 days. Among the resulting colonies, Aspergillus aspergillus cells having high protease activity and high glutaminase activity, which is the object of the present invention, were selected. Aspergillus sawya D-24
(FERM P-7278)] was collected. The enzyme production ability of the obtained Aspergillus oryzae cells of the present invention and their parent strains was investigated. The results are shown in Table 3.

【表】 実施例 2 高プロテアーゼ生産株として、分生胞子が白色
で、パラアミノ安息香酸要求性の付与さえたアス
ペルギルス・ソーヤW2−91(FERM P−7277)
を用い、高グルタミナーゼ生産株として、分生胞
子が黄色で、ニコチン酸要求性の付与されたアス
ペルギルス・ソーヤM12−2−61(FERM P−
7281)を用い、プロトプラスト融合細胞の高張再
生培地として、高張最少再生寒天培地〔0.8Mソ
ルビトールを含むツアペツク寒天培地〕を用いる
以外は実施例1と全く同様にしてプロトプラスト
融合再生株を採取した。 次に、ここで得られた再生株を米麹汁スラント
培地に接種し、30℃で4日間培養して、緑色、黄
色、白色の胞子をもつテロカリオン株を得、得ら
れたヘテロカリオン株の胞子に、39cmの距離から
紫外線を1分間照射し、得られた胞子を再び最少
寒天平板培地に塗布し、30℃で4日間培養して、
緑色のみの胞子から成る、安定なコロニーを形成
する麹菌菌体を得た。この麹菌菌体の中から高プ
ロテアーゼ生産能を有し且つ高グルタミナーゼ生
産能を有する一菌株、アスペルギルス・ソーヤD
−78(FERM P−7279)を得た。 次に、こうして得られた本発明麹菌菌体とその
両親株の酵素生産能について調べた。 その結果を第4表に示す。
[Table] Example 2 Aspergillus sojae W2-91 (FERM P-7277), which has white conidia and is endowed with para-aminobenzoic acid requirement, as a high protease producing strain.
As a high glutaminase producing strain, Aspergillus sojae M12-2-61 (FERM P-) with yellow conidia and nicotinic acid requirement was used.
7281), and a protoplast fusion regenerated strain was collected in exactly the same manner as in Example 1, except that a hypertonic minimal regeneration agar medium [Tsapek agar medium containing 0.8 M sorbitol] was used as the hypertonic regeneration medium for the protoplast fused cells. Next, the regenerated strain obtained here was inoculated into a rice malt juice slant medium and cultured at 30°C for 4 days to obtain a telokaryon strain with green, yellow, and white spores. The spores were irradiated with ultraviolet light for 1 minute from a distance of 39 cm, the obtained spores were again applied to the minimal agar plate medium, and cultured at 30°C for 4 days.
Aspergillus aspergillus cells forming stable colonies consisting of only green spores were obtained. Among these koji mold cells, one strain, Aspergillus sojae D, has a high protease production ability and a high glutaminase production ability.
-78 (FERM P-7279) was obtained. Next, the enzyme production ability of the Aspergillus oryzae cells of the present invention and their parent strains thus obtained was investigated. The results are shown in Table 4.

【表】【table】

【表】 第1表及び第2表の結果から、プロテアーゼが
高い株はグルタミナーゼ活性が低く、又反対にグ
ルタミナーゼ活性が高い株はプロテアーゼ活性が
低いのが一般的麹菌の特徴であつたが、本発明方
法によれば、プロテアーゼ活性とグルタミナーゼ
活性がそれぞれ300単位/g麹以上、1.0単位/g
麹以上であつて、共に高い麹菌が得られることが
判る。
[Table] From the results in Tables 1 and 2, strains with high protease have low glutaminase activity, and conversely, strains with high glutaminase activity have low protease activity. According to the invented method, protease activity and glutaminase activity are respectively 300 units/g or more and 1.0 units/g.
It can be seen that a high level of koji mold can be obtained, which is higher than that of koji.

Claims (1)

【特許請求の範囲】 1 アスペルギルス属に属する、210単位/g麹
以上の高プロテアーゼ生産株と3.2単位/g麹以
上の高グルタミナーゼ生産株のそれぞれの培養細
胞からプロトプラストを得、これらをプロトプラ
スト融合させ、該融合細胞を高張再生倍地に培養
し、培養物から300単位/g以上の高プロテアー
ゼ生産能を有し且つ1.0単位/g麹以上の高グル
タミナーゼ生産能を有する麹菌を採取することを
特徴とする麹菌の製造法。 2 培養細胞が、発芽胞子の長さがもとの胞子外
形の5〜15倍の発芽胞子である特許請求の範囲第
1項記載の製造法。
[Scope of Claims] 1 Protoplasts are obtained from cultured cells of a high protease producing strain of 210 units/g koji or more and a high glutaminase producing strain of 3.2 units/g koji or more belonging to the genus Aspergillus, and these are fused with protoplasts. , the fused cells are cultured in a hypertonic regeneration medium, and the koji mold having a high protease production ability of 300 units/g or more and a high glutaminase production ability of 1.0 units/g or more of koji is collected from the culture. A method for producing koji mold. 2. The production method according to claim 1, wherein the cultured cells are germinated spores whose length is 5 to 15 times the original spore external shape.
JP58180798A 1983-09-30 1983-09-30 Production of aspergillus by protoplast fusion Granted JPS6075280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180798A JPS6075280A (en) 1983-09-30 1983-09-30 Production of aspergillus by protoplast fusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180798A JPS6075280A (en) 1983-09-30 1983-09-30 Production of aspergillus by protoplast fusion

Publications (2)

Publication Number Publication Date
JPS6075280A JPS6075280A (en) 1985-04-27
JPH0371877B2 true JPH0371877B2 (en) 1991-11-14

Family

ID=16089522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180798A Granted JPS6075280A (en) 1983-09-30 1983-09-30 Production of aspergillus by protoplast fusion

Country Status (1)

Country Link
JP (1) JPS6075280A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188057A (en) * 1984-03-09 1985-09-25 Kikkoman Corp Koji mold having high protease preparation ability and high glutaminase preparation ability and its breeding
JPH01120282A (en) * 1987-11-02 1989-05-12 Nakano Vinegar Co Ltd Regeneration of spheroplast of bacterium belonging to genus acetobacter
JPH01168290A (en) * 1987-12-25 1989-07-03 Nakano Vinegar Co Ltd Electrical fusion of acetic acid bacteria spheroplast
JPH01168289A (en) * 1987-12-25 1989-07-03 Nakano Vinegar Co Ltd Fusion of acetic bacteria spheroplast

Also Published As

Publication number Publication date
JPS6075280A (en) 1985-04-27

Similar Documents

Publication Publication Date Title
CA1039672A (en) PRODUCTION OF .alpha.-GALACTOSIOASE BY PENICILLIUM DUPONTI
JPH06261744A (en) Bacillus natto strain and natto produced using the same
JPH0371877B2 (en)
Ogawa Approaches to Hybridization and Applied Genetics by Protoplast Fusiono Koji-Molds and Mushrooms
JP4439641B2 (en) Novel mannanase, its production and use
JPH0348792B2 (en)
JPH0368672B2 (en)
JPS61187787A (en) Polypeptide product
US20040258800A1 (en) Brewer' s yeast or brewer' s yeast extract with improved flavor, process for producing the same and flavor improving agent therefor
JPH0373271B2 (en)
JPH0533973B2 (en)
JPH02502881A (en) Method for increasing enzyme activity and synthetic ability of living organisms
JPH0889230A (en) Production of sake
Sreekantiah et al. Pectinolytic enzymes produced by Aspergillus carbonarius (Bainier) Thom
JPH03160985A (en) Novel variant and preparation of soy sauce using thereof
JPH0322148B2 (en)
JPS60184384A (en) Preparation of n-acylneuraminate aldolase
JPS62208277A (en) Production of inulinase
JPS6350994B2 (en)
JPH11253123A (en) Fungus for fermented soybeans and production of fermented soybeans therewith and fermented soybeans
JPH08258A (en) Microorganism belonging to genus candida and production of inositol with the same
JPH0479884A (en) Preparation of protoplast of phaffia yeast
JPH0466556B2 (en)
JPH0353905B2 (en)
JP4139538B2 (en) Alkaline exopolygalacturonase