JPH0370676A - Variable rigidity steering mount bush - Google Patents

Variable rigidity steering mount bush

Info

Publication number
JPH0370676A
JPH0370676A JP20756989A JP20756989A JPH0370676A JP H0370676 A JPH0370676 A JP H0370676A JP 20756989 A JP20756989 A JP 20756989A JP 20756989 A JP20756989 A JP 20756989A JP H0370676 A JPH0370676 A JP H0370676A
Authority
JP
Japan
Prior art keywords
support member
steering
bush
rigidity
spring constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20756989A
Other languages
Japanese (ja)
Other versions
JP2596134B2 (en
Inventor
Kazuo Chiba
一雄 千葉
Toshiro Hirai
敏郎 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20756989A priority Critical patent/JP2596134B2/en
Publication of JPH0370676A publication Critical patent/JPH0370676A/en
Application granted granted Critical
Publication of JP2596134B2 publication Critical patent/JP2596134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To always obtain optimum steering support rigidity by restricting a relative movement for steering reaction force between a car body side and each intermediate support member and between a steering side and the intermediate support member through each free piston thereby changing a spring constant of each bush, in the above described, between the car body side and the intermediate support member and between the steering side and the intermediate support member. CONSTITUTION:A bush 3 is constituted of a mount structure part for supporting a steering housing 16 to a car body and an actuator part for variably generating support rigidity of the mount structure part. Here in the mount structure part, the first bush 31 is adhesively attached to the periphery of a car body side support member 30, further a steering side support member 33 is relatively turnably arranged inside an intermediate support member 32 with the first bush 31 mounted, while the second bush 34 is interposed between the support members 32, 33. While in the actuator part, two free pistons 45, 46 are interposed between the support members 32, 33. Each support member 30, 32, 33, between the members 30 and 32 and between the members 33 and 32, is restricted, thus a spring constant of each bush 31, 34 is changed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、車体に対する支持剛性を外部から可変制御す
るフロントやリヤのステアリング機構に適用される可変
剛性ステアリングマウントブツシュに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a variable rigidity steering mount bushing applied to a front or rear steering mechanism that variably controls the support rigidity for a vehicle body from the outside.

(従来技術及び解決しようとする課題)従来、一般に知
られているステアリングマウントブツシュは、バネ定数
が一定であり、支持剛性が固定された1つの支持剛性し
か持つことができない。
(Prior Art and Problems to Be Solved) Conventionally known steering mount bushings have a constant spring constant and can only have one fixed support rigidity.

その為、直進及び低横加速度旋回時における車両安定性
能及び音振性能の向上を図るべく、支持剛性を低剛性(
バネ定数に+)に設定した場合には、横加速度に対する
ヨーレイト変化量特性が、第9図の点線特性に示すよう
になり、横加速度が高くなるほどフロントタイヤの切れ
戻り量が大きくなり、又、タイヤのコーナリングパワー
特性も減少する為、口頭方向の動きが鈍る、即ち、舵の
効きが悪くなる。
Therefore, in order to improve vehicle stability performance and sound and vibration performance when going straight and turning with low lateral acceleration, the support rigidity has been changed to a low rigidity (
When the spring constant is set to +), the yaw rate change characteristic with respect to the lateral acceleration becomes as shown by the dotted line characteristic in Figure 9, and the higher the lateral acceleration, the greater the amount of front tire reversal. Since the cornering power characteristics of the tires are also reduced, the movement in the direction of the vehicle becomes slow, that is, the effectiveness of the steering becomes poor.

尚、ヨーレイト変化量とは、旋回時に一定の舵切り増し
を行なった場合、舵の切り増し前後でのヨーレイトの差
であり、この大きさは舵の効き度合をあられすことにな
る。
Incidentally, the amount of change in yaw rate is the difference in yaw rate before and after the additional turning of the rudder when a certain amount of additional turning of the rudder is performed during a turn, and this magnitude affects the degree of effectiveness of the rudder.

また、高横加速度旋回時における回頭性の向上を図るべ
く、支持剛性を高剛性(バネ定数に2)に設定した場合
には、横加速度に対するヨーレイト変化量特性か、第9
図の1点鎖線特性に示すようになり、直進及び低横加速
度旋回時にフロントタイヤが動き過ぎて車両安定性が悪
くなるし、振動伝達力が大きくシミー等の音振性能が悪
化する。
In addition, when the support rigidity is set to high stiffness (spring constant 2) in order to improve turning performance when turning with high lateral acceleration, the yaw rate change amount characteristic with respect to lateral acceleration
As shown in the dot-dashed line characteristics in the figure, the front tires move too much during straight running and turns with low lateral acceleration, resulting in poor vehicle stability, and the vibration transmission force is large, resulting in poor sound vibration performance such as shimmy.

即ち、直進走行時や旋回時等において、操舵状況や車両
状況に応じた最適なステアリング支持剛性を得ることが
出来ない。
That is, it is not possible to obtain the optimal steering support rigidity depending on the steering situation and vehicle situation when driving straight ahead or when turning.

一方、ステアリングマウントブツシュ内に複数の液室を
形成し、これら複数の液室間にバルブを設け、このバル
ブを外部から開閉制御することにより、複数の液室を全
て連通ずることで低剛性とし、複数の液室の遮断するこ
とで高剛性とする案がある。
On the other hand, by forming multiple fluid chambers in the steering mount bushing, installing valves between these multiple fluid chambers, and controlling the opening and closing of these valves from the outside, all of the multiple fluid chambers are communicated, resulting in low rigidity. There is a proposal to increase rigidity by blocking multiple liquid chambers.

しかし、この場合には、剛性変化が段階的になり操舵違
和感を招くし、また、操舵違和感を軽減させるために液
室を多数形成した場合には、構造が複雑になり、大型化
や大幅なコスト増を招く。
However, in this case, the rigidity changes in stages, leading to a feeling of discomfort when steering, and if a large number of liquid chambers are formed in order to reduce the feeling of discomfort when steering, the structure becomes complicated, resulting in an increase in size and a significant increase in size. This results in increased costs.

本発明は、上述のような問題に着目してなされたもので
、ステアリング機構を車体に対して支持する可変剛性ス
テアリングマウントブツシュにおいて、操舵違和感や大
型化や大幅なコスト増を招くことなく、操舵状況や車両
状況に応じた最適なステアリング支持剛性が得られるス
テアリングマウントフッシュを提供することを課題とす
る。
The present invention has been made in view of the above-mentioned problems, and provides a variable rigidity steering mount bushing that supports a steering mechanism to a vehicle body without causing discomfort in steering, increase in size, or significant increase in cost. It is an object of the present invention to provide a steering mount bush that provides optimal steering support rigidity depending on steering conditions and vehicle conditions.

(課題を解決するための手段) 上記課題を解決するために本発明の可変剛性ステアリン
グマウントブツシュでは、直列配置の2つのフッシュを
持ち、2つのブツシュによるバネ定数効果を支持部材間
に拘束を与えることで変更する手段とした。
(Means for Solving the Problems) In order to solve the above problems, the variable rigidity steering mount bushing of the present invention has two bushes arranged in series, and the spring constant effect of the two bushes is restrained between the support members. It was used as a means to change by giving.

即ち、車体の固定される車体側支持部材と、ステアリン
グハウジングに固定されるステアリング側支持部材と、
前記車体側支持部材とステアリング側支持部材との間に
配置される中間支持部材と、前記車体側支持部材と中間
支持部材との間に介装される第1ブツシュと、前記ステ
アリング側支持部材と中間支持部材との間に配置される
第2ブツシュと、少なくとも前記車体側支持部材と中間
支持部材またはステアリ7グ側支持部材と中間支持部材
の操舵反力に対する相対移動を外部油圧の油圧レベルに
応じて拘束を与えるべく各部材間に設けられたフリーピ
ストンと、を備えている事を特徴とする。
That is, a vehicle body side support member to which the vehicle body is fixed, a steering side support member fixed to the steering housing,
an intermediate support member disposed between the vehicle body side support member and the steering side support member; a first bushing interposed between the vehicle body side support member and the intermediate support member; and the steering side support member. A second bush disposed between the intermediate support member and at least the vehicle body side support member and the intermediate support member or the steering wheel side support member and the intermediate support member relative to the steering reaction force are adjusted to the oil pressure level of the external oil pressure. It is characterized by comprising a free piston provided between each member to apply restraint accordingly.

(作 用) フリーピストンに供給される外部油圧の油圧レベルが零
の時には、各支持部材間の拘束がなく、車体側支持部材
と中間支持部材とステアリング側支持部材の操舵反力に
対する相対移動が第1ブツシュと第2ブツシュの両方の
変形を伴なって行なわれることになり、バネ定数として
は両フッシュの和となり、支持剛性が最も低剛性となる
(Function) When the oil pressure level of the external oil pressure supplied to the free piston is zero, there is no restraint between each support member, and the relative movement of the vehicle body side support member, intermediate support member, and steering side support member against the steering reaction force is prevented. This is carried out with the deformation of both the first bushing and the second bushing, and the spring constant is the sum of both bushings, resulting in the lowest supporting rigidity.

フリーピストンに供給される外部油圧の油圧レベルを上
昇させると、各部材間に設けられたフリピストンにより
、少なくとも車体側支持部材と中間支持部材またはステ
アリング側支持部材と中間支持部材の操舵反力に対する
相対移動が外部油圧の油圧レベルに応じて拘束されるこ
とになり、支持剛性が徐々に高まる。
When the hydraulic pressure level of the external hydraulic pressure supplied to the free piston is increased, the free piston provided between each member will respond to at least the steering reaction force of the vehicle body side support member and the intermediate support member or the steering side support member and the intermediate support member. Relative movement is restricted according to the oil pressure level of the external oil pressure, and the support rigidity gradually increases.

そして、フリーピストンに供給される外部油圧の油圧レ
ベルを最大油圧にし、例えば、第1フツシユまたは第2
ブツシュのうち第2ブツシュ側のステアリング側支持部
材と中間支持部材を一体化する拘束を与えた場合、第1
フツシユのみの変形が許容され、支持剛性が最も高剛性
となる。
Then, the hydraulic pressure level of the external hydraulic pressure supplied to the free piston is set to the maximum hydraulic pressure, and, for example, the first or second
When restraint is given to integrate the steering side support member and the intermediate support member on the second bush side among the bushes, the first bush
Deformation of only the fuselage is allowed, and the support rigidity is the highest.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

まず、構成を説明する。First, the configuration will be explained.

第1図〜第4図は実施例の可変剛性ステアリングマウン
トブツシュ3を示す図であり、ラックチューブ16(ス
テアリングハウジング)を操舵反力を受けながら車体2
に対して支持するマウント構造部と、支持剛性を可変と
する可変剛性アクチュエータ部とにより構成されている
1 to 4 are diagrams showing a variable rigidity steering mount bushing 3 according to an embodiment, in which the rack tube 16 (steering housing) is rotated while receiving a steering reaction force from the vehicle body.
It is composed of a mount structure section that supports the mount structure, and a variable rigidity actuator section that makes the support rigidity variable.

前記マウント構造部は、車体2にポルト8で固定される
ステム30(車体側支持部材)と、該ステム30の外周
に接着された第1ブツシュ31と、該第1ブツシュ31
が挿着される第1サポートメンバ32(中間支持部材)
と、該第1サポートメンバ32の内側に相対回動可能に
設けられた第2サポートメンバ33(ステアリング側支
持部材)と、第1サポートメンバ32と第2サポートメ
ンバ33との間に介装された第2ブツシュ34とを有し
、第2サポートメンバ33はラックチューブ16の外周
に挿着される。
The mount structure section includes a stem 30 (vehicle body side support member) fixed to the vehicle body 2 with a port 8, a first bush 31 glued to the outer periphery of the stem 30, and the first bush 31.
The first support member 32 (intermediate support member) into which is inserted
A second support member 33 (steering side support member) is provided inside the first support member 32 so as to be relatively rotatable, and a second support member 33 is interposed between the first support member 32 and the second support member 33. The second support member 33 is inserted into the outer periphery of the rack tube 16.

尚、第1ブツシュ31は操舵反力Fに対し圧縮・引張変
形によるバネ定数で受けるべくラック軸直交方向に配置
され、その外面にはステム35を有する。また、第2ブ
ツシュ34は操舵反力Eに対し剪断変形によるバネ定数
で受けるべくラックチューブ軸方向に配置され、その内
外面にはステム36.37を有する。
The first bushing 31 is arranged in a direction perpendicular to the rack axis so as to receive the steering reaction force F with a spring constant due to compression and tension deformation, and has a stem 35 on its outer surface. Further, the second bush 34 is arranged in the axial direction of the rack tube so as to receive the steering reaction force E with a spring constant due to shear deformation, and has stems 36 and 37 on its inner and outer surfaces.

前記可変剛性アクチュエータ部は、操舵反力に対する第
1サポートメンバ32と第2サポートメンバ33との相
対移動を制御油圧P。の油圧レベルに応じて拘束を与え
ることで可変剛性を得る部分であり、第1サポートメン
バ32と第2サポートメンバ33との間にチューブ軸方
向に移動可能に設けられた第1フリーピストン45と第
2フリーピストン46と、両ピストン45.46の間に
形成されるピストン室47に制御油圧P。を導くべく第
1サポートメンバ32に形成された油供給ポート48と
、両ピストン45.46の端部に形成された油溝49か
ら作動油を排出するべく第1サポートメンバ32に形成
された油排出ポート50と、第1サポートメンバ32と
第2サポートメンバ33とを油密状態に保つオイルシー
ル51と、第1サポートメンバ32に螺合固定されるス
トップナツト52を有する。
The variable rigidity actuator section controls the relative movement of the first support member 32 and the second support member 33 in response to the steering reaction force using a hydraulic pressure P. A first free piston 45 is provided between the first support member 32 and the second support member 33 so as to be movable in the tube axial direction. Control oil pressure P is applied to the piston chamber 47 formed between the second free piston 46 and both pistons 45 and 46. An oil supply port 48 is formed in the first support member 32 to guide the hydraulic oil, and an oil groove 49 is formed in the first support member 32 to drain the hydraulic oil from the oil grooves 49 formed in the ends of both pistons 45 and 46. It has a discharge port 50, an oil seal 51 that keeps the first support member 32 and the second support member 33 in an oil-tight state, and a stop nut 52 that is screwed and fixed to the first support member 32.

第5図は実施例の可変剛性ステアリングマウントブツシ
ュ3が適用されたフロントステアリングの全体システム
を示す図である。
FIG. 5 is a diagram showing the entire front steering system to which the variable rigidity steering mount bushing 3 of the embodiment is applied.

まず、フロントステアリング機構1は、ドライバによる
操舵入力の方向及び大きさに応じてフロントタイヤ7を
転舵させる機構で、ハンドル10、ステアリングシャフ
ト11、ビニオン12、ラックギヤ13、サイドロッド
14、ナックルアム15、ラックチューブ16を有して
構成されている。
First, the front steering mechanism 1 is a mechanism that steers the front tires 7 according to the direction and magnitude of steering input by the driver, and includes a steering wheel 10, a steering shaft 11, a pinion 12, a rack gear 13, a side rod 14, a knuckle arm 15, It is configured with a rack tube 16.

前記可変剛性ステアリングマウントブツシュ3へ供給す
る制御油圧PCを作り出す制御油圧発生装置4は、油圧
制御バルブ40、リザーブタンク41、オイルポンプ4
2、油供給バイブ43、油返送バイブ44とを有し、油
供給バイブ43が前記油供給ポート48に接続され、油
返送パイプ44が前記油排出ポート50に接続される。
The control hydraulic pressure generator 4 that generates the control hydraulic pressure PC to be supplied to the variable rigidity steering mount bushing 3 includes a hydraulic control valve 40, a reserve tank 41, and an oil pump 4.
2, an oil supply vibe 43 and an oil return vibe 44, the oil supply vibe 43 being connected to the oil supply port 48, and the oil return pipe 44 being connected to the oil discharge port 50.

前記油圧制御バルブ40に制御電流Iを印加するステア
リング支持剛性コントローラ6は、電子制御回路による
構成で、横加速度センサ5からの横加速度Y。の増大に
応じて前記可変剛性ステアリングマウントブツシュ3に
よる支持剛性−を高めることで、横加速度Y6の大きさ
に応じた最適な支持剛性を得る制御プログラムが設定さ
れている。
The steering support rigidity controller 6, which applies the control current I to the hydraulic control valve 40, is configured by an electronic control circuit and receives the lateral acceleration Y from the lateral acceleration sensor 5. A control program is set to obtain the optimum support rigidity according to the magnitude of the lateral acceleration Y6 by increasing the support rigidity of the variable rigidity steering mount bush 3 in accordance with the increase in the lateral acceleration Y6.

次に、作用を説明する。Next, the effect will be explained.

まず、可変剛性ステアリングマウントブツシュ3による
バネ定数変更作用について説明する。
First, the effect of changing the spring constant by the variable rigidity steering mount bushing 3 will be explained.

第1フリーピストン45と第2フリーピストン46の間
に形成されるピストン室47に供給される制御油圧P。
Control hydraulic pressure P supplied to a piston chamber 47 formed between the first free piston 45 and the second free piston 46.

の油圧レベルが零の時には、両すポトメンバ32.33
間での拘束が無く、ステム30と第1サポートメンバ3
2と第2サポートメンバ33の操舵反力「に対する相対
移動か、直列に配置された第1フツシユ31と第2フツ
シユ34の両方の変形を伴なって行なわれる。
When the oil pressure level is zero, both pot members 32 and 33
There is no restraint between the stem 30 and the first support member 3.
2 and the second support member 33 relative to the steering reaction force, or deformation of both the first and second shafts 31 and 34 arranged in series.

従って、第6図の特性に示すように、バネ定数としては
両ブツシュ31.34の和によるバネ定数に、となり、
支持剛性が最も低剛性となる。
Therefore, as shown in the characteristics in Figure 6, the spring constant is the sum of both bushes 31.34,
The support rigidity is the lowest.

第1フリーピストン45と第2フリーピストン46の間
に形成されるピストン室47に供給される制御油圧PC
の油圧レベルを上昇させると、両すポートメンバ32,
33間に設けられたフリーピストン45.46が油圧力
で両サポートメンバ32.33に押し付けられることで
、操舵反力Fに対する両サポートメンバ32.33の相
対移動が制御油圧P。の油圧レベルに応じて拘束される
ことになる。
Control hydraulic pressure PC supplied to the piston chamber 47 formed between the first free piston 45 and the second free piston 46
When the oil pressure level of both port members 32,
The free pistons 45 and 46 provided between the support members 32 and 33 are pressed against the support members 32 and 33 by hydraulic pressure, so that the relative movement of the support members 32 and 33 relative to the steering reaction force F is controlled by the hydraulic pressure P. It will be restrained depending on the oil pressure level.

従って、第6図の点線特性に示すように、操舵反力Fが
油圧力による拘束力より小さい領域では、第1ブツシュ
31によるバネ定数に2が効き、操舵反力Fか油圧力に
よる拘束力を超えると、K。
Therefore, as shown by the dotted line characteristics in FIG. 6, in the region where the steering reaction force F is smaller than the restraining force due to hydraulic pressure, the spring constant of the first bushing 31 is 2, and the steering reaction force F is less than the restraining force due to hydraulic pressure. If it exceeds K.

特性と平行な傾きを持つバネ定数特性を示し、制御油圧
ρ。の上昇に応じて支持剛性が徐々に高まることになる
The characteristic shows a spring constant characteristic with a slope parallel to the control hydraulic pressure ρ. The support rigidity will gradually increase as the value increases.

そして、第1フリーピストン45と第2フリーピストン
46の間に形成されるピストン室47に供給される制御
油圧PCの油圧レベルを最大油圧PCL/AXにすると
、第2ブツシュ34を挾んで設けられた両サポートメン
バ32.33が一体化してしまう拘束が与えられること
になる。
Then, when the hydraulic pressure level of the control hydraulic pressure PC supplied to the piston chamber 47 formed between the first free piston 45 and the second free piston 46 is set to the maximum hydraulic pressure PCL/AX, the second bushing 34 is placed between the two bushings 34. Therefore, the support members 32 and 33 are constrained to become integrated.

従って、第1ブツシュ31のみの変形が許容されること
になり、第6図の特性に示すように、バネ定数としては
最大のバネ定数に2となり、支持剛性が最も高剛性とな
る。
Therefore, deformation of only the first bushing 31 is allowed, and as shown in the characteristics of FIG. 6, the spring constant is the maximum spring constant of 2, and the support rigidity is the highest.

次に、可変剛性ステアリングマウントブツシュ3を適用
した支持剛性可変制御例について説明する。
Next, an example of variable support rigidity control using the variable rigidity steering mount bushing 3 will be described.

第7図は前記ステアリング支持剛性コントローラ6で行
なわれる支持剛性可変制御の作動の流れを示すフローチ
ャートであり、以下、各ステップについて説明する。
FIG. 7 is a flowchart showing the flow of the support stiffness variable control performed by the steering support stiffness controller 6, and each step will be explained below.

ステップ70では、横加速度センサ5がら横加速度Y6
が読み込まれる。
In step 70, the lateral acceleration Y6 is detected by the lateral acceleration sensor 5.
is loaded.

ステップ71では、ステップ7oで読み込まれた横加速
度Y。に基づいて、第8図に示すような横加速度Y。の
増大に応じてバネ定数を高めるマツプからのルックアッ
プや横加速度Y。の関数であられされたバネ定数演算式
による演算等により、読み込まれた横加速度Y6に最適
のバネ定数Kが設定される。
In step 71, the lateral acceleration Y read in step 7o. Based on , the lateral acceleration Y as shown in FIG. Lookup from the map and lateral acceleration Y to increase the spring constant according to the increase in. The optimum spring constant K for the read lateral acceleration Y6 is set by calculation using the spring constant calculation formula created by the function.

ステップ72では、ステップ71で設定されたバネ定数
Kが得られる制御油圧PCが、第6図に示す油圧をパラ
メータとするバネ定数特性により求められる。
In step 72, the control oil pressure PC for obtaining the spring constant K set in step 71 is determined from the spring constant characteristic using the oil pressure as a parameter shown in FIG.

ステップ73では、予め設定されたPo−I特性に基づ
いて、ステップ72で求められた制御油圧PCが得られ
る制御雷流工が設定される。
In step 73, a control flow control that provides the control oil pressure PC determined in step 72 is set based on the preset Po-I characteristic.

ステップ74では、ステップ73で求められた制御電流
工が油圧制御バルブ40に出力される。
In step 74, the control current calculated in step 73 is output to the hydraulic control valve 40.

以上の制御作動は、所定の制御起動時間毎に繰り返し行
なわれる。
The above control operation is repeated at every predetermined control activation time.

従って、車両走行時には、ステアリング支持剛性コント
ローラ6において、車両に発生する横加速度Yaの増大
に応じてフロントステアリング機構1のラックチューブ
16を車体2に対して支持する可変剛性ステアリングマ
ウントブツシュ3による支持剛性を高める制御が行なわ
れることになり、横加速度Y6に対するヨーレイト変化
量Δψの特性は、第9図の実線特性に示すように、仮構
加速度Y。側では、固定バネ定数に1特性と近似し、高
横加速度Y。側では固定バネ定数に2特性と近似する可
変バネ定数K。による特性を示す。
Therefore, when the vehicle is running, in the steering support rigidity controller 6, the rack tube 16 of the front steering mechanism 1 is supported by the variable rigidity steering mount bushing 3, which supports the rack tube 16 relative to the vehicle body 2 in response to an increase in the lateral acceleration Ya generated in the vehicle. Control is performed to increase the rigidity, and the characteristic of the yaw rate change Δψ with respect to the lateral acceleration Y6 is the virtual acceleration Y, as shown by the solid line characteristic in FIG. On the side, a fixed spring constant approximates one characteristic, and high lateral acceleration Y. On the side, there is a variable spring constant K that approximates the fixed spring constant with two characteristics. shows the characteristics according to

この結果、高横加速度旋回時には、フロントステアリン
グ機構1のラックチューブ16の支持剛性が高支持剛性
となり、フロントタイヤ7の切れ戻り量が小さくなり、
又、フロントタイヤγのコーナリングパワー特性も増大
する為、口頭方向の動きが敏感で舵の効きが良くなり、
旋回回頭性が向上する。
As a result, when turning with high lateral acceleration, the support rigidity of the rack tube 16 of the front steering mechanism 1 becomes high, and the amount of reversal of the front tire 7 becomes small.
In addition, the cornering power characteristics of the front tire γ are also increased, making the movement in the direction more sensitive and the steering more effective.
Improves turning performance.

また、直進及び低横加速度旋回時には、フロントステア
リング機構1のラックチューブ16の支持剛性が低支持
剛性となり、フロントタイヤ7の動きが抑えられて車両
安定性か良くなるし、又、振動伝達力が小さくシミー等
の音振性能が向上する。
Furthermore, when traveling straight and turning with low lateral acceleration, the support rigidity of the rack tube 16 of the front steering mechanism 1 becomes low, suppressing the movement of the front tires 7 and improving vehicle stability. Improves sound vibration performance such as small shimmy.

以上説明してきたように、実施例の可変剛性ステアリン
グマウントブツシュにあっては、直列配置の2つのブツ
シュ31.34を持ち、2つのブツシュ31.34によ
るバネ定数効果を両サポートメンバ32.33間に拘束
を与えることで変更する構成とした為、下記に列挙する
特徴を有する。
As explained above, the variable rigidity steering mount bushing of the embodiment has two bushings 31.34 arranged in series, and the spring constant effect of the two bushings 31.34 is applied to both support members 32.33. Since it has a configuration in which changes are made by applying constraints between them, it has the characteristics listed below.

■ 支持剛性の変化か無段階である為、ドライバに操舵
違和感を与えることが無い。
■ Since the support rigidity changes steplessly, the driver does not feel any discomfort when steering.

特に、剛性可変制御をバネ定数の小さい剪断力で働く第
2ブツシュ34で行なっているため、運転状況に応じた
きめの細かな剛性可変制御を可能としている。
In particular, since the rigidity variable control is performed by the second bushing 34 which acts with a shearing force having a small spring constant, fine-grained rigidity variable control according to the driving situation is possible.

■ 多数の液室を形成するようなマウントブツシュに比
べ、小型化が達成されるし、部品点数も少なくなること
でコスト的にも有利である。
■ Compared to a mounting bush that forms multiple liquid chambers, it is more compact and has fewer parts, which is advantageous in terms of cost.

■ 上記のように、横加速度Y。に応じた最適なステア
リング支持剛性に制御することで、高横加速度旋回時に
おける口頭性の向上と直進及び低横加速度旋回時におけ
る車両安定性能及び音振性能の向上との両立を達成する
等、操舵状況や車両状況等に応じて最適のステアリング
支持剛性を得ることが出来る。
■ As above, lateral acceleration Y. By controlling the steering support rigidity to the optimum level according to the vehicle speed, it is possible to achieve both improved controllability when turning with high lateral acceleration and improvements in vehicle stability performance and sound and vibration performance when driving straight ahead and turning with low lateral acceleration. Optimal steering support rigidity can be obtained depending on the steering situation, vehicle situation, etc.

以上、実施例を図面に基づいて説明してきたが、具体的
な構成はこの実施例に限られるものではなく、本発明の
要旨を逸脱しない範囲における設計変更等があっても本
発明に含まれる。
Although the embodiment has been described above based on the drawings, the specific configuration is not limited to this embodiment, and even if there is a design change within the scope of the gist of the present invention, it is included in the present invention. .

例えば、実施例では両サポートメンバ32,33に拘束
を与える例を示したが、ステム30と第1サポートメン
バ32に拘束を与えるような例であっても、また、両サ
ポートメンバ32.33及びステム30と第1サポート
メンバ32の両方に拘束を与える例としても良い。
For example, in the embodiment, an example in which restraints are applied to both the support members 32 and 33 was shown, but even in an example in which restraints are applied to the stem 30 and the first support member 32, both support members 32, 33 and An example in which restraints are applied to both the stem 30 and the first support member 32 may also be used.

また、実施例では、ビニオン・ラック型のステアリング
機構への適応例を示したが、リサーキュレーティングポ
ール型等、他のステアリングギヤタイプの機構にも適用
できるのは勿論であるし、更に、フロントステアリング
機構に限らず、油圧パワーシリンダーや電動モータアク
チュエータ等によるリヤステアリング機構にも適用でき
る。
In addition, although the example shows an example of application to a binion rack type steering mechanism, it is of course applicable to other steering gear type mechanisms such as a recirculating pole type. It can be applied not only to steering mechanisms but also to rear steering mechanisms using hydraulic power cylinders, electric motor actuators, etc.

また、実施例では、支持剛性の可変制御例として横加速
度対応の制御例を示したが、操舵角や車速等、他の制御
情報に基づいて支持剛性の可変制御を行なうものにも適
用できる。
Further, in the embodiment, an example of control corresponding to lateral acceleration was shown as an example of variable control of support stiffness, but the present invention can also be applied to variable control of support stiffness based on other control information such as steering angle and vehicle speed.

(発明の効果) 以上説明してきたように、本発明にあっては、ステアリ
ング機構を車体に対して支持する可変剛性ステアリング
マウントブツシュにおいて、直列配置の2つのブツシュ
を持ち、2つのフッシュによるバネ定数効果を支持部材
間に拘束を与えることで変更する手段とした為、操舵違
和感や大型化や大幅なコスト環を招くことなく、操舵状
況や車両状況に応じた最適なステアリング支持剛性が得
られるステアリングマウントブツシュを提供することが
出来るという効果が得られる。
(Effects of the Invention) As explained above, in the present invention, the variable rigidity steering mount bushing that supports the steering mechanism with respect to the vehicle body has two bushes arranged in series, and the springs by the two bushes are arranged in series. Since the constant effect is changed by applying restraint between the support members, it is possible to obtain the optimal steering support rigidity according to the steering situation and vehicle situation without causing discomfort in steering, increase in size, or significant cost. The effect of being able to provide a steering mount bushing is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の可変剛性ステアリングマウント
ブツシュを示す側面図、第2図は第1図I−r線による
可変剛性ステアリングマウントブツシュの縦断正面図、
第3図は第2図■−■による断面図、第4図は第1図■
−曲線による断面図、第5図は実施例の可変剛性ステア
リングマウントブツシュが適用されたフロントステアリ
ングの全体システムを示す図、第6図はステアリング支
持剛性コントローラでの支持剛性可変制御の作動の流れ
を示すフローチャート、第7図は油圧をパラメータとし
た可変剛性ステアリングマウントブツシュのバネ定数特
性図、第8図は横加速度に対するバネ定数制御特性図、
第9図は横加速度に対するヨーレイト変化量特性図であ
る。 2・・・車体 3・・・可変剛性ステアリングマウントフッシュ8・・
−ポルト 16・・・ラックチューブ (ステアリングハウジング) 30・・・ステム(車体側支持部材) 31・・・第1ブツシュ 32・・・第1サポートメンバ (中間支持部材) 33・・・第2サポートメンバ (ステアリング側支持部材) 34・・・第2ブツシュ 45・・・第1フリーピストン 46・・・第2フリーピストン 47・・・ピストン室 48・・−油供給ポート 49・・・油溝 50・・・油排出ポート 51・・・オイルシール 52・・・ストップナラ ト
FIG. 1 is a side view showing a variable rigidity steering mount bushing according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional front view of the variable rigidity steering mount bushing taken along line I-r in FIG.
Figure 3 is a cross-sectional view according to Figure 2 ■-■, Figure 4 is a cross-sectional view according to Figure 1 ■
- A cross-sectional view using a curved line; Figure 5 is a diagram showing the entire system of the front steering to which the variable rigidity steering mount bushing of the embodiment is applied; Figure 6 is the flow of operation of variable support rigidity control in the steering support rigidity controller. 7 is a spring constant characteristic diagram of a variable rigidity steering mount bushing with oil pressure as a parameter. FIG. 8 is a spring constant control characteristic diagram for lateral acceleration.
FIG. 9 is a characteristic diagram of the amount of change in yaw rate with respect to lateral acceleration. 2...Vehicle body 3...Variable rigidity steering mount fish 8...
- Porto 16... Rack tube (steering housing) 30... Stem (vehicle body side support member) 31... First bush 32... First support member (intermediate support member) 33... Second support Member (steering side support member) 34...Second bushing 45...First free piston 46...Second free piston 47...Piston chamber 48...-Oil supply port 49...Oil groove 50 ... Oil discharge port 51 ... Oil seal 52 ... Stop Narato

Claims (1)

【特許請求の範囲】 1)車体の固定される車体側支持部材と、 ステアリングハウジングに固定されるステアリング側支
持部材と、 前記車体側支持部材とステアリング側支持部材との間に
配置される中間支持部材と、 前記車体側支持部材と中間支持部材との間に介装される
第1ブッシュと、 前記ステアリング側支持部材と中間支持部材との間に配
置される第2ブッシュと、 少なくとも前記車体側支持部材と中間支持部材またはス
テアリング側支持部材と中間支持部材の操舵反力に対す
る相対移動を外部油圧の油圧レベルに応じて拘束を与え
るべく各部材間に設けられたフリーピストンと、 を備えている事を特徴とする可変剛性ステアリングマウ
ントブッシュ。
[Scope of Claims] 1) A vehicle body side support member to which the vehicle body is fixed, a steering side support member fixed to the steering housing, and an intermediate support disposed between the vehicle body side support member and the steering side support member. a first bush interposed between the vehicle body side support member and the intermediate support member; a second bush disposed between the steering side support member and the intermediate support member; and at least the vehicle body side. A free piston provided between each member to restrain the relative movement of the support member and the intermediate support member or the steering side support member and the intermediate support member against the steering reaction force according to the hydraulic pressure level of the external hydraulic pressure. A variable rigidity steering mount bush that features:
JP20756989A 1989-08-10 1989-08-10 Variable rigidity steering mount bush Expired - Lifetime JP2596134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20756989A JP2596134B2 (en) 1989-08-10 1989-08-10 Variable rigidity steering mount bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20756989A JP2596134B2 (en) 1989-08-10 1989-08-10 Variable rigidity steering mount bush

Publications (2)

Publication Number Publication Date
JPH0370676A true JPH0370676A (en) 1991-03-26
JP2596134B2 JP2596134B2 (en) 1997-04-02

Family

ID=16541922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20756989A Expired - Lifetime JP2596134B2 (en) 1989-08-10 1989-08-10 Variable rigidity steering mount bush

Country Status (1)

Country Link
JP (1) JP2596134B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040015997A (en) * 2002-08-14 2004-02-21 현대자동차주식회사 Vibration decreasing device of steering device in vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040015997A (en) * 2002-08-14 2004-02-21 현대자동차주식회사 Vibration decreasing device of steering device in vehicle

Also Published As

Publication number Publication date
JP2596134B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US7270335B2 (en) Electromagnetic suspension apparatus for automotive vehicles and method for controlling electric motor of the same
JPH04212673A (en) Car steering system
JPH0771888B2 (en) Attitude control device for vehicle
JP2023117075A (en) Vehicle behavior control system
JPH0370676A (en) Variable rigidity steering mount bush
JP4449672B2 (en) Vehicle control device
JP2541663B2 (en) Steering stiffness controller
JPS60203517A (en) Suspension controller in vehicles
JPH049259Y2 (en)
JP2553861B2 (en) Stabilizer control device
JPH0487813A (en) Caster angle control device for vehicle
JP3032849B2 (en) Power steering device
JP2773436B2 (en) Front wheel assist steering angle giving device
JPH08175402A (en) Steering device
JPS60113707A (en) Suspension apparatus for car
JP2876695B2 (en) Shock absorber
KR100469049B1 (en) Power Assisted Active Stabilizer
JP2535602B2 (en) Suspension control device for vehicle
JPS63162314A (en) Roll stiffness control device for vehicle
JPH048245B2 (en)
JPH04230472A (en) Electronically controlled power steering device
JP2910376B2 (en) Vehicle turning control device
JPH1159156A (en) Roll rigidity varying mechanism and roll rigidity controller
JPS6085060A (en) Pressure fluid controller for vehicles
JPS60166562A (en) Four wheel steering device for vehicle