JPH0371043A - Gas sensor made of optical fiber - Google Patents

Gas sensor made of optical fiber

Info

Publication number
JPH0371043A
JPH0371043A JP20675989A JP20675989A JPH0371043A JP H0371043 A JPH0371043 A JP H0371043A JP 20675989 A JP20675989 A JP 20675989A JP 20675989 A JP20675989 A JP 20675989A JP H0371043 A JPH0371043 A JP H0371043A
Authority
JP
Japan
Prior art keywords
gas
optical fiber
fiber
fibers
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20675989A
Other languages
Japanese (ja)
Inventor
Nobuhiro Akasaka
伸宏 赤坂
Shigeru Hirai
茂 平井
Toshiaki Saigo
雑喉 利明
Tomoyuki Hattori
知之 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20675989A priority Critical patent/JPH0371043A/en
Publication of JPH0371043A publication Critical patent/JPH0371043A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical fiber which can detect gas distributively over a wide range with one piece by connecting the plural measuring activity fibers disposed along a material to be measured by connecting optical fibers in series. CONSTITUTION:The measuring activity fiber 11 consists of a core part 1, a clad part 2 and the air permeable coating layer 3 applied around this part. A streak of continuous recesses 4 is formed in the clad part 2 along the optical axis direction thereof. This recess 4 is nearly circular in section and the inlet part on the coating layer 3 side thereof is narrower than the diameter. The bottom part extends near to the core part 1. The gas permeates the coating layer 3 and enters the inside of the recess 4 when such optical fiber is disposed in a certain gas atmosphere. Since this gas has the absorption wavelength specific to the material, an absorption loss arises near this point at the specific characteristic thereof. The gas sensor made of the optical fiber is constituted by connecting the plural measuring activity fibers 11 in series by the connecting fibers 12. The absorption loss distribution is measured along the longitudinal direction of the sensor in this way.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、雰囲気中の対象気体を広範囲に亘って検知す
ることができる光ファイバガスセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an optical fiber gas sensor that can detect a target gas in an atmosphere over a wide range.

〈従来の技術〉 従来、光ファイバを用いて気体を検知する技術としては
、0PTIC3LETTERS Vol、 1.2NC
Lp、 P、 437〜439 (1987)に示され
るものがある。すなわち、直径1.8μm1長さ10岨
の光ファイバをメタンガス雰囲気下に曝し、光ファイバ
のエバネッジェント波を利用して、光がメタンガスの有
する特定波長の吸収により減衰することを検知するもの
である。
<Conventional technology> Conventionally, as a technology for detecting gas using an optical fiber, 0PTIC3LETTERS Vol. 1.2NC
Lp, P, 437-439 (1987). That is, an optical fiber with a diameter of 1.8 μm and a length of 10 μm is exposed to a methane gas atmosphere, and the evanescent waves of the optical fiber are used to detect that light is attenuated due to absorption of a specific wavelength possessed by methane gas. be.

〈発明が解決しようとする課題〉 しかしながら、上述した従来技術では、局部的な雰囲気
の気体濃度を検知するだけであるので、広範囲に亘って
分布的に検知するには、一般のガスセンサと同様に測定
範囲に複数個のセンサを設置しなければならず、この場
合、遠隔からのガス検知位置の判別が困難である。また
、ファイバ自体も、1.8μmと極細径のものを使用す
るため強度的な問題もある。
<Problems to be Solved by the Invention> However, the above-mentioned conventional technology only detects the gas concentration in a local atmosphere, so in order to detect it distributed over a wide range, it is necessary to use the same method as a general gas sensor. A plurality of sensors must be installed in the measurement range, and in this case, it is difficult to determine the gas detection position from a remote location. Furthermore, since the fiber itself has an extremely small diameter of 1.8 μm, there is also a strength problem.

本発明はこのような事情に鑑み、1本で広範囲に亘って
分布的に気体を検知できる光ファイバを提供することを
目的とする。
In view of these circumstances, the present invention aims to provide an optical fiber that can detect gas distributed over a wide range with a single optical fiber.

く課題を解決するための手段〉 前記目的を達成する本発明にかかる光フアイバガスセン
サは、複数の被測定物の近傍若しくはこれら被゛測定物
に沿って配設される測定活性ファイバと、これら測定活
性ファイバを直列に連結する光ファイバとからなると共
に、少なくとも上記測定活性ファイバのクラッド部の表
面には少なくとも1条の凹部が形成されてなり、この測
定活性ファイバの周囲に存在する気体の吸収損失を利用
して気体を検出することを特徴とする。
Means for Solving the Problems> The optical fiber gas sensor according to the present invention that achieves the above object includes a measurement active fiber disposed in the vicinity of a plurality of objects to be measured or along these objects to be measured; It consists of an optical fiber that connects active fibers in series, and at least one recess is formed on the surface of at least the cladding part of the active fiber for measurement, which reduces the absorption loss of gas existing around the active fiber for measurement. It is characterized by detecting gas using .

用〉 雰囲気ガス中の検知対象ガスが透気性被覆材を透過する
等して測定活性ファイバの凹部に入ると、このガスによ
り光ファイバのコア部外を伝達するエバネッシエント波
の特定波長が吸収される。すなわち、検知対象ガスは物
質特有の吸収波長を持っており、そこでその特定波長の
光が減衰されるので、特定波長において局部的にファイ
バの伝送損失が増加する。したがって、後方散乱光測定
機で光ファイバの長手方向に亘る損失分布を測定するこ
とにより、検知対象ガスの入った箇所を検知することが
できる。
When the detection target gas in the atmospheric gas enters the recess of the active fiber for measurement, such as by passing through a gas-permeable coating, this gas absorbs a specific wavelength of the evanescent wave that is transmitted outside the core of the optical fiber. . That is, the gas to be detected has an absorption wavelength specific to the substance, and light of that specific wavelength is attenuated there, so that the transmission loss of the fiber locally increases at the specific wavelength. Therefore, by measuring the loss distribution in the longitudinal direction of the optical fiber with a backscattered light measuring device, it is possible to detect the location where the gas to be detected has entered.

しかし、測定活性ファイバはわずかなガスにより伝送損
失が増加する構造になっており、元来有する伝送損失そ
のものが高いので、この測定活性ファイバのみを用いて
伝送IIs路を構成するのは好ましくなく、また、ガス
には拡散性がある。これらを考慮すると、測定活性ファ
イバを一定間隔毎に配してその間を通く作 =3 常の光ファイバで連結した方が光ファイバガスセンサと
して好ましい機能を有することになる。また、測定活性
ファイバが短くてガスによる損失変動の感度が鈍い場合
には、各部分の測定活性ファイバをコイル状に巻いて長
くして感度を上げることができ、さらにそのコイル状の
測定活性ファイバを少なくとも被測定ガスが透過可能な
収納ケースに入れる等して耐環境性を図ることもできる
However, the measurement active fiber has a structure in which the transmission loss increases with a small amount of gas, and the transmission loss itself is high, so it is not preferable to configure the transmission IIs path using only this measurement active fiber. Additionally, gas has diffusivity. Taking these into consideration, it would be better to arrange the measurement active fibers at regular intervals and connect them with ordinary optical fibers, which would have a preferable function as an optical fiber gas sensor. In addition, if the measurement active fiber is short and has low sensitivity to loss fluctuations due to gas, it is possible to increase the sensitivity by winding each part of the measurement active fiber into a coil to make it longer. Environmental resistance can also be achieved by placing the sensor in a storage case through which at least the gas to be measured can pass.

く実 施 例〉 以下、本発明は実施例に基づいて説明する。Example of implementation Hereinafter, the present invention will be explained based on examples.

第1図には一実施例にかかる測定活性ファイバの断面を
示す。同図に示すように、この測定ファイバはコア部1
とクラッド部2とその周囲に被覆した透気性被覆層3と
からなり、クラッド部2には光軸方向に沿って連続する
1条の凹部4が形成されている。この凹部4は断面略円
形をしてその被覆層3側の入口部が直径より狭くなって
おり、底部はコア部1近傍まで至っている。乙の凹部4
は、被覆層4ができるだけ入り込まないで中空となるよ
うに形成する必要があり、そのためには入口が狭く、内
部が広がるような形状とするQ)が好ましい。
FIG. 1 shows a cross section of a measurement active fiber according to one embodiment. As shown in the figure, this measurement fiber has a core part 1.
It consists of a cladding part 2 and an air-permeable coating layer 3 surrounding the cladding part 2, and the cladding part 2 has a continuous recessed part 4 formed along the optical axis direction. The recess 4 has a substantially circular cross section, the entrance on the coating layer 3 side is narrower than the diameter, and the bottom reaches near the core 1. B concavity 4
It is necessary to form a hollow structure so that the covering layer 4 does not penetrate as much as possible, and for this purpose, Q) is preferable, in which the entrance is narrow and the inside is widened.

このような光ファイバをあるガス雰囲気に配すると、ガ
スが透気性被覆層3を透過して凹部4内に入る。このガ
スはその物質特有の吸収波長を有しているのでその特徴
波長においてその箇所で吸収損失が生じる。
When such an optical fiber is placed in a certain gas atmosphere, the gas passes through the gas permeable coating layer 3 and enters the recess 4 . Since this gas has an absorption wavelength unique to the material, absorption loss occurs at that characteristic wavelength.

すなわち、光フアイバ内を伝送する光の光強度分布を表
す第2図に示すように、光は屈折率の高いコア部1から
しみだして伝わり、コア部1外を伝わるエバネッシェン
ト波の一部は凹部4内にはみ出して伝わることになるの
で、との凹部4内にあるガスが存在するとその箇所でそ
のはみだした光の特定波長が減衰される。したがって、
その特定波長において局部的に伝送損失が増大すること
になり、後方散乱光測定機により光ファイバの長手方向
に亘る伝送損失分布を測定することにより、伝送損失増
の箇所、すなわちガスの存在箇所を特定することができ
る。
In other words, as shown in Figure 2, which shows the light intensity distribution of light transmitted within an optical fiber, the light seeps out from the core part 1 with a high refractive index and is transmitted, and a part of the evanescent wave that travels outside the core part 1 is Since the light propagates through the concave portion 4, if there is gas in the concave portion 4, the specific wavelength of the protruding light is attenuated at that location. therefore,
Transmission loss increases locally at that specific wavelength, and by measuring the transmission loss distribution over the longitudinal direction of the optical fiber using a backscattered light measuring device, we can identify locations where transmission loss increases, that is, locations where gas exists. can be specified.

ここで、透気性被覆層3ば、少なくとも検知対象とする
ガスを透過する被覆材で形成すレバよく、特に限定され
ない。
Here, the gas-permeable coating layer 3 may be formed of a coating material that transmits at least the gas to be detected, and is not particularly limited.

また、凹部の形状、数、深さ、大きさ2位置等も特に限
定されず、例えば、形状は放物線形、半円形、矩形、三
角形等でもよく、例えば、上述したように中空となるの
を確実にするために、第3図に示すように、凹部の入口
部は狭い溝として内部が断面円形に広がったような凹部
4Aとすることもできる。また、数は、コア部1を挾ん
で対称に2本設けるなどしてもよい。さらに、深さ、大
きさは光ファイバが設置されろ条件等を考慮して最も適
切なものを選定すればよく、例えば深さ、大きさを大き
くすれば検知感度が増大するようになる。また、凹部の
深さを深くして感度を上げる効果を、コア部を中心から
凹部方向に移動することにより得ることもできる。但し
、コア部をクラッド部の中心に配置しておくと外径調心
が可能となり、接続が容易になるという利点がある。
Further, the shape, number, depth, size, position, etc. of the recessed portions are not particularly limited. For example, the shape may be parabolic, semicircular, rectangular, triangular, etc. For example, the shape may be hollow as described above. In order to ensure this, as shown in FIG. 3, the entrance portion of the recess may be a narrow groove with a recess 4A having a circular cross section. Moreover, the number may be two, for example, provided symmetrically with the core part 1 in between. Further, the depth and size may be selected to be most appropriate considering the conditions under which the optical fiber is installed. For example, increasing the depth and size increases the detection sensitivity. Furthermore, the effect of increasing the depth of the recess and increasing the sensitivity can also be obtained by moving the core part from the center toward the recess. However, arranging the core portion at the center of the cladding portion has the advantage that outer diameter alignment becomes possible and connection becomes easier.

次に、第1図に示す光ファイバの製造例を示す。Next, an example of manufacturing the optical fiber shown in FIG. 1 will be described.

まず、常法により通常の単一モード光ファイバ用の母材
を製造し、これを切断・加工・研磨して凹部4となる溝
を有する母材を形成する。この母材を例えば炉の温度2
050 ℃で加熱溶融させ、線速50 m 7分、張力
40gで線引きすると共に、同時に透気性被覆層3を被
覆するとと【こより、上記実#1例の光ファイバが形成
される。
First, a base material for a normal single-mode optical fiber is manufactured by a conventional method, and this is cut, processed, and polished to form a base material having grooves that will become the recesses 4. For example, if this base material is heated at a temperature of 2
By heating and melting at 050° C. and drawing at a drawing speed of 50 m for 7 minutes and a tension of 40 g, the optical fiber of Example #1 above is formed.

ここで、この測定活性ファイバのクラッド部2の径は1
25μm1スポツトサイズは5.1μm1遮断波長は1
.2μmであり、コア部1の中心から凹部4の底部まで
の距離が7μm1凹部4の深さは50μmである。また
、被覆層3としては、屈折率が石英とほぼ等しい紫外線
硬化性樹脂を使用し、仕上り径を250μmとした。
Here, the diameter of the cladding part 2 of this measurement active fiber is 1
25μm1 spot size is 5.1μm1 cutoff wavelength is 1
.. The distance from the center of the core portion 1 to the bottom of the recess 4 is 7 μm, and the depth of the recess 4 is 50 μm. Further, as the coating layer 3, an ultraviolet curing resin having a refractive index substantially equal to that of quartz was used, and the finished diameter was set to 250 μm.

次に、このような測定活性ファイバを用いて第4図に示
すような光ファイバガスセンサ10を製作した。すなわ
ち、複数の測定活性ファイバ11を連結ファイバ12に
より直列に連結し、これを8Mファイバからなるダミー
ファイバ13を介して後方散乱光測定器(以下、0TD
Rと略す)14に結合して光ファイバガスセンサ10と
した。この0TDR14は一般に波長が0.85 μm
、1.3 μm。
Next, an optical fiber gas sensor 10 as shown in FIG. 4 was manufactured using such a measurement active fiber. That is, a plurality of measurement active fibers 11 are connected in series by a connecting fiber 12, and this is connected to a backscattered light measuring device (hereinafter referred to as 0TD) via a dummy fiber 13 consisting of an 8M fiber.
(abbreviated as R) 14 to form an optical fiber gas sensor 10. This 0TDR14 generally has a wavelength of 0.85 μm.
, 1.3 μm.

1.55μmのものが広く用いられているが、本実施例
ではメタンガスを検知する目的で、メタンガスの吸収波
長である1、33μmものを用いた。この0TDR14
ばパルス変調した信号光を光ファイバに入力する手段と
、光フアイバ内で発生した後方散乱光出力を時間領域受
信すると共に平均化処理及び微分処理の信号処理をする
手段とを具えており、測定活性ファイバ11と連結ファ
イバ12とを直列に連結した光ファイバの長手方向に亘
っての損失分布をリアルタイムで測定することができる
A wavelength of 1.55 μm is widely used, but in this example, for the purpose of detecting methane gas, a wavelength of 1.33 μm, which is the absorption wavelength of methane gas, was used. This 0TDR14
For example, it includes means for inputting pulse-modulated signal light into an optical fiber, and means for receiving the backscattered light output generated within the optical fiber in the time domain and performing signal processing such as averaging processing and differentiation processing. The loss distribution over the longitudinal direction of an optical fiber in which the active fiber 11 and the connecting fiber 12 are connected in series can be measured in real time.

なお、連結ファイバ12としては、石英ガラスからなる
8μm径のコア及びF添加石英ガラスからなる125μ
m径のクラッドからなるファイバにシリコーン樹脂を4
00μm径に被覆したものを用いた。
The connecting fiber 12 has a core made of quartz glass with a diameter of 8 μm and a core made of F-doped quartz glass with a diameter of 125 μm.
A fiber consisting of a cladding with a diameter of m is coated with silicone resin.
A material coated with a diameter of 00 μm was used.

このような光ファイバガスセンサ1oを用い、そのうち
の1箇所の測定活性ファイバ11を容器で囲こみ、この
容器内に5%濃度のメタンガスを充満させた結果、1.
33μm帯で(L80dBの伝送損失変動が検知された
Using such an optical fiber gas sensor 1o, one of the measuring active fibers 11 was surrounded by a container, and the container was filled with methane gas at a concentration of 5%. As a result, 1.
A transmission loss variation of (L80 dB) was detected in the 33 μm band.

したがって、かかる光ファイバガスセンサ10の測定活
性ファイバ11と連結ファイバ12とが連結されたファ
イバを配設することにより、測定活性ファイバ11が配
された場所のガスを検知することができ、逆に、測定活
性ファイバ11を検出したい場所に配設できるように各
連結ファイバ12の長さを調節すればよい。また、各測
定箇所の検出感度を向上させるためには測定活性ファイ
バをコイル状に巻いたりしてこれを被検出箇所に配設す
ればよい。さらに、この場合、上述した透気性被覆層を
省いであるいはそのままコイル状;こした測定活性ファ
イバを透気性のケースに収納するようにしてもよく、こ
れにより耐環境性を向上することもできる。
Therefore, by arranging a fiber in which the measurement active fiber 11 and the connection fiber 12 of the optical fiber gas sensor 10 are connected, it is possible to detect the gas at the location where the measurement active fiber 11 is arranged, and conversely, The length of each connecting fiber 12 may be adjusted so that the measurement active fiber 11 can be placed at the desired location. Furthermore, in order to improve the detection sensitivity of each measurement location, the measurement active fiber may be wound into a coil and placed at the detection location. Furthermore, in this case, the above-mentioned air-permeable coating layer may be omitted or the coiled active fiber for measurement may be housed in an air-permeable case, thereby improving environmental resistance.

〈発明の効果〉 以上説明したように、本発明の光フアイバガスセンサは
、複数の測定活性ファイバとこれらを直列に連結する光
ファイバとからなる1本のファイバケーブルを被対象物
に沿って配設するだけでそのファイバの長手方向に亘っ
たガス濃度が測定できるので、例えば数百側のスポット
型ガスセンサと数百本の銅ケーブルとが必要であるガス
検知システムをたった1本のファイバケーブルを配設す
るだけですますことができ、経済的効果も大きく、また
、測定活性ファイバを低損失の光ファイバで連結できる
ので、長くでき、広範囲に使用できる。さらに、感度を
上げるためには測定活性ファイバを長くしてコイル状に
すればよく、また、このコイル状の測定活性ファイバを
収納ケースに収めるなどすれば外部環境からのセンサ部
の保護を図ることができる。
<Effects of the Invention> As explained above, the optical fiber gas sensor of the present invention uses a single fiber cable consisting of a plurality of measurement active fibers and an optical fiber connecting these fibers in series, which is arranged along the target object. For example, a gas detection system that would otherwise require hundreds of spot-type gas sensors and hundreds of copper cables can be replaced with just one fiber cable. It is only necessary to install the optical fiber, which has a great economical effect, and since the active fiber for measurement can be connected with a low-loss optical fiber, it can be made long and can be used over a wide range of areas. Furthermore, in order to increase the sensitivity, the measurement active fiber can be lengthened and made into a coil shape, and the sensor section can be protected from the external environment by storing this coiled measurement active fiber in a storage case. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかる光ファイバの断面図
、第2図はその光強度分布を示す説明図、第3図は他の
実施例にかかる光ファイバの断面図、第4図は一実施例
にかかる光ファイバガスセンサを示す外観図である。 図 面 中、 1はコア部、 2はクラッド部、 3は透気性被覆層、 4は凹部、 10ば光ファイバガスセンサ、 11は測定活性ファイバ、 12は連結ファイバ、 13はダミーファイバ、 =11− 14は後方散乱光測定器である。 2−
FIG. 1 is a cross-sectional view of an optical fiber according to one embodiment of the present invention, FIG. 2 is an explanatory diagram showing its light intensity distribution, FIG. 3 is a cross-sectional view of an optical fiber according to another embodiment, and FIG. 1 is an external view showing an optical fiber gas sensor according to one embodiment. In the drawing, 1 is a core part, 2 is a cladding part, 3 is an air-permeable coating layer, 4 is a recessed part, 10 is an optical fiber gas sensor, 11 is a measurement active fiber, 12 is a connecting fiber, 13 is a dummy fiber, = 11- 14 is a backscattered light measuring device. 2-

Claims (3)

【特許請求の範囲】[Claims] (1)複数の被測定物の近傍若しくはこれら被測定物に
沿って配設される測定活性ファイバと、これら測定活性
ファイバを直列に連結する光ファイバとからなると共に
、少なくとも上記測定活性ファイバのクラッド部の表面
には少なくとも1条の凹部が形成されてなり、この測定
活性ファイバの周囲に存在する気体の吸収損失を利用し
て気体を検出することを特徴とする光ファイバガスセン
サ。
(1) Consisting of a measurement active fiber disposed near or along a plurality of objects to be measured, and an optical fiber connecting these measurement active fibers in series, and at least a cladding of the measurement active fiber. 1. An optical fiber gas sensor, characterized in that at least one recess is formed on the surface of the fiber, and gas is detected by utilizing absorption loss of gas existing around the measurement active fiber.
(2)請求項1記載の光ファイバガスセンサにおいて、
測定活性ファイバの凹部を形成したクラッド表面には、
少なくとも検出対象気体を透過する透気性被覆材が旋さ
れている光ファイバガスセンサ。
(2) In the optical fiber gas sensor according to claim 1,
The recessed cladding surface of the measurement active fiber is
An optical fiber gas sensor having an air-permeable coating that transmits at least a gas to be detected.
(3)請求項1又は2記載の光ファイバガスセンサにお
いて、凹部はその入口部が狭く内部が広くなった形状で
ある光ファイバガスセンサ。
(3) The optical fiber gas sensor according to claim 1 or 2, wherein the recess has a narrow entrance and a wide interior.
JP20675989A 1989-08-11 1989-08-11 Gas sensor made of optical fiber Pending JPH0371043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20675989A JPH0371043A (en) 1989-08-11 1989-08-11 Gas sensor made of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20675989A JPH0371043A (en) 1989-08-11 1989-08-11 Gas sensor made of optical fiber

Publications (1)

Publication Number Publication Date
JPH0371043A true JPH0371043A (en) 1991-03-26

Family

ID=16528619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20675989A Pending JPH0371043A (en) 1989-08-11 1989-08-11 Gas sensor made of optical fiber

Country Status (1)

Country Link
JP (1) JPH0371043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018064822A1 (en) * 2016-10-09 2018-04-12 South China Normal University Permeable optical fiber for gas sensing
WO2018064821A1 (en) * 2016-10-09 2018-04-12 South China Normal University Distributed optical fiber gas sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307335A (en) * 1987-05-22 1988-12-15 アメリカン テレフォン アンド テレグラフ カムパニー Wide-range sensor and wide-range detection method and apparatus
JPS6454230A (en) * 1987-08-25 1989-03-01 Fujikura Ltd Optical fiber for liquid detection and liquid detection system using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307335A (en) * 1987-05-22 1988-12-15 アメリカン テレフォン アンド テレグラフ カムパニー Wide-range sensor and wide-range detection method and apparatus
JPS6454230A (en) * 1987-08-25 1989-03-01 Fujikura Ltd Optical fiber for liquid detection and liquid detection system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018064822A1 (en) * 2016-10-09 2018-04-12 South China Normal University Permeable optical fiber for gas sensing
WO2018064821A1 (en) * 2016-10-09 2018-04-12 South China Normal University Distributed optical fiber gas sensor

Similar Documents

Publication Publication Date Title
US7260283B2 (en) Distributed optical fiber sensor with controlled response
US5864641A (en) Optical fiber long period sensor having a reactive coating
CN100367016C (en) Fibre-optical temperature measuring device and measurement thereof
JPH0921698A (en) Optical sensor
US5903685A (en) Sensor arrangement
CN113324570B (en) Sensing device based on balloon-shaped optical fiber MZI and manufacturing method of balloon-shaped optical fiber MZI sensor
Zhang et al. Simultaneous measurement of temperature and curvature based on hollow annular core fiber
US4714829A (en) Fibre optic sensing device and method
Bariain et al. Experimental results toward development of humidity sensors by using a hygroscopic material on biconically tapered optical fiber
JPH0371043A (en) Gas sensor made of optical fiber
US7697144B2 (en) Optical fiber coating system and monitoring method for improved thermal performance in fiber optic sensors
CN112098367B (en) Optical fiber humidity sensor and manufacturing method thereof
CN112595435B (en) High-sensitivity temperature measurement demodulation sensing system based on optical fiber strong evanescent field interferometer
Handali et al. Simulation of de-cladding fiber optic sensor using MODE solutions for ammonia detection
CN206618509U (en) Faraday&#39;s rotating mirror structure single mode centreless single mode both-end dislocation optical fiber temperature-measurement device
JPH02249949A (en) Optical fiber
CN214174138U (en) Optical fiber sensor and measuring device
US6748129B2 (en) Method and apparatus of monitoring optical power level in waveguiding structures
WO2023151112A1 (en) Optical fiber humidity sensor having temperature calibration capability
JPH03158728A (en) Temperature detecting optical cable
JPS59113402A (en) Optical fiber sensor
CN117053843A (en) Optical fiber sensor based on hollow optical fiber and manufacturing method
JP2511999B2 (en) Liquid detection optical fiber and liquid detection system using the same
WO2000070307A2 (en) A sensor and a method for determining the direction and the amplitude of a bend
JPH0244177Y2 (en)