JPH0371873A - Printing apparatus - Google Patents

Printing apparatus

Info

Publication number
JPH0371873A
JPH0371873A JP20842589A JP20842589A JPH0371873A JP H0371873 A JPH0371873 A JP H0371873A JP 20842589 A JP20842589 A JP 20842589A JP 20842589 A JP20842589 A JP 20842589A JP H0371873 A JPH0371873 A JP H0371873A
Authority
JP
Japan
Prior art keywords
layer
porous
specific gravity
porous layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20842589A
Other languages
Japanese (ja)
Inventor
Hitoshi Ezaki
江崎 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20842589A priority Critical patent/JPH0371873A/en
Publication of JPH0371873A publication Critical patent/JPH0371873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Accessory Devices And Overall Control Thereof (AREA)

Abstract

PURPOSE:To obtain a printing apparatus low in noise and improved in assembling properties by using a porous structure having a porous layer whose specific gravity is continuously changed in the thickness or surface direction thereof and the air impermeable fusion layer fused to and integrated with one surface of the porous layer and covering a mechanical main part with said structure so that the porous layer is set to the inside and the fusion layer is set to the outside. CONSTITUTION:A top surface panel 60 having a U-shaped cross-section is formed using a porous structure (multilayer material). A fusion layer 15 has high specific gravity and may be air-pemeable or air-impermeable. A porous layer 16 has low specific gravity and is normally ail-permeable and the void ratio thereof is continuously changed in the thickness direction thereof. A skin layer 17 normally has specific gravity intermediate between the specific gravity of the fusion layer 15 and that of the porous layer 16. When the multilayer material 14 is used as a sound absorbing material by integrating the fusion layer 15, the porous layer 16 and the skin layer 17, the porous layer 16 is opposed to a sound source to absorb and attenuate sound energy and the transmission of a sonic wave is prevented by the fusion layer 15.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は例えば冷却用のファンモータなどの騒音発生
源を内蔵するプリンタ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a printer device incorporating a noise generating source such as a cooling fan motor.

[従来の技術] 第19図は従来の騒音発生源内蔵装置としてプリンタ装
置を示す分解斜視図であり、図において、(51)はプ
リンタ装置の天面および側面を覆う横断面コ字形の天面
板、(52)はプリンタ装置の機械部本体(53)を固
定するシャーシ、(54)はプリンタ装置の後面を覆う
後面板、(55)はプリンタ装置の機械部本体(53)
に取付けられた放熱部冷却用のファンモータ、(56)
はプリンタ装置の前面を覆う意匠パネルである。
[Prior Art] Fig. 19 is an exploded perspective view showing a printer device as a conventional device with a built-in noise source. , (52) is a chassis that fixes the mechanical body (53) of the printer device, (54) is a rear plate that covers the rear surface of the printer device, and (55) is the mechanical body (53) of the printer device.
Fan motor for cooling the heat dissipation section attached to (56)
is a design panel that covers the front of the printer device.

上記機械部本体(53)はシャーシ(52)に不図示の
ネジでネジ止め固定され、ファンモータ(55)は機械
部本体(53)の板金構造体の一部に不図示のネジでネ
ジ止め固定されている。そして、このファンモータ(5
5)は機械部本体の印画作動時に同時に作動し、発熱す
るヘッドの放熱部に空気流を送り冷却する。
The mechanical part main body (53) is screwed and fixed to the chassis (52) with screws not shown, and the fan motor (55) is screwed to a part of the sheet metal structure of the mechanical part main body (53) with screws not shown. Fixed. And this fan motor (5
5) operates at the same time as the printing operation of the main body of the mechanical part, and sends an air flow to the heat radiating part of the head, which generates heat, to cool it down.

また、上記機械部本体(53)およびその他のプリンタ
装置部を覆う構造体として、後面板(54)、天面板(
51)が各々シャーシ(52)にネジ止めされ、前面側
より意匠パネル(56)をはめ込み、プリンタ装置全体
が構成されている。
In addition, as a structure that covers the machine main body (53) and other printer device parts, a rear plate (54) and a top plate (
51) are each screwed to the chassis (52), and a design panel (56) is fitted from the front side to form the entire printer device.

第20図は上記天面板(51)の取付は構造を示す概要
図であり、同図(A)に示すように天面板(51)を上
方から機械部本体(53)に被せ、同図(B)に示すよ
うに天面板(51)の両側垂直辺(51a)に設けた穴
(57)からネジ(58)をシャーシ(52)の両側垂
直辺(52a)に設けたネジ穴(59)にねじ込んで天
面板(51)をンヤーシ(52)に固定する。
FIG. 20 is a schematic diagram showing the installation structure of the top plate (51). As shown in FIG. As shown in B), insert screws (58) through holes (57) provided on both vertical sides (51a) of the top plate (51) through screw holes (59) provided on both vertical sides (52a) of the chassis (52). Screw into the top plate (51) to fix the top plate (52) to the bottom plate (52).

[発明が解決しようとする課題〕 従来のプリンタ装置は以上のように構成されているので
、装置全体は防音効果のうすい天面板(51) 、後面
板(54)、意匠パネル(56)等により覆われている
だけであり、ファンモータ(55)の発生する振動音や
機械部本体(53)の発生する機械動作音は装置外部に
漏れる割合が高く、装置を設置した周辺に騒音公害を生
じさせるという問題点があった。
[Problems to be Solved by the Invention] Since the conventional printer device is configured as described above, the entire device is constructed with a top panel (51), a rear panel (54), a design panel (56), etc., which have a weak soundproofing effect. The vibration noise generated by the fan motor (55) and the mechanical operation noise generated by the mechanical body (53) have a high rate of leaking to the outside of the device, causing noise pollution in the area where the device is installed. There was a problem with letting it work.

この発明は上記のような問題点を解消することを課題に
なされたもので、騒音の低い組立性の良いプリンタ装置
を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and aims to provide a printer device with low noise and easy assembly.

[課題を解決するための手段] この発明に係るプリンタ装置は比重を層の厚さ方向もし
くは層の面方向に連続的に変化させた多孔質層とこの多
孔質層の一側に融着して一体化した非通気性の融合層と
を有する多孔質構造体を用い、前記多孔質層を内側に、
前記融合層を外側として、騒音を発生する機械部本体を
覆ったものである。
[Means for Solving the Problems] A printer device according to the present invention includes a porous layer whose specific gravity is continuously changed in the thickness direction or the surface direction of the layer, and a porous layer fused to one side of the porous layer. using a porous structure having a non-breathable fusion layer integrated with the porous layer,
The main body of the mechanical part that generates noise is covered with the fusion layer on the outside.

[作用コ この発明におけるプリンタ装置は、比重を層の厚さ方向
もしくは層の面方向に変化させた多孔質層を有する多孔
質構造体で機械部本体を覆ったことにより、装置外部へ
騒音の漏れが少なくなる。
[Function] The printer device of the present invention covers the main body of the mechanical part with a porous structure having a porous layer whose specific gravity changes in the thickness direction or the surface direction of the layer, thereby reducing noise to the outside of the device. Less leakage.

また、多孔質構造体は一体成形した係合爪によりネジ止
め不要でシャーシに組付けることができ、組付性が向上
する。
In addition, the porous structure can be assembled to the chassis without the need for screws due to the integrally molded engaging claws, improving ease of assembly.

[実施例] 以下、この発明の一実施例を図について説明する。前記
第19図と同一部分に同一符号を付して重複説明を省略
した第1図において、(60)は多孔質構造体(61)
を用いて形成した横断面コ字形の天面板である。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. In FIG. 1, in which the same parts as those in FIG.
This is a top plate with a U-shaped cross section.

次に、本発明に用いる吸音材と非通気性の融合層部材と
からなる多孔質構造体(以下多孔質体あるいは層状のも
のは多層材ともいう)の構造、製法、特性について説明
する。なお詳細については平成1年4月28日出願の特
願平01−110996号明細書、名称「多孔質構造体
」に記載しである。
Next, the structure, manufacturing method, and characteristics of a porous structure (hereinafter, a porous structure or a layered structure is also referred to as a multilayer material) made of a sound-absorbing material and a non-breathable fused layer member used in the present invention will be explained. The details are described in Japanese Patent Application No. 110996/1999 filed on April 28, 1999, entitled "Porous Structure".

第3図(A)、(B)は、それぞれ多層材(14)の厚
さ方向に切断した断面を模式的に示す図である。図にお
いて、(15)は比重の大きい層、例えば融合層で、通
気性又は非通気性のいずれでもよい。
FIGS. 3(A) and 3(B) are diagrams each schematically showing a cross section cut in the thickness direction of the multilayer material (14). In the figure, (15) is a layer with a high specific gravity, such as a fusion layer, which may be either air permeable or non-air permeable.

(16)は比重の小さい多孔質層で、通常は通気性であ
り、空孔率は、厚さ方向に連続的に変化している。
(16) is a porous layer with low specific gravity and is usually breathable, and the porosity changes continuously in the thickness direction.

(17)は通常比重が融合層(15)と多孔質層(16
)の中間にあるスキン層で、例えば厚さ100ミクロン
以下の融合層である。
(17) has a normal specific gravity of the fused layer (15) and the porous layer (16).
), for example, a fused layer with a thickness of less than 100 microns.

多層材(14)は、融合層(15)と多孔質層(16)
とが一体化しており、同様に融合層(15)と多孔質層
(16)とスキン層(17)は−体化している。
The multilayer material (14) includes a fusion layer (15) and a porous layer (16).
Similarly, the fusion layer (15), porous layer (16), and skin layer (17) are integrated.

多層材(14)は吸音材として使用するときは、多孔質
層(16)を騒音源側に対面させて、音のエネルギーを
吸収減衰させかつ、融合層(15)で音波が透過するの
を防ぐ。
When the multilayer material (14) is used as a sound absorbing material, the porous layer (16) is placed facing the noise source to absorb and attenuate sound energy, and the fusion layer (15) prevents the transmission of sound waves. prevent.

次に、上記のような多層材(多孔質構造体)(14)を
構成する、層の厚さ方向もしくは層の面方向に比重を連
続的に変化させた多孔質層の製造方法及び特性について
説明する。
Next, we will discuss the manufacturing method and characteristics of the porous layer whose specific gravity is continuously changed in the layer thickness direction or layer plane direction, which constitutes the multilayer material (porous structure) (14) as described above. explain.

まず、製造方法について説明する。First, the manufacturing method will be explained.

第4図は、多層材の製造方法を説明する金型構成断面図
である。図において、(18)は凹側金型で、例えばア
ルミニウム等の熱伝導性の良い材質で構成されており、
(19)は凸側金型で、同様にアルミニウムで構成され
ている。
FIG. 4 is a cross-sectional view of a mold configuration for explaining a method for manufacturing a multilayer material. In the figure, (18) is a concave mold, which is made of a material with good thermal conductivity, such as aluminum.
(19) is a convex mold, which is also made of aluminum.

(20)、(21)は各々金型の温度を上げるヒーター
で、凹側金型(18)の方が凸側金型(19)よりも高
温にされる。
(20) and (21) are heaters that raise the temperature of the mold, and the concave mold (18) is heated to a higher temperature than the convex mold (19).

製法■ 原料として、熱可塑性樹脂の粒状素材を用いて、多孔質
構造体を成形する場合について説明する。
Manufacturing method ■ A case will be described in which a porous structure is molded using a granular thermoplastic resin material as a raw material.

四側金型(18)の壁部(22)の温度は、凹側金型(
18)と凸側金型(19)によって形成される閉空間(
23)内に入れられる原料である粒状素材の軟化する温
度以上で熱分解温度以下、通常150〜240℃にセッ
トされ、凸側金型(19)の壁部(24)の温度は、凹
側金型(18)の壁部(22)の温度よりも低い温度、
例えば原料となる粒状素材の軟化する温度付近、通常7
0〜180℃にセットされる。
The temperature of the wall (22) of the four-side mold (18) is the same as that of the concave mold (
18) and a closed space formed by the convex mold (19).
23) The temperature of the wall part (24) of the convex side mold (19) is set at a temperature higher than the softening temperature of the granular material, which is the raw material to be placed inside, and lower than the thermal decomposition temperature, usually 150 to 240°C. a temperature lower than the temperature of the wall (22) of the mold (18);
For example, around the temperature at which the granular material used as the raw material softens, usually 7
Set at 0-180°C.

すると、凹側金型(18)の高温壁部(22)に接触し
た粒状素材は溶融腰最終的には比重の大きい層、すなわ
ち融合層(15)になり、融合の程度により通気性から
非通気性に変化する。
Then, the granular material that has come into contact with the high-temperature wall (22) of the concave mold (18) will eventually become a layer with a high specific gravity, that is, a fused layer (15), and depending on the degree of fusion, it will change from breathable to non-permeable. Changes to breathability.

凸側金型(工9)の壁部(24)は高温壁部(22)よ
り低温のため、壁部(24)から上記融合層(15)ま
での粒状素材は、完全流動までには至らないが、半流動
状態で、粒状素材各々が接触部分で溶着し、最終的には
上記融合層(15)に溶着した多孔質層(16)が形成
される。
Since the wall (24) of the convex side mold (work 9) is lower in temperature than the high temperature wall (22), the granular material from the wall (24) to the fusion layer (15) does not reach complete fluidity. However, in a semi-fluid state, each particulate material is welded at the contact portion, and finally a porous layer (16) welded to the fused layer (15) is formed.

この多孔質層(16)は通常は通気性であるが、バイン
ダーなどの素材の混合材によっては非通気性になる。
This porous layer (16) is normally breathable, but depending on the mixture of materials such as binder, it becomes non-breathable.

このようにして比重の大きい層と比重の小さい多孔質層
を一体的に同時に成形することができる。
In this way, a layer with a high specific gravity and a porous layer with a low specific gravity can be integrally molded at the same time.

粒状素材の直径が0.2mm以下になると、空孔径が小
さくなって、多層材の機能、例えば吸音特性が低下する
When the diameter of the granular material is 0.2 mm or less, the pore diameter becomes small and the function of the multilayer material, such as sound absorption properties, deteriorates.

また、空孔径を大きくしようとすると、粒子間の融着度
合が少なくなり、機械的強度が低下する。
Furthermore, when attempting to increase the pore diameter, the degree of fusion between particles decreases, resulting in a decrease in mechanical strength.

更に、直径が3問以上になると、吸音特性が低下する。Furthermore, when the diameter becomes 3 or more, the sound absorption properties deteriorate.

なお、熱可塑性樹脂の粒状素材原料としては、代表的な
ものとして、PP(ポリプロピレン)、AS(アクリル
スチロール)、スチロールなどを用いることができる。
Note that typical examples of the granular material raw material for the thermoplastic resin include PP (polypropylene), AS (acrylic styrene), and styrene.

又、熱可塑性樹脂の粒状素材にバインダーとして、メチ
ルエチルケトン(MEK)セルロース、ワニス、アセト
ンを吹付けたり、混ぜたりすると、多層材の粒状素材各
々の固着力が増し、機械的強度が向上して、取扱い性が
良くなる。
In addition, when methyl ethyl ketone (MEK) cellulose, varnish, or acetone is sprayed or mixed as a binder into the thermoplastic resin granular material, the adhesion strength of each granular material of the multilayer material increases, and the mechanical strength improves. Improves handling.

製法■ 原料として、熱硬化性樹脂の粒状素材を用いて多層材を
成形する場合について説明する。
Manufacturing method ■ The case of molding a multilayer material using a thermosetting resin granular material as a raw material will be explained.

製法■と同様にして、凹側金型(18)の壁部(22)
の温度は、粒状素材の軟化する温度以上で熱分解以下に
セットされ、凸側金型(19)の壁部(24)の温度は
、凹側金型(18)の壁部(22)の温度よりも低い粒
状素材の軟化する温度付近にセットされる。
In the same manner as manufacturing method ■, the wall (22) of the concave side mold (18)
The temperature of the wall (24) of the convex mold (19) is set to be higher than the softening temperature of the granular material and lower than the thermal decomposition temperature, and the temperature of the wall (22) of the concave mold (18) is set to It is set near the temperature at which the granular material softens, which is lower than the temperature.

ここにおいて金型(18)、(19)内に熱硬化性樹脂
、例えばフェノール、PBT (ポリブチレンテレフタ
レート) 、PET (ポリエチレンテレフタレート)
などの粒状素材で直径0.2〜3mm程度の粒子を、バ
インダーとなる例えばセルロース、ワニス、各種接着剤
などと混合して投入し、金型(18)、(19)を加圧
しながら閉じ、数分〜数時間加熱する。
Here, the molds (18) and (19) are filled with thermosetting resin such as phenol, PBT (polybutylene terephthalate), PET (polyethylene terephthalate).
Particles of a granular material with a diameter of about 0.2 to 3 mm are mixed with a binder such as cellulose, varnish, various adhesives, etc., and the molds (18) and (19) are closed under pressure. Heat for several minutes to several hours.

この加熱は上述した金型(18)、(19)のセット温
度で行われ、加圧力は加熱状態で1 kg/。、2〜数
t。n/。。2である。
This heating is performed at the set temperature of the molds (18) and (19) mentioned above, and the pressing force is 1 kg/in the heated state. , 2 to several t. n/. . It is 2.

このようにすると、凹側金型(18)の高温壁部(22
)に接触した粒状素材は軟化し、バインダーで接着され
て比重の大きい層となり、軟化の程度により、通気性か
ら非通気性に変化する。
In this way, the high temperature wall part (22) of the concave mold (18)
) The granular material that comes into contact with the material softens and is bonded with a binder to form a layer with a high specific gravity, which changes from breathable to non-breathable depending on the degree of softening.

凸側金型(19)の壁部(24)は高温壁部(22)に
より低温のため、壁部(24)から上記の比重の大きい
層(15)までの粒状素材は、完全流動までには至らな
いが、半流動状態で、粒状素材各々が接触部分でバイン
ダーで接着されて、最終的には、上記の比重の大きい層
(15)に接着した多孔質層(1G)が一体向に形成さ
れる。
Since the wall (24) of the convex mold (19) is at a low temperature due to the high temperature wall (22), the granular material from the wall (24) to the layer (15) with high specific gravity is completely fluidized. However, in a semi-fluid state, each particulate material is bonded with a binder at the contact part, and finally the porous layer (1G) bonded to the layer (15) with a high specific gravity is oriented in one direction. It is formed.

この多孔質層(16)は通常は通気性であるが、バイン
ダーの混合量が多くなると、非通気性になる。
This porous layer (16) is normally breathable, but when the amount of binder mixed becomes large, it becomes non-breathable.

さらに、多層材の多孔質層の比重を、多孔質層の層面方
向に変化させようとするには、低温側の金型の温度を上
記層面方向に沿って変化すればよい。
Furthermore, in order to change the specific gravity of the porous layer of the multilayer material in the layer plane direction of the porous layer, the temperature of the mold on the low temperature side may be changed along the layer plane direction.

すると低温側の金型の中でも、より高温部に対向する多
孔質層部分は、比重が大きくなり、より低温部に対向す
る多孔質層部分は比重が小さくなる。
Then, among the molds on the low temperature side, the porous layer portion facing the higher temperature portion has a higher specific gravity, and the porous layer portion facing the lower temperature portion has a lower specific gravity.

一方、上述の製法においては、多層材が一体的に成形で
きるので、金型を食えることにより、種々の形状、特に
複雑な形状の多層材にも容易に対応できる。
On the other hand, in the above-mentioned manufacturing method, since the multilayer material can be integrally molded, the mold can be used, so that multilayer materials of various shapes, especially complex shapes, can be easily produced.

次に、このようにして製造された、層の厚さ方向もしく
は層の面方向に比重を連続的に変化させた多孔質層の各
種特性及び応用等について説明する。
Next, various characteristics and applications of the porous layer manufactured in this way, in which the specific gravity is continuously changed in the thickness direction or in the plane direction of the layer, will be explained.

(i)吸音特性 第5図は、製法■で成形された厚さ10開の多孔質構造
体(はとんど全域多孔質層)における厚さ方向の空孔率
(比重)分布例を示す図である。
(i) Sound absorption characteristics Figure 5 shows an example of the porosity (specific gravity) distribution in the thickness direction of a 10-thick porous structure (mostly the entire area is porous layer) formed by manufacturing method ①. It is a diagram.

第5図中、四線A、Cは、空孔率が厚さ方向にほぼ−様
な特性を示し、それぞれ約25(%)、約10(%)の
ものであり、曲線Bは、空孔率が厚さ方向に分布を有し
、10〜20(%)の範囲で連続的に変化しているもの
である。
In FIG. 5, four lines A and C indicate a porosity of approximately 25 (%) and 10 (%), respectively, in the thickness direction. The porosity has a distribution in the thickness direction and continuously changes in the range of 10 to 20 (%).

この種の多孔質構造体を吸音材として利用する場合には
、その吸音特性が問題になる。
When using this type of porous structure as a sound absorbing material, its sound absorbing properties become an issue.

第6図は第5図に示す三種類の空孔率分布を有するサン
プルにおける垂直入射吸音率をJISA  1405r
管内法による建築材料の垂直入射吸音率のlPj定法」
により測定した結果を示す。
Figure 6 shows the normal incidence sound absorption coefficients of the samples with the three types of porosity distributions shown in Figure 5 using JISA 1405r.
lPj formula for the normal incidence sound absorption coefficient of building materials using the in-pipe method
The results are shown below.

なお、曲線Bの厚さ方向に空孔率分布を有するサンプル
では、空孔率が10(%)の方を音波を入射する面とし
た。
In addition, in the sample having a porosity distribution in the thickness direction of curve B, the side with a porosity of 10 (%) was set as the surface on which the sound waves were incident.

図から判るように、空孔率分布を有するサンプル(曲線
B)が最も吸音率特性が良いことを確認した。
As can be seen from the figure, it was confirmed that the sample with the porosity distribution (curve B) had the best sound absorption coefficient characteristics.

以上説明した多孔質層を形成する樹脂粒は形状が球状の
ほか、円筒状、円柱状、立方体などでもよい。ひげ付き
の熱可塑性樹脂粒はひげの部分が溶融しやすいので、原
料として好適である。
The resin particles forming the porous layer described above may be cylindrical, columnar, cubic, etc. in addition to being spherical in shape. Thermoplastic resin particles with whiskers are suitable as raw materials because the whiskers are easily melted.

又、多層材の軽量化を図る目的で、例えば発泡した中空
粒状素材や発泡性素材を原料として利用することもでき
る。
Furthermore, for the purpose of reducing the weight of the multilayer material, for example, foamed hollow granular materials or foamable materials can be used as raw materials.

更に、補強用として原料に短繊維を混入させてもよいし
、バインダーとして糸状の熱可塑性樹脂を原料に混入さ
せてもよい。
Furthermore, short fibers may be mixed into the raw material for reinforcement, and thread-like thermoplastic resin may be mixed into the raw material as a binder.

なお、多孔質体としての特性、特に吸音特性に対し、粒
状素材の形状や長径には、より優れた特性を有する範囲
があることを確認した。以下に説明する。
In addition, it was confirmed that there is a range in the shape and major axis of the granular material that has better characteristics as a porous body, especially sound absorption characteristics. This will be explained below.

第7図には、粒状累月の形状を変えた場合の素材入射吸
音率の特性バラツキ(サンプル数5個での特性のバラツ
キ)を示す図である。曲線Aは粒状累月が直径0.8 
(ohm) 、長さ1(問)の円筒形状のもの、曲線B
は直径1 (in)の球体状のものである。
FIG. 7 is a diagram showing characteristic variations in the material incident sound absorption coefficient (variations in characteristics among five samples) when the shape of the granular moon is changed. Curve A has a granular moon with a diameter of 0.8
(ohm), cylindrical shape with length 1 (question), curve B
is a spherical object with a diameter of 1 (in).

なお、いずれも多孔質層の厚さは10 (ms)であり
、吸音率を測定した周波数は2 (KHz)である。同
図より、球体状のもの(曲線B)は、サンプルの違いに
よる特性の差が少なく、極めて安定していることが判る
In each case, the thickness of the porous layer was 10 (ms), and the frequency at which the sound absorption coefficient was measured was 2 (KHz). From the figure, it can be seen that the spherical one (curve B) has little difference in characteristics due to differences in samples and is extremely stable.

この理由は、球体状の場合、粒状素材どうしの接触点が
一個所となるので、成形時に粒状素材の層状態が安定し
て均一になるためである。
The reason for this is that in the case of a spherical shape, there is only one point of contact between the granular materials, so that the layer state of the granular materials becomes stable and uniform during molding.

このように、特にサンプル間で特性の安定性を要する場
合などには球体状(球体もしくは楕円体)にする方が、
より好ましい多孔質構造体を得ることができる。
In this way, it is better to use a spherical shape (sphere or ellipsoid), especially when stability of properties is required between samples.
A more preferable porous structure can be obtained.

また、吸音特性は、粒状素材の長径によっても異なるこ
とを確認した。第8図に、粒状素材の長径と吸音率の関
係を示す。
It was also confirmed that the sound absorption properties differ depending on the major axis of the granular material. FIG. 8 shows the relationship between the long axis of the granular material and the sound absorption coefficient.

サンプルの厚さは10(IIll)で、測定周波数は2
 (KHz)である。粒状素材を径を小さく過ぎたり、
大きくし過ぎたりすると、音波が多孔質体内に侵入しに
くくなったり、多孔質体の固有音響インピーダンスが空
気側の固有音響インピーダンスと整合しなくなったりし
て吸音率が低下する。
The thickness of the sample is 10 (IIll), and the measurement frequency is 2
(KHz). If the diameter of the granular material is too small,
If it is made too large, it becomes difficult for sound waves to penetrate into the porous body, or the specific acoustic impedance of the porous body becomes mismatched with the specific acoustic impedance of the air side, resulting in a decrease in sound absorption coefficient.

第8図より、粒状素材の長径は、実用的な範囲では0.
2〜3.0(旧)、好ましくは1.0〜2.0(mm)
の範囲とすることにより、吸音特性を良好にできること
を確認した。
From FIG. 8, the major axis of the granular material is 0.
2-3.0 (old), preferably 1.0-2.0 (mm)
It was confirmed that sound absorption characteristics can be improved by setting the range of .

次に、本発明に用いる多孔質構造の他の実施例について
説明する。
Next, other examples of porous structures used in the present invention will be described.

多孔質構造体は、層の厚さ方向もしくは層の面方向に比
重を連続的に変化させた多孔質層と、この多孔質よりも
空孔率が小さく比重の大きい中実層とを層状にしたもの
である。
A porous structure consists of a porous layer with a specific gravity that changes continuously in the thickness direction or in the plane direction of the layer, and a solid layer with a smaller porosity and a higher specific gravity than the porous layer. This is what I did.

この中実層は、粒状素材が熱可塑性樹脂の場合は、融合
層になり、融合の程度により通気性から非通気性まで変
化する。
This solid layer becomes a fused layer when the granular material is a thermoplastic resin, and changes from breathable to non-breathable depending on the degree of fusion.

また、粒状素材が熱硬化性樹脂の場合には、粒状素材が
軟化しバインダーで接着されて比重の大きい層となり、
軟化の程度により通気性から非通気性まで変化する。
In addition, when the granular material is a thermosetting resin, the granular material softens and is bonded with a binder to form a layer with a high specific gravity.
Depending on the degree of softening, it varies from breathable to non-breathable.

次に、このような多孔質構造体の代表的な製造方法につ
いて説明する。
Next, a typical method for manufacturing such a porous structure will be described.

製広例■−■ 製法■において、凹側金型(18)の壁部(22)の温
度を150℃にセットし、凸側金型(19)の壁部(2
4)の温度を100℃にセットし、ABS樹脂と17で
、電気化学工業株式会社製GTR−40(グレード)、
軟化する温度86℃の熱可塑性樹脂の粒状素材、直径1
111の球状粒子を金型に入れ、金型(18)、(19
)を閉じた。この時、壁面(22)、(24)間の距離
は10ffil11であった。
Manufacturing example ■-■ In manufacturing method ■, the temperature of the wall (22) of the concave mold (18) is set to 150°C, and the temperature of the wall (22) of the convex mold (19) is set to 150°C.
Set the temperature of 4) to 100°C, and use ABS resin and 17, GTR-40 (grade) manufactured by Denki Kagaku Kogyo Co., Ltd.
Granular material of thermoplastic resin with a softening temperature of 86℃, diameter 1
Put the spherical particles No. 111 into the mold, mold (18), (19
) closed. At this time, the distance between the wall surfaces (22) and (24) was 10ffil11.

この状態で20分間経過(つまり加熱状態を持続)させ
て金型(18)、(19)を開放した。
After 20 minutes in this state (that is, the heating state was maintained), the molds (18) and (19) were opened.

なお、加熱状態のときの加圧力は100 kg/ cm
2であった。
In addition, the pressurizing force in the heated state is 100 kg/cm
It was 2.

このようにして成形した多層材(14)を第9図に示す
。この多層材(14)は厚さが10mmでその中の融合
層(15)の厚さは約1開、多孔質層(16)の厚さは
約9II11であった。
The multilayer material (14) thus formed is shown in FIG. This multilayer material (14) had a thickness of 10 mm, in which the thickness of the fused layer (15) was about 1 mm, and the thickness of the porous layer (16) was about 9 II11 mm.

製法例■−3 製法■において、凹側金型(18)の壁部(22)の温
度を180℃にセットし、凸側金型(19)の壁部(2
4)の温度を130℃にセットし、ABS樹脂として、
電気化学工業株式会社製GTR−40(グレード)、軟
化する温度86℃の熱可塑性樹脂の粒状素材、直径1m
+++の球状粒子を金型に入れ、金型(18)、(19
)を閉じた。この際、壁面(22)、(24)間の距離
は10開であった。
Manufacturing method example ■-3 In manufacturing method ■, the temperature of the wall (22) of the concave mold (18) is set to 180°C, and the temperature of the wall (22) of the convex mold (19) is set to 180°C.
Set the temperature of 4) to 130℃, and as ABS resin,
GTR-40 (grade) manufactured by Denki Kagaku Kogyo Co., Ltd., thermoplastic resin granular material with a softening temperature of 86°C, diameter 1m
+++ spherical particles are put into a mold, molds (18) and (19
) closed. At this time, the distance between the wall surfaces (22) and (24) was 10 mm.

この状態で15分間経過させて金型(18)、(19)
を開放した。なお加熱状態のときの加圧力は100kg
/cm2であった。
Leave the molds (18) and (19) in this state for 15 minutes.
was released. The pressing force in the heated state is 100 kg.
/cm2.

このとき成形した多層材(14)は厚さが10mn+、
その中の融合層(15)の厚さは約1問、多孔層(16
)の厚さは約9間であったが、製法例の−2の成形多層
材(14)に比べ、多孔層(16)の表面部の融合化が
一部分進み、30μm程度のスキン層が形成された。
The multilayer material (14) formed at this time has a thickness of 10 mm+,
The thickness of the fusion layer (15) in it is about 1 layer, and the thickness of the porous layer (16
) had a thickness of approximately 9 mm, but compared to the molded multilayer material (14) of manufacturing method example -2, the surface portion of the porous layer (16) was partially fused, and a skin layer of approximately 30 μm was formed. It was done.

製法例■−2 製法■において、凹側金型(18)の壁(22)の温度
を200℃にセットし、凸側金型(19)の壁部(24
)の温度を150℃にセットし、熱硬化性樹脂として、
フェノール樹脂(明和化成株式会社製、MW−752(
グレード)、軟化する温度190℃)で直径1mmの粒
状素材を、バインダーとなる粉末状セルロース15重量
%ε共に金型に入れ、金型(18)、(19)を閉じた
Manufacturing method example ■-2 In manufacturing method ■, the temperature of the wall (22) of the concave side mold (18) is set to 200°C, and the temperature of the wall (22) of the convex side mold (19) is set to 200°C.
) was set at 150°C, and as a thermosetting resin,
Phenol resin (manufactured by Meiwa Kasei Co., Ltd., MW-752 (
A granular material with a diameter of 1 mm was placed in a mold together with powdered cellulose (15% by weight ε) serving as a binder, and the molds (18) and (19) were closed.

壁面(22)、(24)間の距離は10mmであった。The distance between the wall surfaces (22) and (24) was 10 mm.

この状態で25分間経過(つまり加熱状態を持続)させ
て金型(18)、(19)を開放した。
After 25 minutes in this state (that is, the heating state was maintained), the molds (18) and (19) were opened.

なお加熱状態のときの加圧力は150 kg/ cm2
であった。このように成形した多層材(14)は厚さが
1011III+で、その中の比重の大きい層(15)
の厚さは約1 m11.多孔質層(16)の厚さは約9
mmであった。
The pressing force in the heated state is 150 kg/cm2.
Met. The multilayer material (14) formed in this way has a thickness of 1011III+, and the layer (15) with a high specific gravity is
The thickness is approximately 1 m11. The thickness of the porous layer (16) is approximately 9
It was mm.

なお熱硬化性樹脂を熱可塑性樹脂でコートした粒状素材
を原料として用いてもよい。
Note that a granular material obtained by coating a thermosetting resin with a thermoplastic resin may be used as the raw material.

次に、上記のようにして成形された多層材(層状の多孔
質構造体)の特性等について説明する。
Next, the characteristics of the multilayer material (layered porous structure) formed as described above will be explained.

(i)空孔率 第10図は成形された多層材の空孔率を示す曲線図で曲
線実■−2、実■−3はそれぞれ製法例■−2、製法例
■−3によって製造された多層材の厚さ(am)に対す
る空孔率(%)を示す。
(i) Porosity Figure 10 is a curve diagram showing the porosity of the molded multilayer material. Curves ■-2 and ■-3 are manufactured by manufacturing method example ■-2 and manufacturing method example ■-3, respectively. The porosity (%) is shown relative to the thickness (am) of the multilayer material.

融合層(15)はいずれも非通気性で、実■2の多孔質
層(16)は厚さ方向に空孔率が連続的に変化し、表面
(低温側)で空孔率が最大となる。実■−3の多孔質層
(16)は厚さ方向に空孔率が連続的に変化するが、多
孔質層(16)の中央で空孔率が最大になり表面部(低
温側)で空孔率が低下する。
Both of the fused layers (15) are non-porous, and the porosity of the porous layer (16) of Example 2 changes continuously in the thickness direction, with the porosity being maximum at the surface (low temperature side). Become. The porosity of the porous layer (16) of Example II-3 changes continuously in the thickness direction, but the porosity reaches its maximum at the center of the porous layer (16) and decreases at the surface (low temperature side). Porosity decreases.

すなわち、表面部の空孔率は、多孔質層(16)の最大
の空孔率と融合層(15)の空孔率の中間であり、部分
的に融合したスキン層(17)が形成されていることを
示している。
That is, the porosity of the surface area is between the maximum porosity of the porous layer (16) and the porosity of the fused layer (15), and a partially fused skin layer (17) is formed. It shows that

なお比重は材質が同じであれば、当然ながら空孔率が小
さいほど大きい。
Note that, as long as the materials are the same, the smaller the porosity, the higher the specific gravity.

(10層状多孔質構造体の特性 多層材を吸音材として使用する場合にはその吸音特性が
問題になる。
(Characteristics of the 10-layer porous structure When using a multilayer material as a sound absorbing material, its sound absorbing properties become an issue.

第11図は垂直入射吸音率を比較する曲線図で、垂直入
射吸音率を前述のJIS  A  1405により測定
した結果を示す。
FIG. 11 is a curve diagram for comparing the normal incidence sound absorption coefficients, and shows the results of measuring the normal incidence sound absorption coefficients according to the above-mentioned JIS A 1405.

曲線実■−2は製法■−2で製造した多層材で厚さ10
m+aのもの、曲線「従」は従来の吸音材であるウレタ
ンフオームで厚さ10tamのものの特性をそれぞれ示
す。
Curved material ■-2 is a multilayer material manufactured by manufacturing method ■-2 and has a thickness of 10
The curve "m+a" and the "secondary" curve respectively show the characteristics of a conventional sound absorbing material made of urethane foam with a thickness of 10 tam.

図からも判るように、多層材の垂直入射吸音率は従来の
吸音材(ウレタンフオーム)のそれと同等以上の特性を
有することを確認した。
As can be seen from the figure, it was confirmed that the normal incidence sound absorption coefficient of the multilayer material is equal to or higher than that of the conventional sound absorbing material (urethane foam).

第12図は同様な垂直入射吸音率の特性曲線図で、いず
れの曲線も前述の方法で製造した多層材の特性で、実の
−2、実の−3はそれぞれ製法例■−2、製法例■−3
で製造した厚さ10mmの多層材の特性を示す。
Figure 12 is a similar characteristic curve diagram of the normal incidence sound absorption coefficient. Both curves are the characteristics of the multilayer material manufactured by the above-mentioned method, and the actual -2 and actual -3 are the manufacturing method example ■-2 and the manufacturing method, respectively. Example ■-3
The characteristics of a multilayer material with a thickness of 10 mm manufactured in

なお、製法例■−3のものの特性が良好な理由は表面部
の空孔率の最適化の影響と思われる。
The reason why the properties of Production Example (1)-3 are good is thought to be due to the optimization of the porosity of the surface area.

(ill)スキン層の効果 次に、スキン層により吸音特性が向上する現象の解明及
びその最適厚さについて説明する。
(ill) Effect of the skin layer Next, we will explain the phenomenon in which the sound absorption properties are improved by the skin layer and its optimum thickness.

まず、多孔質構造体としてABS樹脂を用いて、厚さ1
01m11のサンプルを前述の製法■により製作した。
First, ABS resin is used as the porous structure, and the thickness is 1
A sample of 01m11 was manufactured using the manufacturing method (2) described above.

このサンプルの空孔率分布の実測結果を第13図に、空
孔率の小さい方を音波入射面なしでその垂直入射吸音率
特性を第14図に示す。
Fig. 13 shows the actual measurement results of the porosity distribution of this sample, and Fig. 14 shows the normal incidence sound absorption coefficient characteristics of the sample with the smaller porosity without a sound wave incidence surface.

図から明らかなように、このサンプルでは、400(H
z)という低周波で吸音率が最大となり、しかもその値
が90(%)を越える良好な吸音特性が得られた。
As is clear from the figure, in this sample, 400 (H
The sound absorption coefficient was maximum at a low frequency of z), and good sound absorption characteristics were obtained with the value exceeding 90(%).

このとき、このサンプルの音波入射面側の低空孔率部を
顕微鏡で破断観察した結果、その表面が厚さ30ミクロ
ン程度の、はぼ非通気性のスキン層になっていることが
見出された。
At this time, as a result of fracture observation of the low porosity part on the sound wave incidence side of this sample using a microscope, it was found that the surface had become a nearly impermeable skin layer with a thickness of about 30 microns. Ta.

さらに、スキン層の厚さを種々変更して吸音特性の試験
を行った結果、スキン層の厚さが100ミクロンを越え
ると、スキン層が質量としてではなく、弾性膜(バネ系
)として働くようになり、最高吸音率の周波数は、逆に
上がってしまい、所要の効果は得られなかった。
Furthermore, as a result of testing the sound absorption properties by varying the thickness of the skin layer, we found that when the thickness of the skin layer exceeds 100 microns, the skin layer acts not as a mass but as an elastic membrane (spring system). Therefore, the frequency of the highest sound absorption coefficient rose, and the desired effect could not be obtained.

従って、スキン層の厚さは100ミクロン以下が妥当で
あることを確認した。
Therefore, it was confirmed that the appropriate thickness of the skin layer is 100 microns or less.

上記の層状の多孔質構造体は、主として二層の場合で説
明してきたが、三層あるいは任意層・任意材質の多孔質
構造体とすることもできる。
The above-mentioned layered porous structure has mainly been explained in the case of two layers, but it can also be a three-layered porous structure or a porous structure with arbitrary layers and arbitrary materials.

第15図は、スキン層(17) 、多孔質層(16)及
び非通気性の中実層(15)よりなる三重層の多孔質構
造体(14a)の断面図を示す。
FIG. 15 shows a cross-sectional view of a triple-layer porous structure (14a) consisting of a skin layer (17), a porous layer (16) and an impermeable solid layer (15).

これを、吸音材として用いる場合には、前述したように
、スキン層(17)及び多孔質層(16)により優れた
吸音特性を有し、かつ非通気性の中実層(15)が遮音
体となるので、吸音と遮音の両機能を効果的に発揮する
構造体とすることができる。
When using this as a sound absorbing material, as described above, the skin layer (17) and the porous layer (16) have excellent sound absorbing properties, and the non-breathable solid layer (15) is a sound insulating material. Since it becomes a body, it is possible to create a structure that effectively exhibits both sound absorption and sound insulation functions.

なお、上記例に限らず、各分野でその用途に応じて、任
意層・任意材質の多孔質構造体として応用できることは
いうまでもない。
It goes without saying that the present invention is not limited to the above example, and can be applied as a porous structure with any layer and any material depending on the application in each field.

さらに、粒状素材に樹脂粒以外の粒を含む素材を用いる
ことにより、多孔質構造体の機能を拡大させることがで
きる。以下、その一実施例を説明する。
Furthermore, by using a material containing particles other than resin particles as the granular material, the function of the porous structure can be expanded. An example of this will be described below.

まず、製造方法について説明する。First, the manufacturing method will be explained.

製法例■−1 第16図は金型(18)、(19)の空間(23)に2
種類の粒を含む素材を入れ金型(18)、(19)を閉
じたところを示す断面図である。
Manufacturing method example ■-1 Figure 16 shows 2 in the space (23) of the molds (18) and (19).
FIG. 3 is a sectional view showing the molds (18) and (19) filled with a material containing different kinds of grains and closed.

凹側金型(18)内に、最初に長径が約0.2+nmの
鉄粒(25)を積み厚さが約1開になるように充鳩し、
その後、長径が約1■のABS樹脂粒(26)(製法例
の−2に使用したものと同じもの)を閉空間(23)の
高さ(10mm)より約2111atはど高くなるよう
に充填する。
In the concave mold (18), iron particles (25) with a major axis of about 0.2+nm are first piled up and filled to a thickness of about 1 hole.
After that, fill ABS resin particles (26) with a major diameter of about 1 cm (same as those used in manufacturing method example -2) so that the height is about 2111 at higher than the height (10 mm) of the closed space (23). do.

充填後、凸側金型(19)(第16図では板状金型)を
四側金型(18)に密着接合させることにより、上記鉄
粒(25)とABS樹脂粒(26)の充填層を圧縮し、
閉空間(23)内に異種粒の充填層を形成する。
After filling, the iron particles (25) and ABS resin particles (26) are filled by closely joining the convex mold (19) (plate-shaped mold in FIG. 16) to the four-side mold (18). compress the layers,
A packed layer of different types of grains is formed in the closed space (23).

以上の条件で、ABS樹脂粒の軟化する温度86℃より
高い温度、つまり凹側金型温度を150℃、凸側金型温
度を100℃に昇温し、約20分加熱する。鉄粒(25
)の融点は約1500℃であることから、その鉄粒の粒
形状は保持された状態となる。
Under the above conditions, the temperature is raised to a temperature higher than the softening temperature of the ABS resin particles, 86°C, that is, the concave mold temperature is 150°C and the convex mold temperature is 100°C, and heated for about 20 minutes. Iron grains (25
) has a melting point of about 1500°C, so the shape of the iron particles is maintained.

一方ABS樹脂粒は、特に凹側金型(18)の壁部(2
2)は高温であることから、それに接触する鉄粒も高温
となり、鉄粒(25)と接触するABS樹脂粒(26)
は溶融し、溶融したABS樹脂粒が鉄粒(25)を取り
巻くように流動する。
On the other hand, the ABS resin particles are particularly suitable for the wall (2) of the concave mold (18).
Since 2) is at a high temperature, the iron particles in contact with it also become high temperature, and the ABS resin particles (26) in contact with the iron particles (25)
is melted, and the melted ABS resin particles flow to surround the iron particles (25).

加熱後、冷却されて成形された多層体(14)は、厚さ
が10mmでその中秩粒(25)が混入された融合層(
15)は厚さが約1mm、多孔質層(16)は厚さが約
9開の一体化した積層体となった。融合層(15)の比
重は、鉄粒を含まない場合は、ABS樹脂の比重そのも
のとなり、1.05gr/ccであるが、鉄粒を入れた
場合は融合層のみを切断し、その比重を1lllJ定し
た結果、4.4gr/ecであった。
After heating, the multilayer body (14) is formed by cooling and forming a fused layer (14) with a thickness of 10 mm and mixed with chichitsu grains (25).
15) had a thickness of about 1 mm, and the porous layer (16) had a thickness of about 9 mm, forming an integrated laminate. The specific gravity of the fusion layer (15) is the same as the specific gravity of ABS resin when iron particles are not included, which is 1.05gr/cc, but when iron particles are added, only the fusion layer is cut and its specific gravity is As a result of determining 1lllJ, it was 4.4 gr/ec.

多層材の多孔質層を吸音材とし、融合層を遮音材として
利用する場合、遮音材としてはその比重が大きいほど遮
音特性が向上するので、この多層材は遮音特性に優れる
When the porous layer of a multilayer material is used as a sound absorbing material and the fused layer is used as a sound insulating material, the higher the specific gravity of the sound insulating material, the better the sound insulating properties, so this multilayer material has excellent sound insulating properties.

従来は、ABS樹脂のような比重の軽い材料の遮音度を
上げるには、その材料の厚さを厚くするか、鉄板などの
金属を貼りつけることが必要であったが、この製造方法
では溶融する部分に比重の大きい材料を混入させること
により、多孔質層と比重のさらに大きい融合層を持つ多
層材を容易に実現できる。
Previously, in order to increase the sound insulation of materials with light specific gravity such as ABS resin, it was necessary to increase the thickness of the material or attach metal such as iron plates, but with this manufacturing method, melting By mixing a material with a high specific gravity into the portion where the material is formed, a multilayer material having a porous layer and a fused layer with a higher specific gravity can be easily realized.

次に、特性例(遮音特性)について説明する。Next, a characteristic example (sound insulation characteristic) will be explained.

第18図はこの多層材の遮音度特性を示す曲線図である
FIG. 18 is a curve diagram showing the sound insulation characteristics of this multilayer material.

曲線実■−2、曲線実■−1はそれぞれ製法例■−2で
製造した多層材(鉄粒なし)の厚さ10間のもの、製法
例■−1で製造した多層材(鉄粒入り)の厚さ101I
lilのものの遮音特性を示す。
Curve sample ■-2 and curve sample ■-1 are the multilayer material (without iron grains) manufactured by manufacturing method example ■-2 with a thickness of 10 mm, and the multilayer material manufactured by manufacturing method example ■-1 (with iron grains), respectively. ) thickness 101I
This shows the sound insulation properties of lil's.

この遮音特性は第17図の特性測定器を用いて測定した
。バイブ(27)(100n+mφ)の中に、測定する
多層材(14)を挿入し、その前後にマイクロホンNo
、1、No、2(30)、(31)を設置する。
This sound insulation property was measured using the property measuring device shown in FIG. Insert the multilayer material (14) to be measured into the vibrator (27) (100n+mφ), and place microphone No.
, 1, No. 2 (30), and (31) are installed.

バイブ(27)の−万端よりスピーカ(28)で音を入
射させる。バイブ(27)の他端は閉じており、その閉
端には、長さ約1000mmのグラスウール(29)を
充填しており、閉端で音が反射しないように処理されて
いる。スピーカ(28)で放射され、多層材(14)に
入射する入射波の音圧レベルはマイクロホンNo、1(
30)で測定し、多層材を透過する透過波の音圧レベル
は、マイクロホンNo、2(31)で測定される。
Sound is input from the vibrator (27) through the speaker (28). The other end of the vibrator (27) is closed, and the closed end is filled with glass wool (29) having a length of about 1000 mm, and is treated to prevent sound from being reflected at the closed end. The sound pressure level of the incident wave emitted by the speaker (28) and incident on the multilayer material (14) is the same as the sound pressure level of the microphone No. 1 (
30), and the sound pressure level of the transmitted wave transmitted through the multilayer material is measured by microphone No. 2 (31).

なお、多層材の遮音度(d B)は、入射波の音圧レベ
ルから透過波の音圧レベルを差引いた値で評価した。
The sound insulation degree (dB) of the multilayer material was evaluated by subtracting the sound pressure level of the transmitted wave from the sound pressure level of the incident wave.

第18図に示すように、鉄粒入りのもの(実■1)が、
鉄粒なしのもの(実■−2)より約10dB遮音度が向
上している。
As shown in Figure 18, the one containing iron particles (Real ■1)
The sound insulation degree is improved by about 10 dB compared to the one without iron particles (actual ■-2).

上述実施例においては、樹脂粒に混合する粒を鉄粒とし
たが、他の金属、ガラスや比重の大きい材料でも同様の
効果を発揮する。
In the above-mentioned embodiment, the particles mixed with the resin particles were iron particles, but other metals, glass, and other materials with high specific gravity can also exhibit similar effects.

又、上述実施例においては、遮音特性の向上のみ説明し
たが、電磁シールドにアルミニウムなど電磁シールドに
効果のある材料を混入させてもよく、更に融合層や多孔
質層の強度向上にグラスフィアバなどを、樹脂粒に混入
して成形してもよい。
In addition, in the above embodiments, only the improvement of sound insulation properties was explained, but materials effective for electromagnetic shielding such as aluminum may be mixed into the electromagnetic shield, and glass fiber etc. may be added to improve the strength of the fusion layer and porous layer. , it may be mixed into resin particles and molded.

上記多孔質構造体(61)は多孔質層(63)の厚み等
に応じて空孔率の変化度合いを変え、吸音特性の周波数
を制御することが可能であり、吸音性が向上する。融着
層(64)を層状にすることにより、遮音特性が向上す
る。また、必要に応じて多孔質層(63)の反融合層側
に、厚さ100ミクロン以下のスキン層(65)を設け
る。
The porous structure (61) can change the degree of change in porosity depending on the thickness of the porous layer (63), etc., and can control the frequency of sound absorption characteristics, thereby improving sound absorption. By layering the fusion layer (64), the sound insulation properties are improved. Further, if necessary, a skin layer (65) with a thickness of 100 microns or less is provided on the anti-fusion layer side of the porous layer (63).

(67)は天面板(60)の両側垂直辺(60a)に一
体成形した係合爪、(68)はシャーシ(52)の両側
垂直辺(52a)に設けた係合穴である。
(67) is an engaging claw integrally formed on both vertical sides (60a) of the top plate (60), and (68) is an engaging hole provided on both vertical sides (52a) of the chassis (52).

上記の実施例構成においては、機械部本体(53)をシ
ャーシ(52)にネジ止め固定すること、ファンモータ
(55)を機械部本体(53)の板金構造体の一部にネ
ジ止め固定すること、および後面板(54)をシャーシ
にネジ止めし意匠パネル(56)をはめ込み固定するこ
とは、前記第19図に示す従来装置と同じである。
In the above embodiment configuration, the mechanical part main body (53) is fixed to the chassis (52) with screws, and the fan motor (55) is fixed to a part of the sheet metal structure of the mechanical part main body (53) with screws. This and the screwing of the rear plate (54) to the chassis and the fitting and fixing of the design panel (56) are the same as in the conventional device shown in FIG. 19.

第2図はシャーシ(52)に対する天面板(60)の取
付は構造を示す概要図であり、同図(A)に示すように
天面板(60)を上方から機械部本体(53)に被せる
ことにより、同図(B)に示すようにシャーシ(52)
の保合穴(68)に弾性を有する係合爪(67)が変形
しながら嵌合し、ネジ止めすることなく簡単に天面板(
60)をシャーシ(52)に組付は固定できる。そして
、天面板(60)は吸音性の良い多孔質構造体で形成さ
れているので、ファンモータ(55)、機械部本体(5
3)からの騒音が装置外部へ漏れることを少なくする。
Figure 2 is a schematic diagram showing the structure of how the top plate (60) is attached to the chassis (52), and as shown in Figure (A), the top plate (60) is placed over the mechanical body (53) from above. By doing so, the chassis (52) as shown in the same figure (B)
The elastic engagement claw (67) fits into the retention hole (68) of the top plate (68) while being deformed, and the top plate (
60) can be assembled and fixed to the chassis (52). Since the top plate (60) is made of a porous structure with good sound absorption, the fan motor (55) and the mechanical part main body (5
3) Reduce noise from leaking to the outside of the device.

なお、上記実施例では天面板(60)のみを多孔質構造
体で形成したものを示したが、後面板(54)および意
匠パネル(56)も多孔質構造体で形成し、装置本体の
全体を多孔質構造体で囲むと、より一層遮音効果を高め
ることができる。
In the above embodiment, only the top plate (60) is formed of a porous structure, but the rear plate (54) and the design panel (56) are also formed of a porous structure, and the entire device main body is made of a porous structure. By surrounding it with a porous structure, the sound insulation effect can be further enhanced.

[発明の効果] 以上のように、この発明によれば、騒音を発生する機械
部本体を吸音性の良い多孔質構造体で覆うように構成し
たので、騒音発生源からの騒音を装置外部に漏らずこと
が少なく、防音効果を高め、装置を設置した周辺を騒音
公害から防止することができるとともに、この多孔質構
造体は一体成形した係合爪によりネジ止め不要でシャー
シに組付けることができるので、組付性の良いプリンタ
装置が得られるという効果がある。
[Effects of the Invention] As described above, according to the present invention, the main body of the mechanical part that generates noise is covered with a porous structure having good sound absorption, so that noise from the noise source is not transmitted to the outside of the device. It has less leakage, improves the soundproofing effect, and prevents noise pollution in the area around which the device is installed.This porous structure also has an integrally molded engagement claw that allows it to be assembled to the chassis without the need for screws. Therefore, there is an effect that a printer device with good assemblability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるプリンタ装置を示す
分解斜視図、第2図はその装置の天面板の組付けを説明
する概要図、 第3図は本発明に用いる多層材(多孔質構造体)の模式
的断面図、第4図は多孔質構造体を製造する金型構成断
面図、第5図は本発明に用いる多孔質構造体の第1の実
施例であり、多孔質構造体の坤さに対する空孔率を示す
曲線図、第6図は第5図に空孔率曲線を示した多孔質構
造体の垂直入射吸音率の特性曲線図、第7図は多孔質層
を形成する粒状素材の形状を変えた場合の垂直入射吸音
率の特性のバラツキを示す特性図、第8図は粒状素材の
直径と吸音率の関係を示す特性図、第9図は層状の多孔
質構造体を一部断面で示す図、第10図は本発明に用い
る第3の実施例の多孔質構造体の厚さに対する空孔率を
示す曲線図、第11図及び第12図は従来のものと第1
0図に空孔率曲線を示した多孔質構造体との垂直入射吸
音率の特性を比較する曲線図、第13図は本発明に用い
るスキン層を有する多孔質構造体の空孔率を示す曲線図
、第14図は第13図に空孔率曲線を示したスキン層を
有する多孔質構造体の垂直入射吸音率の特性曲線図、第
15図は本発明に用いる任意層状の多孔質構造体を示す
断面図、第16図は鉄粒入り多孔質構造体を製造するた
めの金型構成断面図、第17図は遮音特性を測定する特
性測定器の説明図、第18図は本発明に用いる二種類の
多孔質構造体の遮音度特性曲線図、第19図は従来のプ
リンタ装置の分解斜視図、第20図はその装置の天面板
の組付けを説明する概要図である。 図において、(53)は機械部本体、(55)はファン
モータ(騒音発生源)、(61)は多孔質構造体、(6
3)は多孔質層、(64)は融着層である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is an exploded perspective view showing a printer device according to an embodiment of the present invention, FIG. 2 is a schematic diagram illustrating the assembly of the top plate of the device, and FIG. 3 is a multilayer material (porous material) used in the present invention. FIG. 4 is a cross-sectional view of a mold configuration for manufacturing a porous structure, and FIG. 5 is a first embodiment of a porous structure used in the present invention. Figure 6 is a curve diagram showing the porosity versus body stiffness; Figure 6 is a characteristic curve diagram of the normal incidence sound absorption coefficient of the porous structure whose porosity curve is shown in Figure 5; A characteristic diagram showing the variation in normal incidence sound absorption coefficient characteristics when changing the shape of the granular material to be formed. Figure 8 is a characteristic diagram showing the relationship between the diameter of the granular material and sound absorption coefficient. Figure 9 is a layered porous material. FIG. 10 is a curve diagram showing the porosity with respect to the thickness of the porous structure of the third embodiment used in the present invention. FIGS. thing and first
Figure 13 is a curve diagram comparing the characteristics of normal incidence sound absorption coefficient with a porous structure whose porosity curve is shown, and Figure 13 shows the porosity of the porous structure having a skin layer used in the present invention. 14 is a characteristic curve diagram of normal incidence sound absorption coefficient of a porous structure having a skin layer whose porosity curve is shown in FIG. 13, and FIG. 15 is a characteristic curve diagram of an arbitrary layered porous structure used in the present invention. 16 is a cross-sectional view of the structure of a mold for manufacturing a porous structure containing iron particles, FIG. 17 is an explanatory diagram of a characteristic measuring device for measuring sound insulation characteristics, and FIG. 18 is a diagram of the present invention. 19 is an exploded perspective view of a conventional printer device, and FIG. 20 is a schematic diagram illustrating the assembly of the top plate of the device. In the figure, (53) is the main body of the machine, (55) is the fan motor (noise generation source), (61) is the porous structure, (6
3) is a porous layer, and (64) is a fusion layer. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  比重を層の厚さ方向もしくは層の面方向に連続的に変
化させた多孔質層とこの多孔質層の一側に融着して一体
化した非通気性の融合層とを有する多孔質構造体を用い
、前記多孔質層を内側に、前記融合層を外側として、プ
リンタ本体を覆ったことを特徴とするプリンタ装置。
A porous structure that has a porous layer whose specific gravity is continuously changed in the thickness direction or the surface direction of the layer, and an impermeable fused layer that is fused and integrated to one side of this porous layer. 1. A printer device, characterized in that the printer body is covered with the porous layer on the inside and the fused layer on the outside.
JP20842589A 1989-08-11 1989-08-11 Printing apparatus Pending JPH0371873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20842589A JPH0371873A (en) 1989-08-11 1989-08-11 Printing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20842589A JPH0371873A (en) 1989-08-11 1989-08-11 Printing apparatus

Publications (1)

Publication Number Publication Date
JPH0371873A true JPH0371873A (en) 1991-03-27

Family

ID=16556009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20842589A Pending JPH0371873A (en) 1989-08-11 1989-08-11 Printing apparatus

Country Status (1)

Country Link
JP (1) JPH0371873A (en)

Similar Documents

Publication Publication Date Title
KR100381740B1 (en) Device for absorbing and/or damping sound waves
US5108833A (en) Porous structural unit and a method of preparing the same
JP4767209B2 (en) Soundproof cover
US4127751A (en) Loudspeaker with rigid foamed back-cavity
CN107251136B (en) Sound-proof structure and manufacturing method thereof
JP2005512143A (en) Multi-density acoustic damping laminate and method of manufacturing the same
JPH0818376B2 (en) Porous structure
JPH0371873A (en) Printing apparatus
JPH10175263A (en) Acoustic absorber
JP2001036282A (en) Acoustic and electromagnetic wave shielding material and manufacture thereof
JP2700349B2 (en) Sound absorbing lighting device
CA2391601A1 (en) Acoustical wall board and wall system
JPH0371795A (en) Television receiver
JP2508285B2 (en) Magnetic recording / reproducing device
JPH0370395A (en) Speaker unit
EP3871872A1 (en) Sound reduction enclosure and method of making a sound reduction enclosure
JPH10121598A (en) Sound absorption material and its manufacture
JP2008207763A (en) Sound absorption material and its molding method
JPH0371797A (en) Speaker unit
JPH0371777A (en) Videotape recorder integrated with camera
JP2022058838A (en) Sheet-like low frequency sound absorber and manufacturing method of the same
JPH0370398A (en) Speaker unit
JP3636351B2 (en) Method of manufacturing sound-absorbing and sound-insulating composite plastic panel containing magnetic fluid inclusion capsule
JPH0370394A (en) Speaker system
JP2024057294A (en) Sound absorbing materials and vehicle components