JPH0371487B2 - - Google Patents

Info

Publication number
JPH0371487B2
JPH0371487B2 JP13162288A JP13162288A JPH0371487B2 JP H0371487 B2 JPH0371487 B2 JP H0371487B2 JP 13162288 A JP13162288 A JP 13162288A JP 13162288 A JP13162288 A JP 13162288A JP H0371487 B2 JPH0371487 B2 JP H0371487B2
Authority
JP
Japan
Prior art keywords
cooling
water
acid
rolled steel
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13162288A
Other languages
Japanese (ja)
Other versions
JPS6487723A (en
Inventor
Keiichi Tanigawa
Minoru Kamata
Hideo Sugano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13162288A priority Critical patent/JPS6487723A/en
Publication of JPS6487723A publication Critical patent/JPS6487723A/en
Publication of JPH0371487B2 publication Critical patent/JPH0371487B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、連続焼鈍法による冷延鋼帯の製造方
法において、表面特性、特にリン酸塩処理性、表
面清浄性などの良好な冷延鋼帯を製造する方法に
関するものである。 [従来の技術] 近年、バツチ炉などを使用した焼鈍に代わり、
連続焼鈍により、コイル状の材料を焼鈍炉の一端
から装入して、炉内で所定の熱処理を施こす連続
焼鈍法が生産性を向上させ、品質のバラツキを減
少させるため採用されるようになつてきた。 連続焼鈍では、連続焼鈍炉中に装入された冷延
鋼帯は、機械的に送られながら漸次加熱され、再
結晶過程後1次冷却を経て、過時効処理、2次冷
却が行なわれるのが一般的である。これまでに、
連続焼鈍では熱処理条件、特に冷却速度、冷却雰
囲気、冷却水などについて種々の検討がなされて
いる。 例えば、それらの1つとして、冷延鋼板の連続
焼鈍における水焼入れの際に、従来鋼板表面に酸
化膜を生じさせない方法として、冷却水に一般に
云う有機酸と称せられる化合物を含有させた例が
見られる。従来使用されている有機酸とは以下の
如きものである。 即ち特公昭57−47738号公報に記載されている
のは、ギ酸、酢酸、プロピオン酸、しゆう酸、コ
ハク酸等の直鎖脂肪族酸及びクエン酸、乳酸、グ
ルコン酸、酒石酸等のオキン酸及びニトリロ三酢
酸、エチレンジアミン四酢酸・2ナトリウムなど
である。前記ニトリロ三酢酸、エチレンジアミン
四酢酸は、アミノポリカルボン酸類であつて、ア
ミノ酸の部類には属さず、まつたく異質のもので
ある。 また特開昭57−85923号公報には、水溶性有機
酸と水溶性有機アミンからなる金属冷却剤が開示
されており、有機酸としては、具体的に炭素数3
以上の水溶性ジカルボン酸類としてマロン酸、コ
ハク酸、グルタール酸、アジピン酸、ピメリン酸
等の飽和ジカルボン酸と、マレイン酸、イタコン
酸等の不飽和ジカルボン酸と、リンゴ酸、酒石酸
等のオキシカルボン酸が好ましい例として挙げら
れている。また特開昭58−55533号公報には、マ
ロン酸、ギ酸、クエン酸、酢酸、乳酸、コハク
酸、酒石酸等の有機酸を含む水溶性を使用する焼
入れの方法が記載されている。 以上のように各種の有機酸が記載されている
が、これらは溶液の温度条件や、冷却後の冷延鋼
帯の温度条件によつては、発生する酸化膜の抑制
が不十分であつたり、酸化膜の除去が難しいこと
がある。また、これらの冷延鋼帯から得られた冷
延鋼板には、リン酸塩処理を施こすとき、場合に
よつては不均一な処理皮膜を形成することがあ
る。 一方、従来よりリン酸処理性を向上したり、冷
延鋼板の耐食性、塗装性を改善するために、鋼板
の焼鈍工程を利用して、鋼板表面に微量の金属ま
たは金属酸化物を生成する方法が知られている。
例えば、リン酸塩処理性については、特開昭55−
14854号公報、耐食性、塗料密着性に関しては特
開昭49−34437号公報、さらには製缶用材料に適
したものとして、特開昭48−34738号公報、特公
昭49−48823号公報などがある。 これらの公知の技術では、金属化合物を水溶液
とするのは、鋼板表面に金属イオンを均一に分
散、付着させるための手段で、水溶液とすること
自体に他の目的が存在しているわけではない。 また鋼板の表面に金属または金属酸化物を生成
させるに際して、焼鈍工程以前にあらかじめ金属
化合物を含む水溶液を冷延鋼板に塗布し、かつ乾
燥が必要である。これは鋼板に水が付着したまま
の状態で焼鈍工程に入れると、水による露点の上
昇によつて鋼板表面が酸化され、金属が充分に還
元されず折出が困難となるからである。 また特開昭57−149429号公報で、冷延鋼板を連
続焼鈍するにあたり、金属化合物を添加した水溶
液で水焼入れを行ない、金属を付着させることに
よつて、耐食性及び化成処理性に優れた冷延鋼板
の製造方法が知られているが、この公知技術で
は、表面清浄性を一定に保ちにくい。即ち冷延鋼
帯の冷却条件によつては、鋼帯表面に発生する酸
化膜の抑制が難かしいことがある。 [発明が解決しようとする課題] 本発明は連続焼鈍における冷延鋼板の酸化膜を
薄くし、外観を良好ならしめると同時に、リン酸
塩処理性に優れた表面状態を保つ冷延鋼帯の製造
方法を提供するものである。 [課題を解決するための手段] 本発明は、連続焼鈍における1次冷却水に、水
溶性の金属化合物あるいは金属化合物とα−アミ
ノ酸を含有した水溶性を使用し、2次冷却水にα
−アミノ酸を含有させた水溶液を用いることによ
つて、冷延鋼帯の再結晶加熱時に発生する酸化
膜、あるいは過時効処理を経て、2次冷却時にお
ける気水噴霧冷却などに伴なつて発生する酸化膜
の抑制及び除去を効果的に行なうものであり、冷
却鋼帯の表面清浄性が向上するとともに、リン酸
塩処理に対する有効な前処理をも効果的に行ない
得るものである。 本発明で使用する金属化合物としては、水溶性
のものであれば、無機化合物または有機化合物の
いずれも用いることができる。金属元素ではNi、
Co、Mn、Zn、Cu、Cr、Mo、Ti、W等で、有
機化合物の場合には、ギ酸、酢酸、クエン酸、酒
石酸、コハク酸、乳酸、しゆう酸などの塩類であ
り、例えばNiではギ酸ニツケル、酢酸ニツケル、
クエン酸ニツケルの如きものである。 また無機化合物の場合には、Moではモリブデ
ン酸アンモニウム、Wではタングステン酸アンモ
ニウム等の如きもので、これら有機化合物および
無機化合物の1種または2種以上を含む水溶液で
ある。 本発明に適用される金属化合物の濃度の下限
は、リン酸塩処理性に有効な役割を果し得る濃度
であるが、上限では冷延鋼帯表面に折出した金属
が、核状に保持し得る範囲に限定される。 つまり、当該冷却水を使用して製品化された冷
延鋼板に、リン酸塩処理を施こすに適した金属付
着量であればよく、鋼帯表面に折出した金属によ
つて、鋼板表面光沢に影響を及ぼしたり、折出金
属の核がおたがいにつながつて、メツキの如き金
属皮膜を形成するような多量の金属を生成させる
必要はない。即ちリン酸塩処理の前処理に適した
範囲の量でよい。 本発明の金属化合物を含む水溶液を連続焼鈍処
理工程で、再結晶加熱(均熱を含む)後700〜850
℃に加熱された冷延鋼帯を1次冷却する際に冷却
水として用いると、冷却水中の金属化合物は熱分
解し、鋼帯表面に金属あるいは金属酸化物を生成
し、更に過時効処理工程における非酸化性還元雰
囲気中で、金属は鋼帯表面に折出し、拡散する。 その量は金属に換算して、1〜100mg/m2、好
ましくは5〜50mg/m2の範囲とする。すなわち1
mg/m2より少ないと、リン酸塩処理性の向上に寄
与しない。また100mg/m2を超えると、冷延鋼板
の清浄性およびリン酸塩処理に伴なう鋼板表面の
結晶粒の細粒化にあるいは鋼板表面に影響を及ぼ
しその効果は減少する。 本発明は上述の1次冷却の際に水溶性金属酸化
物又は水溶性金属酸化物とα−アミノ酸とを含有
した水溶性を用いるが、過時効処理後の2次冷却
の際にα−アミノ酸を含有した水溶液を冷却水と
して使用する。 本発明にいうアミノ酸とは、分子内にアミノ基
(−NH2)とカルボキシル基(−COOH)をもつ
化合物の総称であり、α−アミノ酸とは、カルボ
キシル基の結合している炭素原子(α−カーボ
ン)にアミノ基がついているものである。アミノ
酸とはタンパク質の構成成分であり、一般に云う
有機酸とは異なる。 本発明に用いられるα−アミノ酸は、I.脂肪族
アミノ酸として、(A)中性アミノ酸、(B)塩基性アミ
ノ酸、(C)酸性アミノ酸及びそのアミド、(D)含硫ア
ミノ酸、.芳香族アミノ酸、.異節環状アミ
ノ酸で、これらの塩酸塩や酢酸塩あるいはナトリ
ウム塩、アミン塩、アンモニウム塩を含むもので
あり、その多くは水溶性とした際にほゞ中性に近
いPHを示すが、弱酸性を示すものについては、前
記したようにPH調整を行ない、中性領域で用いる
こともできる。 例えば脂肪族アミノ酸では、アラニン、アルギ
ニン、アルギニン塩酸塩、アスパラギン、アスパ
ラギン酸、アスパラギン酸ナトリウム塩、アスパ
ラギン酸アミン塩、アスパラギン酸アンモニウム
塩、チトルリン、システイン塩酸塩、シスチン、
グルタミン、グルタミン酸、グルタミン酸ナトリ
ウム塩、グルタミン酸アミン塩、グルタミン酸ア
ンモニウム塩、グリシン、ロイシン、イソロイシ
ン、リジン、リジン塩酸塩、リジン酢酸塩等を
いゝ、芳香族アミノ酸では、フエニルアラニン、
チロシン等であり、異節環状アミノ酸では、プロ
リン、ヒスチジン、オキシプロリン、トリプトフ
アン等である。 冷延鋼板の連続焼鈍における熱処理(均熱を含
む)後の水焼入れの際に、気水冷却を行ない、窒
素ガス等の不活性ガスを用いたとしても、気水噴
霧冷却時に発生する水蒸気によつて、鋼板表面は
水蒸気酸化され、酸化膜の発生を避けることは困
難である。この場合、単に水だけでなしに、α−
アミノ酸を0.1〜20%含有した水溶液を用いるこ
とによつて、表面清浄性と同時に、その後の化成
処理性に優れた鋼帯が得られる。 α−アミノ酸の濃度の下限は、効果が認められ
る濃度であるが、上限は技術的な点からは限定す
る必要がないが、経済的には20%程度が望まし
い。実用的な観点からは、鋼板の冷却時に余分に
付着して持ち出される量や、後の水洗での落ちや
すさなどとともに経済性を考え、α−アミノ酸の
濃度は0.1〜5%の範囲で使用することが望まし
い。 また、冷延鋼帯の1次冷却あるいは2次冷却の
際に、冷却水に水ぬれ性をよくするために、必要
に応じて界面活性剤を添加することも効果的であ
る。 [実施例] 実施例 1 冷延鋼板(SPC、35×130×1.2mm)を用いた熱
処理及び気水噴霧冷却の試験を以下の(1)〜(4)の手
順で行なつた。 (1) 窒素ガス(98%)+水素ガス(2%)雰囲気
中で750℃にて再結晶加熱した。 (2) 熱処理した750℃の鋼板を、水溶性の金属化
合物を含有する水を用いて、窒素ガスにより気
水噴霧によつて400℃まで1次冷却した。この
時の鋼板の冷却速度は、100℃/秒になるよう
に条件設定した。 (3) 1次冷却後の鋼板を引続き、400℃の窒素ガ
ス(98%)+水素ガス(2%)雰囲気中で過時
効処理した。 (4) 400℃の過時効処理した鋼板を、同一ガス雰
囲気中で300℃にした後、α−アミノ酸を含有
する水溶液を、窒素ガスにより気水噴霧して、
50℃迄冷却した後、鋼板を取り出し水洗し、ド
ライヤーで乾燥した。 以上の1次および2次冷却における冷却水の水
流密度は、100m3/m3・minの条件で行なつた。 試験結果を第1表に示す。 表中の酸化膜厚みは、鋼板表面の酸化物組成が
特定できないので、酸化鉄のFeO、Fe2O3
Fe5O4の比重5.9、5.1、5.2を平均して比重5.4と仮
定し、鋼板試料を5%塩酸水溶液にインヒビター
0.5%を添加した酸洗液を用いて酸洗を行ない、
酸洗前後の重量差から前述の平均比重を使つて算
出した。 金属イオン付着量の分析方法は、標準溶液、例
えばNiであれば塩化ニツケル/塩酸(1+1)
水溶液として、ニツケル濃度の異なるものを鋼板
表面に塗布した水を標準試料として、螢光X線分
析法にて検量線を作成し、実際試料の定量分析を
行なつた。尚、検量線のゼロ点は、無処理鋼板の
強度(mV)とした。 Ti、Wの金属付着量の分析については、鋼板
試料をフツ化水素酸に溶解して定量分析した。 リン酸塩処理は、日本パーカライジング(株)製の
FC# 363を用いて、温度60℃、スプレー圧1.5
Kg/cm2で3分間脱脂を行ない、湯洗、水洗した
後、Bt−137を、温度55℃、スプレー圧1.0Kg/cm2
で、2分間リン酸塩処理を行ない、水洗後熱風乾
燥した。 リン酸塩処理皮膜結晶の観察は、常法により顕
微鏡写真から判定した。結晶粒度の測定は、粒度
の大きさを1:非常に粗い〜10:極めて密の10段
階に分類して、走査型電子顕微鏡で観察して判定
した。 SST(塩水噴霧試験)結果は、リン酸塩処理し
た鋼板に、エレクロン7200(関西ペイント(株)製)
を温度30℃、電圧110Vで、塗膜が20〜21μになる
ように電着塗装し、170℃、25分焼付けた後、鋭
利なナイフで素地に達する迄、クロスカツト傷を
施こし、5%食塩水を使用し、JIS−Z−2371に
従い、200hrの噴霧を行なつた後、クロスカツト
部をセロテープ剥離した時の剥離幅で示した。 実施例 2 冷延鋼板(SPC、35×130×1.2mm)を用いた熱
処理及び気水噴霧冷却の試験を以下の(1)〜(4)の手
順で行なつた。 (1) 窒素ガス(98%)+水素ガス(2%)雰囲気
中で750℃にて再結晶加熱した。 (2) 熱処理した750℃の鋼板を、水溶性の金属化
合物とα−アミノ酸を含有する水を用いて、窒
素ガスにより気水噴霧によつて400℃まで1次
冷却した。この時の鋼板の冷却速度は、100
℃/秒になるように条件設定した。 (3) 1次冷却後の鋼板を引続き400℃の窒素ガス
(98%)+水素ガス(2%)雰囲気中で過時効処
理した。 (4) 400℃の過時効処理した鋼板を、同一ガス雰
囲気中で300℃にした後、α−アミノ酸を含有
する水溶液を、窒素ガスにより気水噴霧して、
50℃迄冷却した後、鋼板を取り出し水洗し、ド
ライヤーで乾燥した。 以上の1次および2次冷却における冷却水の水
流密度は、100m3/m3・minの条件で行なつた。 試験結果を第2表に示す。 実施例 3 冷延鋼板(SPC、35×130×1.2mm)を用いた熱
処理及び水冷却の試験を、以下の(1)〜(4)の手順
で、行なつた。 (1) 窒素ガス(98%)+水素ガス(2%)雰囲気
中で750℃にて再結晶加熱した。 (2) 熱処理した750℃の鋼板を、水溶性の金属化
合物とα−アミノ酸を含有する水に浸漬して1
次冷却した。 (3) 1次冷却した鋼板を400℃の窒素ガス(98%)
+水素ガス(2%)雰囲気中で過時効処理し
た。 (4) 400℃の過時効処理した鋼板を、α−アミノ
酸を含有する水に浸漬して、50℃迄冷却した
後、鋼板を取り出し水洗ドライヤーで乾燥し
た。 試験結果を第3表に示す。 実施例 4 冷延鋼板(SPC、35×130×1.2mm)を用いた熱
処理及び水冷却の試験を、以下の(1)〜(4)の手順
で、行なつた。 (1) 窒素ガス(98%)+水素ガス(2%)雰囲気
中で、750℃にて再結晶加熱した。 (2) 熱処理した750℃の鋼板を、水溶性の金属化
合物を含有する水に浸漬して1次冷却した。 (3) 1次冷却した鋼板を400℃の窒素ガス(98%)
+水素ガス(2%)雰囲気中で過時効処理し
た。 (4) 400℃の過時効処理した鋼板を、α−アミノ
酸を含有する水に浸漬して、50℃迄冷却した
後、鋼板を取り出し水洗し、ドライヤーで乾燥
した。 試験結果を第4表に示す。
[Industrial Application Field] The present invention relates to a method for producing a cold rolled steel strip with good surface properties, particularly phosphating properties and surface cleanliness, in a method of producing a cold rolled steel strip by a continuous annealing method. It is something. [Conventional technology] In recent years, instead of annealing using batch furnaces,
The continuous annealing method, in which a coiled material is charged from one end of the annealing furnace and subjected to a prescribed heat treatment inside the furnace, has been adopted to improve productivity and reduce quality variations. I'm getting old. In continuous annealing, a cold-rolled steel strip is charged into a continuous annealing furnace and is gradually heated while being mechanically fed. After the recrystallization process, it undergoes primary cooling, and then undergoes overaging treatment and secondary cooling. is common. So far,
In continuous annealing, various studies have been made regarding heat treatment conditions, particularly cooling rate, cooling atmosphere, cooling water, etc. For example, one example of this is the conventional method of preventing the formation of an oxide film on the steel sheet surface during water quenching during continuous annealing of cold rolled steel sheets, in which the cooling water contains a compound commonly called an organic acid. Can be seen. The conventionally used organic acids are as follows. Specifically, Japanese Patent Publication No. 57-47738 describes straight-chain aliphatic acids such as formic acid, acetic acid, propionic acid, oxalic acid, and succinic acid, and oxidic acids such as citric acid, lactic acid, gluconic acid, and tartaric acid. and nitrilotriacetic acid, ethylenediaminetetraacetic acid disodium, etc. The nitrilotriacetic acid and ethylenediaminetetraacetic acid are aminopolycarboxylic acids, do not belong to the amino acid category, and are completely different. Furthermore, JP-A-57-85923 discloses a metal coolant consisting of a water-soluble organic acid and a water-soluble organic amine.
The above water-soluble dicarboxylic acids include saturated dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, and pimelic acid; unsaturated dicarboxylic acids such as maleic acid and itaconic acid; and oxycarboxylic acids such as malic acid and tartaric acid. is listed as a preferred example. Further, JP-A-58-55533 describes a quenching method using a water-soluble organic acid such as malonic acid, formic acid, citric acid, acetic acid, lactic acid, succinic acid, tartaric acid, and the like. As mentioned above, various organic acids have been described, but depending on the temperature conditions of the solution and the temperature conditions of the cold-rolled steel strip after cooling, they may not be able to sufficiently suppress the oxide film generated. , removal of the oxide film may be difficult. Furthermore, when a cold rolled steel sheet obtained from these cold rolled steel strips is subjected to phosphate treatment, a non-uniform treatment film may be formed in some cases. On the other hand, in order to improve the phosphoric acid treatment properties and the corrosion resistance and paintability of cold-rolled steel sheets, there is a method that uses a steel sheet annealing process to generate trace amounts of metals or metal oxides on the steel sheet surface. It has been known.
For example, regarding phosphate treatment, JP-A-55-
14854, JP-A-49-34437 for corrosion resistance and paint adhesion, and JP-A-48-34738 and JP-B-49-48823 for materials suitable for can manufacturing. be. In these known techniques, the metal compound is made into an aqueous solution as a means to uniformly disperse and adhere metal ions to the surface of the steel sheet, and the making of the metal compound into an aqueous solution itself does not serve any other purpose. . Furthermore, in order to generate a metal or metal oxide on the surface of a steel sheet, it is necessary to apply an aqueous solution containing a metal compound to the cold-rolled steel sheet and dry it before the annealing step. This is because if the steel plate is subjected to the annealing process with water still attached to it, the surface of the steel plate will be oxidized as the dew point increases due to the water, and the metal will not be sufficiently reduced, making it difficult to separate. Furthermore, in JP-A No. 57-149429, when continuously annealing a cold rolled steel sheet, water quenching is performed with an aqueous solution containing a metal compound, and by adhering the metal, a cold rolled steel sheet with excellent corrosion resistance and chemical conversion treatment property is developed. Although a method for manufacturing rolled steel sheets is known, it is difficult to maintain constant surface cleanliness with this known technique. That is, depending on the cooling conditions of the cold-rolled steel strip, it may be difficult to suppress the formation of an oxide film on the surface of the steel strip. [Problems to be Solved by the Invention] The present invention aims to thin the oxide film of a cold rolled steel sheet during continuous annealing, improve the appearance, and at the same time maintain a surface condition excellent in phosphating properties. A manufacturing method is provided. [Means for Solving the Problems] The present invention uses a water-soluble metal compound or water-soluble water containing a metal compound and α-amino acid as the primary cooling water in continuous annealing, and uses α-amino acid as the secondary cooling water.
- By using an aqueous solution containing amino acids, oxide films are generated during recrystallization heating of cold-rolled steel strips, or after over-aging treatment, generation occurs due to air-water spray cooling during secondary cooling. This effectively suppresses and removes the oxidized film produced by the cooling process, improves the surface cleanliness of the cooled steel strip, and provides an effective pretreatment for phosphate treatment. As the metal compound used in the present invention, any inorganic compound or organic compound can be used as long as it is water-soluble. Metal elements include Ni,
Co, Mn, Zn, Cu, Cr, Mo, Ti, W, etc., and in the case of organic compounds, salts such as formic acid, acetic acid, citric acid, tartaric acid, succinic acid, lactic acid, oxalic acid, etc. Then, nickel formate, nickel acetate,
It is like nickel citrate. In the case of inorganic compounds, Mo may be ammonium molybdate, W may be ammonium tungstate, etc., and the solution may be an aqueous solution containing one or more of these organic compounds and inorganic compounds. The lower limit of the concentration of the metal compound applied to the present invention is the concentration that can play an effective role in phosphating properties, but at the upper limit, the metal precipitated on the surface of the cold rolled steel strip is retained in the form of nuclei. limited to what is possible. In other words, it is sufficient that the amount of metal deposited on the cold rolled steel sheet manufactured using the cooling water is suitable for applying phosphate treatment, and the metal precipitated on the surface of the steel strip will cause the surface of the steel sheet to There is no need to generate a large amount of metal that would affect the gloss or cause the cores of the precipitated metal to connect with each other to form a metal film like plating. That is, the amount may be within a range suitable for pretreatment of phosphate treatment. After recrystallization heating (including soaking), the aqueous solution containing the metal compound of the present invention is subjected to a continuous annealing process.
When used as cooling water during the primary cooling of a cold-rolled steel strip heated to ℃, the metal compounds in the cooling water are thermally decomposed, producing metals or metal oxides on the surface of the steel strip, and then undergoing an overaging treatment process. In the non-oxidizing reducing atmosphere at , the metal precipitates and diffuses onto the surface of the steel strip. The amount is in the range of 1 to 100 mg/m 2 , preferably 5 to 50 mg/m 2 in terms of metal. i.e. 1
If it is less than mg/m 2 , it will not contribute to improving phosphate treatment properties. Moreover, if it exceeds 100 mg/m 2 , it affects the cleanliness of the cold rolled steel sheet and the refinement of crystal grains on the steel sheet surface due to phosphate treatment, and the effect decreases. In the present invention, a water-soluble metal oxide or a water-soluble metal oxide containing an α-amino acid is used during the above-mentioned primary cooling, but an α-amino acid is used during the secondary cooling after overaging treatment. An aqueous solution containing is used as cooling water. The amino acid referred to in the present invention is a general term for compounds having an amino group (-NH 2 ) and a carboxyl group (-COOH) in the molecule, and an α-amino acid is a carbon atom (α -carbon) with an amino group attached. Amino acids are constituents of proteins, and are different from commonly-called organic acids. The α-amino acids used in the present invention include I. Aliphatic amino acids, (A) neutral amino acids, (B) basic amino acids, (C) acidic amino acids and amides thereof, (D) sulfur-containing amino acids, . Aromatic amino acids. It is a heterocyclic amino acid that includes hydrochloride, acetate, sodium salt, amine salt, and ammonium salt, and most of them exhibit a pH close to neutrality when made water-soluble, but are weakly acidic. For those exhibiting this, the pH can be adjusted as described above and used in the neutral range. For example, aliphatic amino acids include alanine, arginine, arginine hydrochloride, asparagine, aspartic acid, aspartate sodium salt, aspartate amine salt, aspartate ammonium salt, titrulline, cysteine hydrochloride, cystine,
Glutamine, glutamic acid, glutamic acid sodium salt, glutamic acid amine salt, glutamic acid ammonium salt, glycine, leucine, isoleucine, lysine, lysine hydrochloride, lysine acetate, etc.; aromatic amino acids include phenylalanine,
Examples of heterocyclic amino acids include tyrosine, proline, histidine, oxyproline, and tryptophan. During water quenching after heat treatment (including soaking) during continuous annealing of cold-rolled steel sheets, even if air-water cooling is performed and an inert gas such as nitrogen gas is used, the water vapor generated during air-water spray cooling will Therefore, the surface of the steel sheet is oxidized by steam, and it is difficult to avoid the formation of an oxide film. In this case, in addition to just water, α−
By using an aqueous solution containing 0.1 to 20% amino acids, a steel strip with excellent surface cleanliness and subsequent chemical conversion treatment properties can be obtained. The lower limit of the concentration of α-amino acid is the concentration at which the effect is recognized, and the upper limit does not need to be limited from a technical point of view, but from an economic standpoint, about 20% is desirable. From a practical point of view, the concentration of α-amino acids is used in the range of 0.1 to 5%, taking into consideration economic efficiency as well as the amount of excess adhesion that is carried out when the steel plate is cooled and the ease with which it can be washed off afterwards. It is desirable to do so. Furthermore, it is also effective to add a surfactant to the cooling water as necessary during the primary cooling or secondary cooling of the cold-rolled steel strip in order to improve water wettability. [Examples] Example 1 A test of heat treatment and air/water spray cooling using a cold rolled steel plate (SPC, 35 x 130 x 1.2 mm) was conducted according to the following procedures (1) to (4). (1) Recrystallization heating was performed at 750°C in a nitrogen gas (98%) + hydrogen gas (2%) atmosphere. (2) A heat-treated steel plate at 750°C was primarily cooled to 400°C by air-water spraying with nitrogen gas using water containing a water-soluble metal compound. The cooling rate of the steel plate at this time was set to 100°C/sec. (3) After the primary cooling, the steel plate was subsequently overaged in a nitrogen gas (98%) + hydrogen gas (2%) atmosphere at 400°C. (4) A steel plate that has been over-aged at 400°C is heated to 300°C in the same gas atmosphere, and then an aqueous solution containing α-amino acids is sprayed with nitrogen gas.
After cooling to 50°C, the steel plate was taken out, washed with water, and dried with a hair dryer. The water flow density of the cooling water in the above primary and secondary cooling was 100 m 3 /m 3 ·min. The test results are shown in Table 1. The oxide film thickness in the table is based on iron oxides such as FeO, Fe 2 O 3 , and
Assuming that the average specific gravity of Fe 5 O 4 is 5.9, 5.1, and 5.2 to give a specific gravity of 5.4, a steel plate sample was placed in a 5% hydrochloric acid aqueous solution with an inhibitor.
Pickling is carried out using a pickling solution containing 0.5%,
It was calculated from the difference in weight before and after pickling using the above average specific gravity. The method for analyzing the amount of attached metal ions is to use a standard solution, for example, for Ni, use nickel chloride/hydrochloric acid (1+1).
A standard sample was water in which different nickel concentrations were applied to the surface of a steel plate as an aqueous solution, a calibration curve was created using fluorescent X-ray analysis, and quantitative analysis of the actual sample was performed. The zero point of the calibration curve was the strength (mV) of the untreated steel plate. Regarding the analysis of the amount of metal adhesion of Ti and W, a steel plate sample was dissolved in hydrofluoric acid and quantitatively analyzed. Phosphate treatment is made by Nippon Parkerizing Co., Ltd.
Using FC# 363, temperature 60℃, spray pressure 1.5
After degreasing at Kg/ cm2 for 3 minutes, washing with hot water and water, apply Bt-137 at a temperature of 55℃ and a spray pressure of 1.0Kg/ cm2.
Then, phosphate treatment was carried out for 2 minutes, followed by washing with water and drying with hot air. Observation of the phosphate-treated film crystals was determined from micrographs using a conventional method. The crystal grain size was determined by classifying the grain size into 10 levels from 1: very coarse to 10: extremely dense, and observing it with a scanning electron microscope. The SST (salt spray test) results were tested using Elekron 7200 (manufactured by Kansai Paint Co., Ltd.) on a phosphate-treated steel plate.
Electrodeposited at a temperature of 30℃ and voltage of 110V so that the coating film was 20 to 21μ, baked at 170℃ for 25 minutes, and then made cross-cut scratches with a sharp knife until it reached the base material. After spraying with saline for 200 hours in accordance with JIS-Z-2371, the cross-cut portion was peeled off with cellophane tape, and the peeling width is shown. Example 2 A heat treatment and air/water spray cooling test using a cold rolled steel plate (SPC, 35 x 130 x 1.2 mm) was conducted according to the following procedures (1) to (4). (1) Recrystallization heating was performed at 750°C in a nitrogen gas (98%) + hydrogen gas (2%) atmosphere. (2) A heat-treated steel plate at 750°C was primarily cooled to 400°C by air-water spraying using nitrogen gas using water containing a water-soluble metal compound and an α-amino acid. The cooling rate of the steel plate at this time is 100
Conditions were set so that the temperature was ℃/second. (3) After the primary cooling, the steel plate was subsequently overaged in a nitrogen gas (98%) + hydrogen gas (2%) atmosphere at 400°C. (4) A steel plate that has been over-aged at 400°C is heated to 300°C in the same gas atmosphere, and then an aqueous solution containing α-amino acids is sprayed with nitrogen gas.
After cooling to 50°C, the steel plate was taken out, washed with water, and dried with a hair dryer. The water flow density of the cooling water in the above primary and secondary cooling was 100 m 3 /m 3 ·min. The test results are shown in Table 2. Example 3 A heat treatment and water cooling test using a cold rolled steel plate (SPC, 35 x 130 x 1.2 mm) was conducted according to the following procedures (1) to (4). (1) Recrystallization heating was performed at 750°C in a nitrogen gas (98%) + hydrogen gas (2%) atmosphere. (2) A heat-treated 750°C steel plate is immersed in water containing a water-soluble metal compound and α-amino acid.
Then it was cooled. (3) After the first cooling, the steel plate is heated to 400°C with nitrogen gas (98%).
+Overaging treatment was performed in a hydrogen gas (2%) atmosphere. (4) A steel plate that had been overaged at 400°C was immersed in water containing α-amino acids, cooled to 50°C, and then the steel plate was taken out and dried in a washing dryer. The test results are shown in Table 3. Example 4 A heat treatment and water cooling test using a cold rolled steel plate (SPC, 35 x 130 x 1.2 mm) was conducted according to the following procedures (1) to (4). (1) Recrystallization heating was performed at 750°C in a nitrogen gas (98%) + hydrogen gas (2%) atmosphere. (2) A heat-treated steel plate at 750°C was first cooled by immersing it in water containing a water-soluble metal compound. (3) After the first cooling, the steel plate is heated to 400°C with nitrogen gas (98%).
+Overaging treatment was performed in a hydrogen gas (2%) atmosphere. (4) A steel plate that had been overaged at 400°C was immersed in water containing α-amino acids, cooled to 50°C, and then taken out, washed with water, and dried with a dryer. The test results are shown in Table 4.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 [発明の効果] 以上のように、本発明の金属化合物あるいはα
−アミノ酸を含む冷却水を用いることによつて連
続焼鈍における冷延鋼板の酸化膜を薄くし、外観
を良好ならしめると同時にリン酸塩処理性に優れ
た表面状態を保つことができる。
[Table] [Effects of the invention] As described above, the metal compound or α
- By using cooling water containing amino acids, it is possible to thin the oxide film of a cold rolled steel sheet during continuous annealing, improve the appearance, and at the same time maintain a surface condition that is excellent in phosphating properties.

Claims (1)

【特許請求の範囲】 1 加熱処理後1次冷却あるいは過時効処理し2
次冷却する冷延鋼帯の連続熱処理において、水溶
性の金属化合物を含有した水溶液により1次冷却
し、α−アミノ酸を含有した水溶液により2次冷
却することを特徴とする表面特性の良好な冷延鋼
帯の製造方法。 2 加熱処理後1次冷却あるいは過時効処理し2
次冷却する冷延鋼帯の連続熱処理において、水溶
性の金属化合物及びα−アミノ酸を含有した水溶
液により1次冷却し、α−アミノ酸を含有した水
溶液により2次冷却することを特徴とする表面特
性の良好な冷延鋼帯の製造方法。
[Claims] 1. Primary cooling or over-aging treatment after heat treatment. 2.
In the continuous heat treatment of a cold rolled steel strip that is subjected to subsequent cooling, cooling with good surface properties is achieved by first cooling with an aqueous solution containing a water-soluble metal compound and secondly cooling with an aqueous solution containing an α-amino acid. Method for manufacturing rolled steel strip. 2 After heat treatment, primary cooling or overaging treatment 2
In continuous heat treatment of a cold-rolled steel strip that is subjected to subsequent cooling, surface characteristics are characterized by first cooling with an aqueous solution containing a water-soluble metal compound and an α-amino acid, and second cooling with an aqueous solution containing an α-amino acid. A method for producing a good cold rolled steel strip.
JP13162288A 1988-05-31 1988-05-31 Manufacture of cold-rolled steel strip having superior surface characteristic Granted JPS6487723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13162288A JPS6487723A (en) 1988-05-31 1988-05-31 Manufacture of cold-rolled steel strip having superior surface characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13162288A JPS6487723A (en) 1988-05-31 1988-05-31 Manufacture of cold-rolled steel strip having superior surface characteristic

Publications (2)

Publication Number Publication Date
JPS6487723A JPS6487723A (en) 1989-03-31
JPH0371487B2 true JPH0371487B2 (en) 1991-11-13

Family

ID=15062358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13162288A Granted JPS6487723A (en) 1988-05-31 1988-05-31 Manufacture of cold-rolled steel strip having superior surface characteristic

Country Status (1)

Country Link
JP (1) JPS6487723A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151208B2 (en) * 2007-03-28 2013-02-27 新日鐵住金株式会社 Manufacturing method of steel sheet for cans

Also Published As

Publication number Publication date
JPS6487723A (en) 1989-03-31

Similar Documents

Publication Publication Date Title
KR101578848B1 (en) Method for coating a warm or cold-rolled flat steel product comprising 6-30 weight% mn with a metallic protective layer
EP0140027B1 (en) Aqueous solution for cooling cold-rolled steel strip in a continuous annealing process
JP2006322028A (en) Hot dip galvanizing method for p-added steel sheet
WO2006112520A1 (en) Process for production of high-strength galvannealed steel sheet
JP3444007B2 (en) Manufacturing method of high workability, high strength galvanized steel sheet
JPH0371487B2 (en)
JPS61201737A (en) Manufacture of cold rolled steel strip having excellent surface characteristic
JPS6056418B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JPH02285057A (en) Method for continuously annealing steel sheet to be galvanized
JPS62207830A (en) Production of cold rolled steel strip having good surface characteristic
JPS62205290A (en) Manufacture of cold rolled steel strip having satisfactory surface characteristic
JPH02170925A (en) Manufacture of continuously annealed cold rolled steel sheet
EP4282994A1 (en) Method for producing annealed and pickled steel sheet
JP3400289B2 (en) Manufacturing method of galvannealed steel sheet with excellent plating adhesion
JP7054067B2 (en) High-strength cold-rolled steel sheet, its manufacturing method, and water treatment agent
JPS61201736A (en) Manufacture of cold rolled steel strip having good surface characteristic
JPS5933171B2 (en) Continuous annealing method for cold rolled steel sheets
JPS5933172B2 (en) Continuous annealing treatment method for cold rolled steel sheets
JPH01139728A (en) Cooling treatment for continuously annealed cold-rolled steel sheet
JPS5855535A (en) Preparation of cold-rolled steel sheet excellent in external appearance and chemical convertibility
JPH04232297A (en) Manufacture of stainless cold rolled steel strip excellent in luster and corrosion resistance
JP3826526B2 (en) Hot-rolled steel sheet with excellent paintability and corrosion resistance
JPS60162763A (en) Manufacture of aluminized steel sheet
JP2000212648A (en) Production of high strength hot dip galvanized steel sheet and high strength hot dip galvannealed steel sheet, and high strength hot dip galvannealed steel sheet
JPH06293953A (en) Method for galvanizing strip steel sheet by spraying