JPH0371600B2 - - Google Patents

Info

Publication number
JPH0371600B2
JPH0371600B2 JP56180065A JP18006581A JPH0371600B2 JP H0371600 B2 JPH0371600 B2 JP H0371600B2 JP 56180065 A JP56180065 A JP 56180065A JP 18006581 A JP18006581 A JP 18006581A JP H0371600 B2 JPH0371600 B2 JP H0371600B2
Authority
JP
Japan
Prior art keywords
nitrogen gas
ultra
gas
pipe
synthetic zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56180065A
Other languages
Japanese (ja)
Other versions
JPS5881300A (en
Inventor
Akira Yoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Sanso Co Ltd
Original Assignee
Daido Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Sanso Co Ltd filed Critical Daido Sanso Co Ltd
Priority to JP18006581A priority Critical patent/JPS5881300A/en
Publication of JPS5881300A publication Critical patent/JPS5881300A/en
Publication of JPH0371600B2 publication Critical patent/JPH0371600B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pipeline Systems (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、純度低下をもたらすことなく窒素
ガスを輸送する窒素ガス輸送方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a nitrogen gas transport method for transporting nitrogen gas without reducing its purity.

〔従来の技術〕[Conventional technology]

超高純度窒素ガスは、各方面に広く用いられて
いるが、特に半導体工業においては、その使用窒
素ガスの純度が高くなるほど不良率が低減するこ
とが知られている。したがつて、半導体工業にお
いては、窒素ガスの純度を一層高め、それを超高
純度状態を保持させたまま製造現場まで輸送する
ことに腐心している。
Ultra-high purity nitrogen gas is widely used in various fields, and it is known that the higher the purity of the nitrogen gas used, the lower the defective rate, especially in the semiconductor industry. Therefore, in the semiconductor industry, efforts are being made to further improve the purity of nitrogen gas and transport it to manufacturing sites while maintaining an ultra-high purity state.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この種、超高純度窒素ガスの調製およびその輸
送は、これまで第1図のような装置により行われ
ている。すなわち、低温容器1より液体窒素ガス
を蒸発器2に送つて気化させ、調圧ユニツト3で
調圧したのち精製器4に入れて超高純度化し、こ
れを高度に清浄化された配管Aによつて半導体製
造設備5まで輸送することが行われている。この
場合、精製は、液体窒素の状態で行うのではな
く、一旦それを蒸発器2に送つて気化させて窒素
ガスにし、その状態で、特開昭54−103777号公報
に示されているように、合成ゼオライト(このも
のは、液体中の不純分ではなくガス中の不純分を
吸着除去する吸着剤として広く用いられている)
等の吸着剤を内蔵した精製器4を通して行われて
いる。そして、このようにして精製された精製超
高純度窒素ガス(気体)を高度清浄化配管によつ
て半導体製造設備にまで輸送していた。この輸送
の際、何らかの手違いで、不純ガスが高度清浄化
配管内に送られると、その配管が汚染されその回
復(清浄化)に非常な労力を要するため、清浄化
配管の入口にセンサを設け、不純ガスの流入を阻
止する体制が採られている。ところが、このよう
に超高純度ガスの輸送に細心の注意を払つても半
導体製造設備に到達するガスは、配管入口での純
度を保持しておらず、O2、Arの不純分が含有さ
れている。したがつて、半導体製造の不良率が当
初の見込みを大幅に上まわるという事態が発生し
ている。これまで、この輸送過程におけるガスの
純度低下の原因を究明し改善を図るべく各種の試
みがなされたが、いまだ満足しうるような方法が
見いだされていないのが実情である。一方、液体
酸素の流路内にシリカゲル吸着剤内蔵の吸着塔を
設け、酸素を液体の状態でシリカゲルに接触させ
て液体酸素中のアセチレンを除去し、アセチレン
に起因する爆発事故を防止する技術が提案されて
いる(特公昭52−42151号)。したがつて、窒素を
ガスの状態ではなく、液体の状態で輸送し、この
輸送液体流路中に上記シリカゲルを配設して不純
分を吸着除去することが考えられるが、上記シリ
カゲルは、O2,Arに対する吸着能を有していな
いため、これは不可能である。
The preparation and transportation of this type of ultra-high purity nitrogen gas has heretofore been carried out using an apparatus as shown in FIG. That is, liquid nitrogen gas is sent from a low-temperature container 1 to an evaporator 2 to be vaporized, the pressure is regulated in a pressure regulating unit 3, and the gas is then put into a purifier 4 for ultra-high purity, which is then sent to a highly purified pipe A. Therefore, transportation to the semiconductor manufacturing facility 5 is performed. In this case, purification is not carried out in the state of liquid nitrogen, but it is once sent to the evaporator 2 to be vaporized into nitrogen gas, and in that state, as shown in Japanese Patent Application Laid-Open No. 103777/1983, Synthetic zeolite (this is widely used as an adsorbent to adsorb and remove impurities in gases rather than in liquids)
This is carried out through a purifier 4 containing a built-in adsorbent. The purified ultra-high purity nitrogen gas (gas) thus purified was then transported to semiconductor manufacturing equipment through highly purified piping. If impure gas is sent into the highly purified pipe due to some kind of mistake during this transportation, the pipe will be contaminated and it will take a lot of effort to recover (clean it), so a sensor is installed at the entrance of the purified pipe. A system is adopted to prevent the inflow of impure gas. However, even if such extreme care is taken to transport ultra-high purity gas, the gas that reaches the semiconductor manufacturing equipment does not maintain the purity at the piping entrance and contains impurities such as O 2 and Ar. ing. As a result, a situation has arisen in which the defective rate in semiconductor manufacturing is significantly higher than initially expected. Up to now, various attempts have been made to investigate the cause of the decrease in gas purity during this transportation process and to improve it, but the reality is that no satisfactory method has yet been found. On the other hand, there is a technology that prevents explosion accidents caused by acetylene by installing an adsorption tower with a built-in silica gel adsorbent in the liquid oxygen flow path and bringing oxygen into contact with the silica gel in a liquid state to remove acetylene from the liquid oxygen. It has been proposed (Special Publication No. 52-42151). Therefore, it is conceivable to transport nitrogen in a liquid state instead of a gas state, and to arrange the silica gel in the transport liquid flow path to adsorb and remove impurities. 2 , this is not possible because it does not have adsorption capacity for Ar.

この発明は、このような事情に鑑みなされたも
ので、輸送過程においてガスの純度低下を招かな
い窒素ガス輸送方法の提供をその目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a method for transporting nitrogen gas that does not cause a decrease in gas purity during the transport process.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明の窒素ガ
ス輸送方法は、液体窒素ガス貯槽から液体窒素を
取り出し、これを超低温の状態を保つて目的地ま
でパイプ管路で輸送し、使用直前に蒸発器に入れ
て気化する窒素ガス輸送方法において、上記パイ
プ管路として真空二重管を用い両管の間に吸着剤
を配設し、かつ上記パイプ管路に合成ゼオライト
内蔵の精製器を組み込み、窒素ガスを超低温液体
状態で合成ゼオライトに接触させそのなかのO2
Arの不純分を合成ゼオライトに吸着させ除去す
るという構成をとる。
In order to achieve the above object, the nitrogen gas transportation method of the present invention extracts liquid nitrogen from a liquid nitrogen gas storage tank, transports it through a pipe to the destination while keeping it in an ultra-low temperature state, and transfers it to the evaporator immediately before use. In this method, a vacuum double pipe is used as the pipe line, an adsorbent is placed between the two pipes, and a purifier containing synthetic zeolite is installed in the pipe line to transport nitrogen gas. The gas is brought into contact with synthetic zeolite in an ultra-low temperature liquid state, and the O 2 ,
The structure is such that Ar impurities are adsorbed onto synthetic zeolite and removed.

〔作用〕[Effect]

すなわち、この発明は、窒素ガスを気化させて
目的地に輸送するのではなく、窒素ガスを目的地
近傍まで超低温液体のままで輸送するため、パイ
プ管路の構成材料中の吸蔵不純ガスO2,Ar分子
の運動が上記超低温により著しく小さくなる。そ
の結果、吸蔵ガスがパイプ管路材料から管路内に
飛び出し超低温液体に混じるという現象が殆どな
くなる。また、上記パイプ管路は真空二重管であ
つて両管の間に吸着剤が設けられているため、空
気中の酸素分子等が真空二重管の外管壁を仮に通
過しても内管壁の存在により内管内に到達しにく
くなり、かつ上記内外管の間の吸着剤が、内外管
の間に入り込んだ酸素分子等の不純分分子を補捉
する。したがつて、空気の成分が管路の壁面を通
過して内管内に混じることがない。そのうえ、こ
の発明では、本発明者が、合成ゼオライトに関す
る研究の過程において発見した合成ゼオライトの
新特性、すなわち、合成ゼオライトは、常温ガス
中よりも、液体窒素等の超低温液体中において
O2,Arを極めて高効率に選択除去しうるという
特性を応用し、ガスの精製を、気体の状態で行う
のではなく、液体の状態で合成ゼオライトに接触
させて行うため、仮りに空気の成分(O2,Ar)
が管路壁を通過したり、もしくは管路壁に吸蔵さ
れていた状態から放出されたりして混入しても、
そのO2,Arの不純分を効率よく除去することが
できる。したがつて、上記効果と、窒素ガスを気
体ではなく超低温液体の状態で輸送することにも
とづく管路吸蔵ガスの放出の抑制効果と、内外管
の間の吸着剤の吸着効果とが相俟つて、超高純度
窒素を、その純度を維持させたまま輸送すること
が可能になる。
That is, this invention does not vaporize nitrogen gas and transport it to the destination, but rather transports the nitrogen gas as an ultra-low temperature liquid to the vicinity of the destination. , the motion of Ar molecules becomes significantly smaller due to the ultralow temperature mentioned above. As a result, the phenomenon that the stored gas jumps out from the pipe line material into the pipe line and mixes with the ultra-low temperature liquid is almost eliminated. In addition, since the above-mentioned pipe line is a vacuum double tube and an adsorbent is provided between both tubes, even if oxygen molecules in the air pass through the outer wall of the vacuum double tube, the inner The existence of the tube wall makes it difficult to reach the interior of the inner tube, and the adsorbent between the inner and outer tubes captures impurity molecules such as oxygen molecules that have entered between the inner and outer tubes. Therefore, air components do not pass through the wall of the pipe and mix into the inner pipe. Furthermore, this invention describes a new property of synthetic zeolite discovered by the present inventor in the course of research on synthetic zeolite, namely, that synthetic zeolite is more stable in ultra-low temperature liquids such as liquid nitrogen than in room temperature gas.
Taking advantage of the property that O 2 and Ar can be selectively removed with extremely high efficiency, the gas is purified not in the gas state but in the liquid state by contacting it with synthetic zeolite. Ingredients (O 2 , Ar)
Even if it passes through the pipe wall or is released from being stored in the pipe wall,
The O 2 and Ar impurities can be efficiently removed. Therefore, the above effects are combined with the effect of suppressing the release of gas stored in the pipe due to the transport of nitrogen gas in the state of ultra-low temperature liquid rather than gas, and the adsorption effect of the adsorbent between the inner and outer pipes. , it becomes possible to transport ultra-high purity nitrogen while maintaining its purity.

一般に、輸送配管の管体材料中には吸蔵ガス
(O2,Ar)が存在する。このような吸蔵ガスは、
それ自身の分子運動によつて徐々に管体の内部か
ら配管の内面に移行し、そこから輸送対象物に混
じり込む。配管内部のこのような吸蔵ガスは、配
管の清浄化作業(酸洗い、真空吸引)では除去で
きず、また分子運動によつて輸送中のガスに混じ
り込んでも、第2図に示すように、配管6の外面
6aに接触している大気中より、混じり込んだ分
に相当するガス分の補給が矢印のように壁面を通
過してなされるため、吸蔵ガスによる汚染は配管
6の清浄化にかかわらず生じそれが継続される。
7は金属粒子である。この発明は、上記構成によ
り、このような弊害を除去する。
Generally, storage gases (O 2 , Ar) are present in the pipe material of transportation piping. Such storage gas is
Due to its own molecular movement, it gradually moves from the inside of the tube to the inner surface of the piping, and from there it mixes with the transported object. Such occluded gas inside the piping cannot be removed by cleaning the piping (pickling, vacuum suction), and even if it gets mixed into the gas being transported due to molecular movement, as shown in Figure 2, The amount of gas that is mixed in from the atmosphere that is in contact with the outer surface 6a of the pipe 6 is replenished through the wall surface as shown by the arrow. It occurs and continues regardless.
7 is a metal particle. The present invention eliminates such disadvantages with the above configuration.

つぎに、この発明をその一例にもとづいて説明
する。
Next, the present invention will be explained based on one example.

〔実施例〕〔Example〕

第3図はこの発明の一実施例の概略図である。
すなわち、この例は、容器11から液化窒素ガス
(超低温)を精製器12に送り込んで液状のまま
で精製し、得られる超高純度液化窒素ガス(超高
純度液体窒素)を高度に清浄化された配管Bで超
低温液体のまま輸送し、半導体製造設備13の直
前に設けられている蒸発器14で蒸発させて超高
純度液化窒素ガスを気化させ、半導体製造設備1
3に窒素をガス代で供給するようにしている。こ
こで液化窒素ガスの精製は、モレキユラーシーブ
ス(合成ゼオライト)を充填した吸着式精製器1
2内に液化窒素ガスを通すことによつて行われ
る。このように、窒素ガスを液状(超低温)で合
成ゼオライトと接触させると、気体状態で接触さ
せるよりもはるかに優れた吸着効果が得られる。
これが、この発明の最大の特徴である。ちなみ
に、合成ゼオライトの1空洞当たりに吸着される
O2分子は、温度が0℃で0.5個、−50℃で2個、−
100℃で5個、−150℃で9個、−175℃で12個であ
る。また1空洞当たりに吸着されるAr分子は0
℃で0個、−50℃で0.1個、−100℃で1個、−150℃
で4個である。すなわち、合成ゼオライトは超低
温の方が酸素、アルゴン等の不純分に対する吸着
能に富んでいる。そして、精製後の超高純度液化
窒素ガスの輸送は、酸洗い、真空吸引により高度
に清浄化された二重管Bを用いて行われ、外管内
を真空にしてそこに活性炭、モレキユラーシーブ
ス等の吸着剤を配設し、内管内に超高純度液化窒
素ガスを流すことにより行われる、このように、
高度に清浄化された真空二重管を用いて超高純度
液化窒素ガスを輸送すると、かりに大気が外管を
透過して内部に侵入しても真空部に設けられてい
る吸着剤の存在により透過ガスが吸着され、その
うえ内管壁が存在するため、内管内まで到達しな
い。したがつて、大気による超高純度液化窒素ガ
スの汚染がほぼ完全に阻止されるようになる。
FIG. 3 is a schematic diagram of an embodiment of the present invention.
That is, in this example, liquefied nitrogen gas (ultra-low temperature) is sent from the container 11 to the purifier 12 and purified in its liquid state, and the obtained ultra-high purity liquefied nitrogen gas (ultra-high purity liquid nitrogen) is highly purified. The ultra-high-purity liquefied nitrogen gas is transported as an ultra-low temperature liquid through pipe B, and evaporated in the evaporator 14 installed immediately before the semiconductor manufacturing equipment 13 to vaporize the ultra-high purity liquefied nitrogen gas.
3. Nitrogen is supplied at a gas cost. Here, liquefied nitrogen gas is purified using an adsorption purifier 1 filled with molecular sieves (synthetic zeolite).
This is done by passing liquefied nitrogen gas through 2. In this way, when nitrogen gas is brought into contact with synthetic zeolite in a liquid state (ultra-low temperature), a much better adsorption effect can be obtained than when it is brought into contact in a gaseous state.
This is the greatest feature of this invention. By the way, each cavity of synthetic zeolite adsorbs
There are 0.5 O2 molecules at temperature 0℃, 2 molecules at −50℃, and −
5 at 100°C, 9 at -150°C, and 12 at -175°C. Also, the number of Ar molecules adsorbed per cavity is 0.
0 at ℃, 0.1 at -50℃, 1 at -100℃, -150℃
So there are 4 pieces. In other words, synthetic zeolite has a higher ability to adsorb impurities such as oxygen and argon at ultra-low temperatures. After purification, ultra-high purity liquefied nitrogen gas is transported using double tube B, which has been highly purified by pickling and vacuum suction.The inside of the outer tube is evacuated and activated carbon and molecular This is done by installing an adsorbent such as sieves and flowing ultra-high purity liquefied nitrogen gas into the inner tube.
When ultra-high-purity liquefied nitrogen gas is transported using highly purified vacuum double tubes, even if the atmosphere penetrates through the outer tube and enters the interior, it will still be absorbed by the adsorbent installed in the vacuum section. The permeated gas is adsorbed, and since the inner tube wall exists, it does not reach the inside of the inner tube. Therefore, contamination of the ultra-high purity liquefied nitrogen gas by the atmosphere is almost completely prevented.

なお、超高純度液化窒素ガスの蒸発器14によ
る蒸発は、熱交換式蒸発器を用いて行われる。こ
の蒸発器としては、脱気処理され内部に金メツ
キが施されているもの、もしくは、二重殻にな
つており、内殻内を超高純度低温液化窒素ガスを
通し、外殻にこの超高純度低温液化窒素ガスと同
種のガスであつて気体状になつている窒素ガスを
封入し、このガスをヒータもしくは外気により加
熱して内殻を通る超高純度低温液化窒素ガスを間
接加熱し熱交換させるようにしたものが用いられ
る。
The ultra-high purity liquefied nitrogen gas is evaporated by the evaporator 14 using a heat exchange type evaporator. This evaporator is either degassed and gold-plated on the inside, or has a double shell, in which ultra-high-purity low-temperature liquefied nitrogen gas is passed through the inner shell, and this ultra-high-purity liquefied nitrogen gas is passed through the outer shell. Nitrogen gas, which is the same type of gas as high-purity low-temperature liquefied nitrogen gas, is sealed, and this gas is heated by a heater or outside air to indirectly heat the ultra-high-purity low-temperature liquefied nitrogen gas that passes through the inner shell. A device that allows heat exchange is used.

また、真空二重管として、管の継合を第4図に
示すようなバイオネツト継手方式で行つているも
のを用いることが好ましい。すなわち、この継手
方式は、一方の真空二重管21の端部を、外管2
2を細径にすることによりおす形部23にし、そ
の細径外管22の根本部から継手部24を立上が
らせるとともにおす形部23の外管22の先端に
段部25を設け、その段部25に断面コ字状のリ
ング状弾性パツキン(一体物で切れ目がない)2
6を、コ字状の開放部を前方に向けて装着し、ま
た他方の真空二重管27の端部を、内管28を太
径にすることによりめす形部29にし、その太径
内管28の入口部から継手部30を立上がらせる
とともに、めす形部29の内管28の内奥部を先
すぼまり状のテーパー面31にしている。そし
て、上記一方の真空二重管21のおす形部23を
他方の真空二重管27のめす形部29内に嵌装
し、継手部24,30同士をO−リング32を介
して当接させるとともに、めす形部29のテーパ
ー面31でリング状弾性パツキン26を押圧さ
せ、おす形部23の外管22とめす形部29の内
管28との間の空隙33内を気密状態にし、その
状態で継手部24,30を締付具(図示せず)で
締付け、一方および他方の真空二重管21,27
を継合するようになつている。34はリング状弾
性パツキン26の固定ねじ、35は一方の真空二
重管21の内管、36は他方の真空二重管27の
外管である。この継手方式は、めす形部29の内
管28の先すぼまり状のテーパー面31でおす形
部23の外管22の先端段部25のリング状弾性
パツキン26を押圧して上記空隙33をシールす
るため、空隙33の高さ等の寸法が正確に出てい
なくても、リング状弾性パツキン26に対するテ
ーパー面31の押圧状態があまり影響を受けずシ
ール状態が変わらない。そのうえ、リング状弾性
パツキン26が一体物であり、切れ目がないた
め、高シール状態が実現される。したがつて、こ
の継手方式は、施工精度にあまり影響されること
なく、高シール状態を保持しうる。
Further, it is preferable to use a vacuum double pipe in which the pipes are joined by a bayonet joint method as shown in FIG. 4. That is, in this joint method, the end of one vacuum double tube 21 is connected to the outer tube 2.
2 is made into a male shape part 23 by making the diameter of the male shape part 23 smaller, and a joint part 24 is made to stand up from the root part of the small diameter outer pipe 22, and a stepped part 25 is provided at the tip of the outer pipe 22 of the male shape part 23. A ring-shaped elastic packing with a U-shaped cross section (integrated, no cut) 2 on the stepped portion 25
6 is attached with the U-shaped open part facing forward, and the end of the other vacuum double tube 27 is made into a female-shaped part 29 by making the inner tube 28 larger in diameter, and the inner tube 28 is made into a female shape part 29. A joint part 30 is made to rise from the inlet part of the pipe 28, and a tapered surface 31 is formed at the innermost part of the inner pipe 28 of the female-shaped part 29. Then, the male part 23 of one vacuum double pipe 21 is fitted into the female part 29 of the other vacuum double pipe 27, and the joint parts 24 and 30 are brought into contact with each other via the O-ring 32. At the same time, the tapered surface 31 of the female section 29 presses the ring-shaped elastic packing 26 to make the space 33 between the outer tube 22 of the male section 23 and the inner tube 28 of the female section 29 airtight. In this state, the joint parts 24 and 30 are tightened with a fastener (not shown), and the one and the other vacuum double pipes 21 and 27 are
It is becoming more and more like joining. 34 is a fixing screw of the ring-shaped elastic packing 26, 35 is an inner tube of one vacuum double tube 21, and 36 is an outer tube of the other vacuum double tube 27. In this joint system, the tapered surface 31 of the inner tube 28 of the female section 29 presses the ring-shaped elastic packing 26 of the distal end step section 25 of the outer tube 22 of the male section 23 to close the gap 33. Even if the height and other dimensions of the gap 33 are not accurate, the pressing state of the tapered surface 31 against the ring-shaped elastic packing 26 will not be affected much and the sealing state will not change. Moreover, since the ring-shaped elastic packing 26 is integral and has no cuts, a high sealing state can be achieved. Therefore, this joint method can maintain a high sealing state without being affected much by construction accuracy.

〔発明の効果〕〔Effect of the invention〕

この発明は、窒素ガスを目的地近傍まで超低温
液体のままで輸送するため、パイプ管路の構成材
料中の吸蔵不純ガスの分子運動が上記超低温によ
り著しく小さくなる。その結果、吸蔵ガスがパイ
プ管路から飛び出し超低温液体窒素ガスに混じる
という現象は殆どなくなる。また、上記パイプ管
路は真空二重管であつて両管の間に吸着剤が設け
られているため、パイプ管路の外周から空気の成
分が管路の壁面を通過して内管内の製品に混じる
こともない。したがつて、輸送過程においてガス
の純度低下が殆ど生じない。そのうえ、この発明
では、ガスの精製を、気体の状態で行うのではな
く、液体の状態で合成ゼオライトに接触させて行
うのであり、合成ゼオライトは常温ガス中よりも
液体窒素等の超低温液体中においてO2,Arを極
めて高効率で選択除去しうるため、仮りに空気の
成分(O2,Ar)が管路壁を通過したり、もしく
は管路壁に吸蔵されていた状態から放出されたり
して混入しても、そのO2,Arの不純分を効率よ
く除去することができる。したがつて、上記効果
と、窒素ガスを気体ではなく超低温液体の状態で
輸送することにもとづく管路吸蔵ガスの放出の抑
制効果と、内外管の間の吸着剤の吸着効果とが相
俟つて超高純度窒素を、その純度を維持したまま
輸送することが可能になる。
In this invention, since nitrogen gas is transported as an ultra-low temperature liquid to the vicinity of the destination, the molecular movement of the occluded impurity gas in the constituent material of the pipe line is significantly reduced due to the ultra-low temperature. As a result, the phenomenon of the storage gas jumping out of the pipe line and mixing with the ultra-low temperature liquid nitrogen gas is almost eliminated. In addition, since the above-mentioned pipe is a vacuum double tube and an adsorbent is provided between the two tubes, air components from the outer periphery of the pipe pass through the wall of the tube and the product inside the inner tube is absorbed. It doesn't mix with anything. Therefore, the purity of the gas hardly decreases during the transportation process. Furthermore, in this invention, the gas is purified not in the gaseous state but in the liquid state by contacting it with synthetic zeolite, and the synthetic zeolite is purified in an ultra-low temperature liquid such as liquid nitrogen rather than in room temperature gas. Since O 2 and Ar can be selectively removed with extremely high efficiency, it is possible to prevent air components (O 2 and Ar) from passing through the pipe wall or being released from the state occluded in the pipe wall. Even if the O 2 and Ar impurities are mixed in, the impurities such as O 2 and Ar can be efficiently removed. Therefore, the above effects are combined with the effect of suppressing the release of gas stored in the pipe due to the transport of nitrogen gas in the state of ultra-low temperature liquid rather than gas, and the adsorption effect of the adsorbent between the inner and outer pipes. It becomes possible to transport ultra-high purity nitrogen while maintaining its purity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来例の説明図、第3図
はこの発明の一実施例の説明図、第4図はその真
空二重管の継手部の縦断面図である。 11…容器、12…精製器、13…半導体製造
設備、14…蒸発器、B…高度清浄化配管。
1 and 2 are explanatory diagrams of a conventional example, FIG. 3 is an explanatory diagram of an embodiment of the present invention, and FIG. 4 is a longitudinal sectional view of a joint portion of the vacuum double pipe. 11... Container, 12... Purifier, 13... Semiconductor manufacturing equipment, 14... Evaporator, B... Highly clean piping.

Claims (1)

【特許請求の範囲】[Claims] 1 液体窒素ガス貯槽から液体窒素を取り出し、
これを超低温の状態を保つて目的地までパイプ管
路で輸送し、使用直前に蒸発器に入れて気化する
窒素ガス輸送方法において、上記パイプ管路とし
て真空二重管を用い両管の間に吸着剤を配設し、
かつ上記パイプ管路に合成ゼオライト内蔵の精製
器を組み込み、窒素ガスを超低温液体状態で合成
ゼオライトに接触させそのなかのO2,Ar-の不純
分を合成ゼオライトに吸着させ除去することを特
徴とする窒素ガス輸送方法。
1 Remove liquid nitrogen from the liquid nitrogen gas storage tank,
In the nitrogen gas transportation method, which maintains an ultra-low temperature and transports it to the destination via a pipe line, and then puts it into an evaporator immediately before use to vaporize it, a vacuum double pipe is used as the pipe line, and between the two pipes. Arrange the adsorbent,
A purifier containing synthetic zeolite is installed in the pipe line, and nitrogen gas is brought into contact with the synthetic zeolite in an ultra-low temperature liquid state, and impurities such as O 2 and Ar - therein are adsorbed and removed by the synthetic zeolite. Nitrogen gas transportation method.
JP18006581A 1981-11-09 1981-11-09 Transportation method of extremely high purity gas Granted JPS5881300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18006581A JPS5881300A (en) 1981-11-09 1981-11-09 Transportation method of extremely high purity gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18006581A JPS5881300A (en) 1981-11-09 1981-11-09 Transportation method of extremely high purity gas

Publications (2)

Publication Number Publication Date
JPS5881300A JPS5881300A (en) 1983-05-16
JPH0371600B2 true JPH0371600B2 (en) 1991-11-13

Family

ID=16076857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18006581A Granted JPS5881300A (en) 1981-11-09 1981-11-09 Transportation method of extremely high purity gas

Country Status (1)

Country Link
JP (1) JPS5881300A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2702266B1 (en) * 1993-03-03 1995-04-28 Air Liquide Method and installation for supplying gas to a user station at a user site.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242151A (en) * 1975-09-25 1977-04-01 Franz Mfg Co Inc Metronome
JPS54103777A (en) * 1978-02-01 1979-08-15 Hitachi Ltd Pretreatment of air separator
JPS54115412A (en) * 1978-02-28 1979-09-08 Kurio Medeikaru Kk Feed flow path of gas with extreme low temperature

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043953U (en) * 1973-08-17 1975-05-02
JPS53113391U (en) * 1977-02-17 1978-09-09

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242151A (en) * 1975-09-25 1977-04-01 Franz Mfg Co Inc Metronome
JPS54103777A (en) * 1978-02-01 1979-08-15 Hitachi Ltd Pretreatment of air separator
JPS54115412A (en) * 1978-02-28 1979-09-08 Kurio Medeikaru Kk Feed flow path of gas with extreme low temperature

Also Published As

Publication number Publication date
JPS5881300A (en) 1983-05-16

Similar Documents

Publication Publication Date Title
US6911065B2 (en) Method and system for supplying high purity fluid
US4723967A (en) Valve block and container for semiconductor source reagent dispensing and/or purification
US4738693A (en) Valve block and container for semiconductor source reagent dispensing and/or purification
TW434038B (en) Adsorption-desorption apparatus and process for supplying a fluid reagent
US5952557A (en) Apparatus for analyzing a silicon compound gas for siloxane content
JP2005042924A (en) System and method for storing and supplying fluid
US3067560A (en) Gas purifier
US11650010B2 (en) Adsorptive xenon recovery process from a gas or liquid stream at cryogenic temperature
CA2404649A1 (en) Methods for removal of impurity metals from gases using low metal zeolites
KR100902911B1 (en) Apparatus for Enriching and Purifying Waste Helium Gases
JPH0371600B2 (en)
US5318706A (en) Method of supplying dilute hydrofluoric acid and apparatus for use in this method for supplying the acid
CN112414892B (en) Low-temperature helium-based mixed gas adsorption research system and control method
US10159927B2 (en) High purity gas purifier
JPH0674939A (en) Method for analyzing impurities in gas
Ma et al. Moisture drydown in ultra-high-purity oxygen systems
KR20000069619A (en) Device and Method for the Storage, Transportation and Production of Active Fluorine
Foster et al. Helium-Purification Unit for High-Purity Inert-Atmosphere Boxes
Purer et al. Separation of the neon isotopes by cryogenic chromatography
US4659318A (en) Method to introduce a fill gas mixture into an electric light bulb, particularly halogen incandescent lamp
JPS58186416A (en) Purification method of gas
JPH05206527A (en) Dehydrating method for cryo-liqefied gas
JPH04291151A (en) Analysis method of carbon monoxide and/or carbon dioxide
JPH01261209A (en) Method for purifying nitrogen trifluoride gas
JPH0218309A (en) Purification of gaseous nitrogen trifluoride