JPH0371637A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0371637A
JPH0371637A JP20695289A JP20695289A JPH0371637A JP H0371637 A JPH0371637 A JP H0371637A JP 20695289 A JP20695289 A JP 20695289A JP 20695289 A JP20695289 A JP 20695289A JP H0371637 A JPH0371637 A JP H0371637A
Authority
JP
Japan
Prior art keywords
film
insulating film
film thickness
insulating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20695289A
Other languages
Japanese (ja)
Inventor
Kazuyuki Sawada
和幸 澤田
Jun Onoe
尾上 順
Hiroshi Yamamoto
浩 山本
Yoji Masuda
洋司 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20695289A priority Critical patent/JPH0371637A/en
Publication of JPH0371637A publication Critical patent/JPH0371637A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To realize simultaneously the formation of contact holes and a flattening of the surface of a substrate and to contrive an increase in the integration of an element and the improvement of the yield of the manufacture of the element by a method wherein after the film thickness of an insulating film at contact parts is formed thin and the film thickness of the insulating film on the substrate surface part other than the contact parts is formed thick, a heat treatment is performed and the insulating film is flowed. CONSTITUTION:An impurity is prevented from being diffused from second and third insulating films 12 and 16 containing the impurity into a semiconductor substrate by a first insulating film 10. Moreover, after a prescribed region of the film 12 is etched, the film 16 is formed to form an insulating film having a partially different film thickness and the film thickness of the insulating film on nozzles in contact parts is made thin. When a heat-treat process is performed on this insulating film, the part of a thick film thickness is fluidized and a flat surface is obtained. On the other hand, the film thickness of the part of a thin film thickness is hardly charged even after the heat treatment. Thereby, fine contact holes can be formed by the following etching process in a self-alignment manner and as the substrate surface other than the contact parts is formed flatly, the generation of a short circuit and a disconnection can be prevented at the time of formation of a second wiring pattern.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超LSIなどの高積集化に際し、配線と基板
との微細なコンタクトを形成するのに有効な半導体装置
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor device that is effective for forming fine contacts between wiring and a substrate in the case of high integration of ultra-LSIs and the like.

(従来の技術) ダイナミックランダムアクセスメモリ(DRAM)の高
集積に伴い、ワード線の間隔が微細になり、ビット線と
拡散層のコンタクトを微細化する必要がある。そこで、
従来自己整合的にビット線と拡散層とのコンタクトを形
成する方法が種々検討されている0例えば、第35回応
用物理学会講演予稿集28P−V−14に記載された第
2図の方法がある。第2図において、102はシリコン
(Si)基板、103、105.107.108.10
9.118はシリコン酸化膜(Sin、膜)、104は
n0拡散層、106.112はポリシリコン膜(Pol
y S j膜)、110はシリコン窒化膜(Si3N、
膜)、114はボロンリンガラス膜(BPSG膜)、 
116はレジスト膜パターン、120はコンタクトホー
ル、122はWポリサイド配線である。
(Prior Art) As dynamic random access memories (DRAMs) become highly integrated, the spacing between word lines becomes finer, and it is necessary to make the contacts between bit lines and diffusion layers finer. Therefore,
Conventionally, various methods of forming contacts between bit lines and diffusion layers in a self-aligned manner have been studied. For example, the method shown in Fig. 2 described in the Proceedings of the 35th Japan Society of Applied Physics 28P-V-14 has been studied. be. In FIG. 2, 102 is a silicon (Si) substrate, 103, 105.107.108.10
9.118 is a silicon oxide film (Sin, film), 104 is an n0 diffusion layer, and 106.112 is a polysilicon film (Pol).
y S j film), 110 is a silicon nitride film (Si3N,
membrane), 114 is a boron phosphorus glass membrane (BPSG membrane),
116 is a resist film pattern, 120 is a contact hole, and 122 is a W polycide wiring.

次に上記従来例の製造工程について説明する。Next, the manufacturing process of the above conventional example will be explained.

第2図(A)に示すように、Si基板102上にワード
線となるリンドープPo1y Si膜パターン106(
106A〜106C)及びn”拡散層104(104A
 〜104D)が形成されている上に、熱酸化膜(Su
n、膜)109(109A〜1090) 、S i N
 4膜110. Po1y Si膜112を順次形成し
た後、BPSG膜11膜上14スト膜パターン116を
堆積する(第2図(B))。次に第2図(C)に示すよ
うに、BPS’G膜114とPo1y Si膜112の
所定の領域をレジスト膜パターン116(116A、 
116B)をマスクにしてエツチングする。その後、水
蒸気雰囲気中で熱処理を行い、BPSG膜11膜上14
4A、 11413)を流動(フロー)させるとともに
Po1y Si膜112(112A、 112B)を酸
化する。そして、所定の領域のSi3N、膜110及び
SiO2膜10膜製09チングして。
As shown in FIG. 2(A), a phosphorus-doped PolySi film pattern 106 (
106A to 106C) and n” diffusion layer 104 (104A
~104D) is formed, and a thermal oxide film (Su
n, film) 109 (109A to 1090), S i N
4 membranes 110. After sequentially forming the PolySi film 112, a 14-stroke film pattern 116 is deposited on the BPSG film 11 (FIG. 2(B)). Next, as shown in FIG. 2(C), predetermined areas of the BPS'G film 114 and the PolySi film 112 are covered with a resist film pattern 116 (116A,
116B) as a mask. After that, heat treatment is performed in a steam atmosphere, and the BPSG film 11 is
4A, 11413) and oxidizes the PolySi film 112 (112A, 112B). Then, Si3N film 110 and SiO2 film 10 film 09 were etched in predetermined areas.

第2図(E)に示すようにコンタクトホール120(1
20A、 120B)を自己整合的に形成する。ここに
おいて、 Po1y Si膜112はBPSG膜11膜
上14チングする際のエツチングストッパーとなり、そ
の後残存するPo1y Si膜112(112A、 1
12B)を酸化することによって、Wポリサイド配線1
22の短絡が発生するのを防止している。
As shown in FIG. 2(E), contact hole 120 (1
20A, 120B) are formed in a self-aligned manner. Here, the Poly Si film 112 serves as an etching stopper when etching the BPSG film 11, and then the remaining Poly Si film 112 (112A, 1
12B) by oxidizing the W polycide wiring 1
22 is prevented from occurring.

(発明が解決しようとする課題) しかしながら、上記従来の製造方法においては次のよう
な問題点がある。
(Problems to be Solved by the Invention) However, the above conventional manufacturing method has the following problems.

(1)Wポリサイド配線122の短絡が発生しやすい、
つまりPo1y Si[112(112A、 112B
)を酸化してS io、膜118(118A、 118
B)を形成しているため、Po1y Si膜112(1
12A、 112B)が酸化しきれずに残った場合、W
ポリサイド配線112の短絡が発生する。特に段差部の
底部コーナーにおいてはPo1.ySi膜の酸化レート
が著しく遅く、酸化残りが発生しやすいという特徴があ
る。
(1) Short circuits of the W polycide wiring 122 are likely to occur.
In other words, Po1y Si[112(112A, 112B
) to oxidize Sio, film 118 (118A, 118
B), the PolySi film 112 (1
12A, 112B) remain without being completely oxidized, W
A short circuit occurs in the polycide wiring 112. Especially at the bottom corner of the stepped part, Po1. The oxidation rate of the ySi film is extremely slow, and oxidation residues are likely to occur.

(2) Po1y Si膜112(112A、 112
B)の酸化工程がMOSトランジスタ特性に影響を与え
る。つまり、Po1y Si膜112(112A、 1
12B)を十分酸化するためには長時間あるいは高温の
熱処理が必要であり、素子の微細化に伴う製造工程の低
温化の要求を十分に濶足できない。
(2) PolySi film 112 (112A, 112
The oxidation step B) affects the MOS transistor characteristics. In other words, the PolySi film 112 (112A, 1
In order to sufficiently oxidize 12B), long-term or high-temperature heat treatment is required, and the demand for lowering the manufacturing process temperature accompanying miniaturization of elements cannot be fully met.

本発明はこのような従来の問題を解決するものであり、
製造歩留りに優れ、素子の高集積化を可能とする半導体
装置の製造方法を提供することを目的とするものである
The present invention solves these conventional problems,
It is an object of the present invention to provide a method for manufacturing a semiconductor device that has an excellent manufacturing yield and enables high integration of elements.

(課題を解決するための手段) 本発明は上記目的を達成するために、第1の配線パター
ンが形成された半導体基板上に第1の絶縁膜を形成する
工程と、前記第1の絶縁膜上に不純物を含む第2の絶縁
膜を所定の膜厚の1/2の厚さで形成する工程と、前記
不純物を含む第2の絶縁膜の所望の領域をエツチングす
る工程と、全面に不純物を含む第3の絶縁膜を第2の絶
縁膜と同じ膜厚で形成する工程と、前記第2及び第3の
絶縁膜を流動させる熱処理工程と、所望の領域の前記第
1ないし第3の絶縁膜をエツチングし、前記第1の配線
パターン間に接続孔を形成する工程と、第2の配線パタ
ーンを形成し、前記接続孔において半導体基板と第2の
配線を接続する工程を備えている製造方法である。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a step of forming a first insulating film on a semiconductor substrate on which a first wiring pattern is formed, and a step of forming a first insulating film on a semiconductor substrate on which a first wiring pattern is formed. A step of forming a second insulating film containing an impurity on top with a thickness of 1/2 of a predetermined film thickness, a step of etching a desired region of the second insulating film containing the impurity, and a step of etching the impurity on the entire surface. a step of forming a third insulating film with the same thickness as the second insulating film; a heat treatment step of fluidizing the second and third insulating films; The method includes a step of etching an insulating film to form a connection hole between the first wiring patterns, and a step of forming a second wiring pattern and connecting the semiconductor substrate and the second wiring in the connection hole. This is the manufacturing method.

(作 用) したがって1本発明によれば次のような作用を有する。(for production) Therefore, the present invention has the following effects.

(1)第1の絶縁膜は、第2及び第3の絶縁膜から半導
体基板へ不純物が拡散するのを防止する。
(1) The first insulating film prevents impurities from diffusing into the semiconductor substrate from the second and third insulating films.

(2)第2の絶縁膜の所定の領域をエツチングした後第
3の絶縁膜を形成することによって、部分的に膜厚の異
なる絶縁膜が形成できる。熱処理工程を行うと、膜厚の
厚い部分は流動し平坦な表面が得られる。一方、膜厚が
薄い部分は熱処理後においても膜厚がほとんど変化しな
いので、次のエツチング工程において、微細なコンタク
トホールが自己整合的に形成できる。
(2) By etching a predetermined region of the second insulating film and then forming the third insulating film, an insulating film having partially different thicknesses can be formed. When the heat treatment process is performed, the thicker portions of the film flow and a flat surface is obtained. On the other hand, since the thin film thickness hardly changes even after heat treatment, fine contact holes can be formed in a self-aligned manner in the next etching process.

(3)熱処理工程において、コンタクト部外の基板表面
は平坦になっているため、第2の配線パターンを形成す
る際、短絡及び断線の発生を防止できる。
(3) In the heat treatment process, since the surface of the substrate outside the contact portion is flat, short circuits and disconnections can be prevented when forming the second wiring pattern.

(実施例) 第1図は本発明の一実施例における半導体装置の製造工
程であって、DRAMのビット線とセル拡散層のコンタ
クト形成工程を示すものである。
(Embodiment) FIG. 1 shows a manufacturing process of a semiconductor device according to an embodiment of the present invention, and shows a contact formation process between a DRAM bit line and a cell diffusion layer.

第1図において、2はSL基板、3,5,7,8は5i
n2膜、4はn0拡散層、6はPo1y Si膜(第1
の配線パターン)、10はSiO□膜(第1の絶縁膜)
、12はBPSG膜(第2の絶縁膜)、14はレジスト
膜パターン、16はBPSG膜(第3の絶縁膜)、17
はBPSG膜、18はコンタクトホール、20はWポリ
サイド配線(第2の配線パターン)である。
In Figure 1, 2 is the SL board, 3, 5, 7, 8 are 5i
n2 film, 4 is n0 diffusion layer, 6 is PolySi film (first
wiring pattern), 10 is a SiO□ film (first insulating film)
, 12 is a BPSG film (second insulating film), 14 is a resist film pattern, 16 is a BPSG film (third insulating film), 17
18 is a BPSG film, 18 is a contact hole, and 20 is a W polycide wiring (second wiring pattern).

次に上記実施例の製造工程について説明する。Next, the manufacturing process of the above embodiment will be explained.

第1図(A)に示すように、素子分離膜としてのSin
、膜3(3A、3B)、ソース・ドレイン領域となるn
+拡散領層4(4A〜4D)、ゲート酸化膜5(5A 
〜5G)、ワード線となるPo1y Si配線6(6A
〜6C)及び化学蒸着法(CV D法)−5in、膜7
(7A〜7C)、8(8A−8F)の形成された半導体
基板としてのP形Si基板2上に、減圧CVD法により
第1の絶縁膜としてSin、膜10を50Bm堆積し、
続いて常圧CVD法により第2の絶縁膜としてのBPS
G膜12を150Bm堆積させる1次に第1図(B)に
示すように、エツチングマスク材としてのレジスト膜パ
ターン14(14A、 14B)を形成し、BPSG膜
12をドライエツチングする。このとき、コンタクト部
分の大きさはPo1y Si配線6(6A、6B)の間
隔によって決まり、レジスト膜パターンの開口面積をコ
ンタクト面積に比較して大きくすることができ、マスク
合わせずれが生じた場合にも所定の位置にコンタクト開
口部が形成できる。その後、レジスト膜パターン14(
14A、 14B)を除去する0次に第1図(C)に示
すように、常圧CVD法により第3の絶縁膜としてのB
 P S G11116を150tv+堆積する。この
とき、第1図(B)においてエツチングした部分のBP
SG膜の膜厚が150Bmであるのに対し、エツチング
しなかった部分の膜厚は300n+mである。この点が
本発明の極めて重要な点の一つである0次に、N2雰囲
気中で900℃の熱処理を行うと、第1図(D)に示す
ように、300Bmの膜厚のBPSG膜はフローし平坦
な表面が得られる。一方150nmの膜厚のBPSG膜
は膜厚の大きな変化はない。従って、コンタクト部の段
差を残したまま基板の平坦化が可能となる。次に、基板
表面をドライエツチングすることによって、BPSG膜
17膜上7 io、膜がエツチングされ、第1図(E)
に示すように自己整合的に微細なコンタクトホール18
(18A、 18B)がPo1y Si配線6(6A、
6B)間に形成される。このとき、コンタクト部でのB
PSG膜の膜厚が薄いために、オーバーエツチング率を
少なくしても容易にコンタクトホールが形成できる。
As shown in FIG. 1(A), a Sin
, film 3 (3A, 3B), n which becomes the source/drain region
+ Diffusion layer 4 (4A to 4D), gate oxide film 5 (5A
~5G), Po1y Si wiring 6 (6A
~6C) and chemical vapor deposition method (CV D method)-5in, film 7
(7A to 7C) and 8 (8A to 8F) were formed on a P-type Si substrate 2 as a semiconductor substrate, a film 10 of 50 Bm of Sin was deposited as a first insulating film by low pressure CVD method,
Next, BPS is deposited as a second insulating film by atmospheric pressure CVD.
150 Bm of G film 12 is deposited. First, as shown in FIG. 1B, a resist film pattern 14 (14A, 14B) as an etching mask material is formed, and the BPSG film 12 is dry etched. At this time, the size of the contact portion is determined by the spacing between the Po1y Si wirings 6 (6A, 6B), and the opening area of the resist film pattern can be made larger compared to the contact area, so that it is possible to prevent mask misalignment. Contact openings can also be formed at predetermined positions. After that, the resist film pattern 14 (
14A, 14B) As shown in FIG. 1(C), B as the third insulating film is
Deposit 150 tv+ of P S G11116. At this time, the BP of the etched part in FIG. 1(B)
The thickness of the SG film is 150 Bm, whereas the thickness of the unetched portion is 300 N+m. This point is one of the extremely important points of the present invention. When heat treatment is performed at 900°C in an N2 atmosphere, a BPSG film with a thickness of 300 Bm is formed as shown in Figure 1 (D). It flows and a flat surface is obtained. On the other hand, there is no significant change in the thickness of the 150 nm thick BPSG film. Therefore, it is possible to flatten the substrate while leaving the level difference in the contact portion. Next, by dry etching the substrate surface, the BPSG film 17 is etched, as shown in FIG. 1(E).
A fine contact hole 18 is formed in a self-aligned manner as shown in FIG.
(18A, 18B) are PolySi wiring 6 (6A,
6B) is formed between. At this time, B at the contact part
Since the PSG film is thin, contact holes can be easily formed even if the overetching rate is reduced.

これは第工図CD)に示すようなりPSGS上膜の形状
が得られてはじめて可能となるものである。従って、エ
ツチングストッパー膜は不要である6次に、減圧CVD
法によりPo1y Si膜を90n+m堆積した後、ス
パッタ法によりWシリサイド膜り00n@堆積させ、第
1図(F)に示すようにビット線となるWポリサイド膜
20を形成して、ビット線とn0拡敢層がコンタクトホ
ール18において接続される。
This becomes possible only when the shape of the PSGS upper film is obtained as shown in the construction drawing CD). Therefore, an etching stopper film is not necessary.6 Next, low pressure CVD
After depositing a PolySi film of 90n+m by a sputtering method, a W silicide film of 00n@ was deposited by a sputtering method to form a W polycide film 20 that will become a bit line as shown in FIG. 1(F). The expansion layer is connected in contact hole 18 .

また、このときBPSG膜17膜上7て基板表面が平坦
化されているため、Wポリサイド配線の短絡や断線が発
生することがない。
Furthermore, since the substrate surface is flattened on the BPSG film 17 at this time, short circuits and disconnections of the W polycide wiring do not occur.

なお、上記実施例において第1の絶縁膜としてSio、
膜を用いた例について説明したが、Si、N、膜を用い
てもよい。また、Sin、膜lOの形成法として減圧C
VD法を用いたが、常圧CVD法あるいはプラズマCV
D法を用いてもよい。
In addition, in the above embodiment, Sio,
Although an example using a film has been described, Si, N, and films may also be used. In addition, as a method for forming Sin and film IO, reduced pressure C
Although the VD method was used, normal pressure CVD method or plasma CV
Method D may also be used.

同様に、BPSG膜の形成法として常圧CVD法を用い
たが、減圧CVD法あるいはプラズマCVD法を用いて
もよい。
Similarly, although the normal pressure CVD method was used as a method for forming the BPSG film, a low pressure CVD method or a plasma CVD method may be used.

さらに、BPSG膜12をエツチングする工程において
ドライエツチングを用いたが、ドライエツチングとウェ
ットエツチングを組み合わせて行ってもよい。
Further, although dry etching was used in the step of etching the BPSG film 12, a combination of dry etching and wet etching may be used.

また、BPSG膜の代わりにリンガラス(P SG)膜
あるいはヒ素ガラス(AsSG)を用いてもよい。
Furthermore, a phosphorus glass (PSG) film or arsenic glass (AsSG) may be used instead of the BPSG film.

(発明の効果) 本発明は上記実施例から明らかなように、以下に示す効
果を有する。
(Effects of the Invention) As is clear from the above examples, the present invention has the following effects.

(1)コンタクト部のBPSG膜厚を薄く、それ以外の
部分の膜厚を厚く形成した後熱処理してBPSG膜をフ
ローさせることによって、コンタクトホールの形成と基
板表面の平坦化が同時に実現できる。
(1) Formation of contact holes and planarization of the substrate surface can be achieved at the same time by making the BPSG film thinner in the contact area and thicker in other parts, and then heat-treated to cause the BPSG film to flow.

(2)ワード線(Poly S i配線)の間隔によっ
てコンタクトの大きさが決まるので、微細なコンタクト
を自己整合的に形成することができる。
(2) Since the size of the contact is determined by the spacing between the word lines (Poly Si wiring), fine contacts can be formed in a self-aligned manner.

(3)基板表面がBPSG膜によって平坦化されている
ためビット線(Wポリサイド配線)の形成時に短絡や断
線が発生することがない。
(3) Since the substrate surface is flattened by the BPSG film, short circuits and disconnections do not occur during formation of bit lines (W polycide wiring).

(4)コンタクト形成時のエツチング工程において、コ
ンタクト部におけるBPSG膜の膜厚が薄いのでオーバ
ーエツチング率を小さくすることができ、゛エツチング
ストッパー膜がなくても基板を余分にエツチングするこ
とを防止できる。
(4) In the etching process during contact formation, the overetching rate can be reduced because the BPSG film in the contact area is thin, and the substrate can be prevented from being excessively etched even without an etching stopper film. .

(5)BPSG膜と基板の間にSin、膜を形成するこ
とによって、ボロンやリンが基板中に拡散するのを防止
することができる。
(5) By forming a Sin film between the BPSG film and the substrate, it is possible to prevent boron and phosphorus from diffusing into the substrate.

(6)エツチングストッパーとしてPo1y Si膜を
用いていないので、Po1y Si膜残りによる配線の
短絡の問題がまったくない、また、Po1y Si膜を
酸化する必要がないので、BPSGの熱処理時間が短か
くてよく素子の微細化に適している。
(6) Since the Po1y Si film is not used as an etching stopper, there is no problem of wiring short circuits due to the remaining Po1y Si film.Also, there is no need to oxidize the Po1y Si film, so the heat treatment time for BPSG is shortened. It is well suited for miniaturization of elements.

上記の如く、微細なコンタクトホールを自己整合的に形
成できるとともに基板表面を平坦化できるため、素子の
高集積化ならびに製造歩留りの向上がはかれる。
As described above, since fine contact holes can be formed in a self-aligned manner and the substrate surface can be flattened, higher integration of elements and improvement in manufacturing yield can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第工図は本発明の一実施例における半導体装置の製造方
法の工程断面図、第2図は従来の半導体装置の製造方法
の工程断面図である。 2.102・・・SL基板+   3.5,7,8,1
03、105.107.108.109.118・・・
SiO2膜、4 、 LO4−n ”拡散層、 6 、
106・・・Po1ySi膜(第1の配線パターン)、
 10・・・S io、膜(第1の絶縁膜)、 12・
・・BPSG膜(第2の絶縁膜)、 14.116・・
・レジスト膜パターン、 16・・・BPSG膜(第3
の絶縁膜)、 17.114・・・BPSG膜、 18
・・・コンタクトホール、 20.122・・・Wポリ
サイド配線(第2の配線パターン)、 110・・・S
i、N、膜、 112・・・Po1y Si膜。
1 is a process sectional view of a method for manufacturing a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a process sectional view of a conventional method for manufacturing a semiconductor device. 2.102...SL board + 3.5, 7, 8, 1
03, 105.107.108.109.118...
SiO2 film, 4, LO4-n” diffusion layer, 6,
106...PolySi film (first wiring pattern),
10...S io, film (first insulating film), 12.
...BPSG film (second insulating film), 14.116...
・Resist film pattern, 16...BPSG film (third
(insulating film), 17.114...BPSG film, 18
...Contact hole, 20.122...W polycide wiring (second wiring pattern), 110...S
i, N, film, 112...PolySi film.

Claims (1)

【特許請求の範囲】[Claims] 第1の配線パターンが形成された半導体基板上に第1の
絶縁膜を形成する工程と、前記第1の絶縁膜上に不純物
を含む第2の絶縁膜を形成する工程と、前記不純物を含
む第2の絶縁膜の所望の領域をエッチングする工程と、
全面に不純物を含む第3の絶縁膜を形成する工程と、前
記第2及び第3の絶縁膜を流動させる熱処理工程と、所
望の領域の前記第1ないし第3の絶縁膜をエッチングし
、前記第1の配線パターン間に接続孔を形成する工程と
、第2の配線パターンを形成し、前記接続孔において前
記半導体基板と第2の配線を接続する工程を備えてなる
ことを特徴とする半導体装置の製造方法。
a step of forming a first insulating film on a semiconductor substrate on which a first wiring pattern is formed; a step of forming a second insulating film containing impurities on the first insulating film; and a step of forming a second insulating film containing impurities on the first insulating film; etching a desired region of the second insulating film;
a step of forming a third insulating film containing impurities over the entire surface; a heat treatment step of fluidizing the second and third insulating films; etching the first to third insulating films in desired regions; A semiconductor characterized by comprising a step of forming a connection hole between first wiring patterns, and a step of forming a second wiring pattern and connecting the semiconductor substrate and the second wiring in the connection hole. Method of manufacturing the device.
JP20695289A 1989-08-11 1989-08-11 Manufacture of semiconductor device Pending JPH0371637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20695289A JPH0371637A (en) 1989-08-11 1989-08-11 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20695289A JPH0371637A (en) 1989-08-11 1989-08-11 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0371637A true JPH0371637A (en) 1991-03-27

Family

ID=16531739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20695289A Pending JPH0371637A (en) 1989-08-11 1989-08-11 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0371637A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340774A (en) * 1993-02-04 1994-08-23 Paradigm Technology, Inc. Semiconductor fabrication technique using local planarization with self-aligned transistors
US5895961A (en) * 1995-10-11 1999-04-20 Paradigm Technology, Inc. Semiconductor device with a planarized interconnect with poly-plug and self-aligned contacts
US8662309B2 (en) 2008-08-28 2014-03-04 Sharp Kabushiki Kaisha Method for packing tab tape, and packing structure for tab tape

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340774A (en) * 1993-02-04 1994-08-23 Paradigm Technology, Inc. Semiconductor fabrication technique using local planarization with self-aligned transistors
US5477074A (en) * 1993-02-04 1995-12-19 Paradigm Technology, Inc. Semiconductor structure using local planarization with self-aligned transistors
US5895961A (en) * 1995-10-11 1999-04-20 Paradigm Technology, Inc. Semiconductor device with a planarized interconnect with poly-plug and self-aligned contacts
US8662309B2 (en) 2008-08-28 2014-03-04 Sharp Kabushiki Kaisha Method for packing tab tape, and packing structure for tab tape

Similar Documents

Publication Publication Date Title
US4966870A (en) Method for making borderless contacts
JPH08236473A (en) Manufacture of semiconductor device
US5998249A (en) Static random access memory design and fabrication process featuring dual self-aligned contact structures
JPH0927596A (en) Manufacture of semiconductor device
US5110766A (en) Method of manufacturing a semiconductor device including forming a flattening layer over hollows in a contact hole
JPH03218626A (en) Wiring contact structure of semiconductor device and manufacture thereof
JPH09260607A (en) Manufacture of semiconductor
JPH04317358A (en) Manufacture of semiconductor device
KR100234379B1 (en) Manufacturing method of semiconductor memory device with preventible oxidation of bit-line
JP2756886B2 (en) Semiconductor device and manufacturing method thereof
JP2523981B2 (en) Method for manufacturing semiconductor device
US5866946A (en) Semiconductor device having a plug for diffusing hydrogen into a semiconductor substrate
US6372641B1 (en) Method of forming self-aligned via structure
JPH0371637A (en) Manufacture of semiconductor device
US6090662A (en) Method of fabricating interconnect lines and plate electrodes of a storage capacitor in a semiconductor device
US6900118B2 (en) Method for preventing contact defects in interlayer dielectric layer
JPH11330067A (en) Semiconductor device and its manufacture
US6169026B1 (en) Method for planarization of semiconductor device including pumping out dopants from planarization layer separately from flowing said layer
US6277754B1 (en) Method of planarizing dielectric layer
JP2003077859A (en) Semiconductor device and method of manufacturing the same
JPH06283526A (en) Manufacture of semiconductor device
JP3317736B2 (en) Semiconductor device and manufacturing method thereof
JP3555319B2 (en) Method for manufacturing semiconductor device
JP3265593B2 (en) Method for manufacturing semiconductor device
JPH04315454A (en) Manufacture of semiconductor device