JPH0370666B2 - - Google Patents

Info

Publication number
JPH0370666B2
JPH0370666B2 JP18097885A JP18097885A JPH0370666B2 JP H0370666 B2 JPH0370666 B2 JP H0370666B2 JP 18097885 A JP18097885 A JP 18097885A JP 18097885 A JP18097885 A JP 18097885A JP H0370666 B2 JPH0370666 B2 JP H0370666B2
Authority
JP
Japan
Prior art keywords
ethylene
olefin
titanium
copolymer
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18097885A
Other languages
Japanese (ja)
Other versions
JPS6255276A (en
Inventor
Noboru Yamaoka
Kazuo Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP18097885A priority Critical patent/JPS6255276A/en
Priority to GB8618471A priority patent/GB2180549B/en
Priority to GB08620037A priority patent/GB2180548B/en
Priority to DE19863628044 priority patent/DE3628044A1/en
Publication of JPS6255276A publication Critical patent/JPS6255276A/en
Publication of JPH0370666B2 publication Critical patent/JPH0370666B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は自動車、自転車等の車輪による泥、水
しぶき等の飛散を防止するフラツプ、すなわちマ
ツドガードとしてすぐれた性能を示す材料を提供
するものである。 <従来の技術> マツドガードは近年車両の高速化が普及するに
伴つて小石、水しぶき等の衝撃による破損劣化が
増大の傾向を示し、また辺地での利用度の急増に
伴い、道路の悪条件のため、とくに大型の運搬車
等において比較的損耗の早いことが認められてい
る。 マツドガードに要求される性能としては、使用
状況から極めて多種の耐久性が考えられるが、た
とえば引張り特性、耐屈曲性、耐摩耗性等のほ
か、柔軟性、低温特性、耐熱性、耐油性などのす
ぐれていることが要求されている。 従来の自動車および自転車等のマツドガードに
は通常ゴム状シートが用いられ、形状・構造につ
いては各種の検討が行われているものの、材質に
関する研究は極めて少なく、耐久性の点で必ずし
も満足できるものではなかつた。 <発明が解決しようとする問題点> 本発明は、上記の欠点を改良して各種の耐久性
にすぐれた性能を示す車両用マツドガードを提供
するものである。 <問題点を解決する手段> 検討の結果、本発明者らは特定のエチレン・α
−オレフイン共重合体を用いることにより、すぐ
れた性能を有するマツドガードが得られることを
見出だし、本発明に到達した。 すなわち、本発明は少なくともマグネシウムお
よびチタンを含有する固体物質と有機アルミニウ
ム化合物とからなる触媒の存在下で、エチレンと
炭素数3〜12のα−オレフインとを共重合させて
得られる下記(i)〜(iv)の性状を有するエチレン・α
−オレフイン共重合体を使用した車両用マツドガ
ードに関する。 (i) メルトインデツクスが0.01〜100g/10min、
好ましくは0.1〜50g/10min、より好ましく
は0.5〜20g/10min、 (ii) 密度が0.860〜0.910g/cm3、好ましくは0.880
〜0.910g/cm3、より好ましくは0.890〜0.905
g/cm3、 (iii) 示差走査熱量測定法(DSC)においてその
最大ピークの温度が100℃以上、好ましくは110
℃〜125℃、 (iv) 沸騰n−ヘキサン不溶分が10重量%以上、好
ましくは30〜97重量%。 本発明で用いるエチレン・α−オレフイン共重
合体は上記(i)〜(iv)の条件をすべて満足するもので
なければならない。 〔条件(i)〕 まず、(i)のメルトインデツクス(JIS K
6760)が0.01g/10min未満であると流動性が悪
くなり、成形性が劣るため、均一な厚さのマツド
ガードが得られず、一方100g/10minを越える
と引張強度が劣る。 〔条件(ii)〕 (ii)の密度(JIS K 6760)が0.860g/cm3未満
であるとマツドガードが軟かすぎて強度不足、表
面のべたつきが生じ、一方密度が0.910g/cm3
越えると硬質になり、柔軟性に欠けるため好まし
くない。 〔条件(iii)〕 (iii)のDSCによる最大ピーク温度(Tm)は結晶
形態と相関する値であり、Tmが100℃未満であ
るとマツドガードの耐熱性、引張強度が不足し、
表面にべたつきが生じて望ましくない。 〔条件(iv)〕 つぎに、沸騰n−ヘキサン不溶分は非晶質部分
の割合および低分子量成分の含有率の目安となる
ものであり、不溶分が10重量%未満であるときは
非晶質部分および低分子量成分が多くなり強度低
下による性能不足や表面がべたつき、ごみが付着
しやすくなるなどの問題が生じるとともに、マツ
ドガードの形状保持が困難となる。 なお、本発明におけるDSCおよび沸騰n−ヘ
キサン不溶分の測定方法は次のとおりである。 〔DSCによる測定法〕 熱プレス成形した厚さ100μmのフイルムから
約5mgの試料を精秤し、それをDSC装置にセツ
トし、170℃に昇温してその温度で15min保持し
た後降温速度2.5℃/minで0℃まで冷却する。
次に、この状態から昇温速度10℃/minで170℃
まで昇温して測定を行う。0℃から170℃に昇温
する間に現われたピークの最大ピークの頂点の位
置の温度をもつて最大ピーク温度(Tm)とす
る。 〔沸騰n−ヘキサン不溶分の測定法〕 熱プレスを用いて、厚さ200μmのシートを成
形し、20mm×30mmのシートを3枚切り取り、2重
管式ソツクスレー抽出器を用いて、沸騰n−ヘキ
サンで5時間抽出を行なう。n−ヘキサン不溶分
を取り出し、真空乾燥(7時間、真空下、50℃)
後、次式により沸騰n−ヘキサン不溶分を算出す
る。 沸騰n−ヘキサン不溶分(重量%) =抽出済シート重量/未抽出シート重量×100(
重量%) 本発明におけるエチレン・α−オレフイン共重
合体は上記の諸特性をすべて満たすことによつ
て、所望の性能を発揮することができる。 エチレンと共重合するα−オレフインは炭素数
3〜12のものである。具体的には、プロピレン、
ブテン−1、4−メチルペンテン−1、ヘキセン
−1、オクタン−1、デセン−1、ドデセン−1
などを挙げることができる。これらのうち特に好
ましいのは、プロピレン、ブテン−1、4−メチ
ルペンテン−1およびヘキセン−1である。エチ
レン・α−オレフイン共重合体中のα−オレフイ
ン含量は5〜40モル%であることが好ましい。 以下に、本発明において用いるエチレンとα−
オレフインの共重合体の製造法について説明す
る。 まず使用する触媒系は、少くしもマグネシウム
およびチタンを含有する固体触媒成分に有機アル
ミニウム化合物を組み合わせたもので、該固体触
媒成分としてはたとえば金属マグネシウム、水酸
化マグネシウム、炭酸マグネシウム、酸化マグネ
シウム、塩化マグネシウムなど、またケイ素、ア
ルミニウム、カルシウムから選ばれる金属とマグ
ネシウム原子とを含有する複塩、複酸化物、炭酸
塩、塩化物あるいは水酸化物など、さらにはこれ
らの無機質固体化合物を含酸素化合物、含硫黄化
合物、芳香族炭化水素、ハロゲン含有物質で処理
又は反応させたもの等のマグネシウムを含む無機
質固体化合物にチタン化合物を公知の方法により
担持させたものが挙げられる。 上記の含酸素化合物としては、例えば水、アル
コール、フエノール、ケトン、アルデヒド、カル
ボン酸、エステル、ポリシロキサン、酸アミド等
の有機含酸素化合物、金属アルコキシド、金属の
オキシ塩化物等の無機含酸素化合物を例示するこ
とができる。含硫黄化合物としては、チオール、
チオエーテルの如き有機含硫黄化合物、二酸化硫
黄、三酸化硫黄、硫酸の如き無機硫黄化合物を例
示することができる。芳香族炭化水素としては、
ベンゼン、トルエン、キシレン、アントラセン、
フエナンスレンの如き各種単環および多環の芳香
族炭化水素化合物を例示することができる。ハロ
ゲン含有物質としては、塩素、塩化水素、金属塩
化物、有機ハロゲン化物の如き化合物等を例示す
ることができる。 チタン化合物としては、チタンのハロゲン化
物、アルコキシハロゲン化物、アルコキシド、ハ
ロゲン化酸化物等を挙げることができる。チタン
化合物としては4価のチタン化合物と3価のチタ
ン化合物が好適であり、4価のチタン化合物とし
ては具体的には一般式Ti(OR)oX4-o(ここでRは
炭素数1〜20のアルキル基、アリール基またはア
ラルキル基を示し、Xはハロゲン原子を示す。n
は0≦n≦4である。)で示されるものが好まし
く、四塩化チタン、四臭化チタン、四ヨウ化チタ
ン、モノメトキシトリクロロチタン、ジメトキシ
ジクロロチタン、トリメトキシモノクロロチタ
ン、テトラメトキシチタン、モノエトキシトリク
ロロチタン、ジエトキシジクロロチタン、トリエ
トキシモノクロロチタン、テトラエトキシチタ
ン、モノイソプロポキシトリクロロチタン、ジイ
ソプロポキシジクロロチタン、トリイソプロポキ
シモノクロロチタン、テトライソプロポキシチタ
ン、モノブトキシトリクロロチタン、ジブトキシ
ジクロロチタン、モノペントキシトリクロロチタ
ン、モノフエノキシトリクロロチタン、ジフエノ
キシジクロロチタン、トリフエノキシモノクロロ
チタン、テトラフエノキシチタン等を挙げること
ができる。3価のチタンを化合物としては、四塩
化チタン、四臭化チタン等の四ハロゲン化チタン
を水素、アルミニウム、チタンあるいは周期率表
〜族金属の有機金属化合物により還元して得
られる三ハロゲン化チタンが挙げられる。また一
般式Ti(OR)nX4-n(ここでRは炭素数1〜20のア
ルキル基、アリール基またはアラルキル基を示
し、Xはハロゲン原子を示す。mは0<m<4で
ある。)で示される4価ハロゲン化アルコキシチ
タンを周期律表〜族金属の有機金属化合物に
より還元して得られる3価のチタン化合物が挙げ
られる。 これらのチタン化合物のうち、4価のチタン化
合物が特に好ましい。 これらの触媒の具体的なものとしては、たとえ
ばMgO−RX−TiCl4系(特公昭51−3514号公
報)、Mg−SiCl4−ROH−TiCl4系(特公昭50−
23864号公報)、MgCl2−Al(OR)3−TiCl4系(特
公昭51−152号公報、特公昭52−15111号公報)、
MgCl2−SiCl4−ROH−TiCl4系(特開昭49−
106581号公報)、Mg(OOCR)2−Al(OR)3−TiCl4
系(特公昭52−11710号公報)、Mg−POCl3
TiCl4系(特公昭51−153号公報)、MgCl2
AlOCl−Ticl4系(特公昭54−15316号公報)、
MgCl2−Al(OR)oX3-o−Si(OR′)nX4-n−TiCl4
系(特開昭56−95909号公報)などの固体触媒成
分(前記式中において、R、R′は有機残基、X
はハロゲン原子を示す)に有機アルミニウム化合
物を組み合わせたものが好ましい触媒系の例とし
て挙げられる。 他の触媒系の例としては固体触媒成分として、
いわゆるグリニヤ化合物などの有機マグネシウム
化合物とチタン化合物との反応生成物を用い、こ
れに有機アルミニウム化合物を組み合わせた触媒
系を例示することができる。有機マグネシウム化
合物としては、たとえば、一般式RMgX、
R2Mg、RMg(OR)などの有機マグネシウム化
合物(ここで、Rは炭素数1〜20の有機残基、X
はハロゲンを示す)およびこれらのエーテル錯合
体、またはこれらの有機マグネシウム化合物をさ
らに、他の有機金属化合物たとえば有機ナトリウ
ム、有機リチウム、有機カリウム、有機ホウ素、
有機カルシウム、有機亜鉛などの各種化合物を加
えて変性したものを用いることができる。 これらの触媒系の具体的な例としては、例えば
RMgX−TiCl4系(特公昭50−39470号公報)、
RMgX−フエノール−TiCl4系(特公昭54−
12953号公報)、RMgX−ハロゲン化フエノール
−TiCl4系(特公昭54−12954号公報)、RMgX−
CO2−TiCl4系(特開昭57−73009号公報)等の固
体触媒成分に有機アルミニウム化合物を組み合わ
せたものを挙げることができる。 また他の触媒系の系としては固体触媒成分とし
て、SiO2、Al2O3等の無機酸化物と前記少なくと
もマグネシウムおよびチタンを含有する固体触媒
成分を接触させて得られる固体物質を用い、これ
に有機アルミニウム化合物を組み合わせたものを
例示することができる。無機酸化物としては
SiO2、Al2O3の他にCaO、B2O3、SnO2等を挙げ
ることができ、またこれらの酸化物の複酸化物も
なんら支障なく使用できる。これら各種の無機酸
化物とマグネシウムおよびチタンを含有する固体
触媒成分を接触させる方法としては公知の方法を
採用することができる。すなわち、不活性溶媒の
存在下あるいは不存在下に温度20〜400℃、好ま
しくは50〜300℃で通常5分〜20時間反応させる
方法、共粉砕処理による方法、あるいはこれらの
方法を適宜組み合わせることにより反応させても
よい。 これらの触媒系の具体的な例としては、例え
ば、SiO2−ROH−MgCl2−TiCl4系(特開昭56−
47407号公報)、SiO2−R−O−R′−MgO−AlCl3
−TiCl4系(特開昭57−187305号公報)、SiO2
MgCl2−Al(OR)3−TiCl4−Si(OR′)4系(特開昭
58−21405号公報)(前記式中においてR、R′は
炭化水素残基を示す。)等に有機アルミニウム化
合物を組み合わせたものを挙げることができる。 これらの触媒系において、チタン化合物を有機
カルボン酸エステルとの付加物として使用するこ
ともでき、また前記したマグネシウムを含む無機
固体化合物を有機カルボン酸エステルと接触処理
させたのち使用することもできる。また、有機ア
ルミニウム化合物を有機カルボン酸エステルとの
付加物として使用しても何ら支障がない。さらに
は、あらゆる場合において、有機カルボン酸エス
テルの存在下に調整された触媒系を使用すること
も何ら支障なく実施できる。 ここで有機カルボン酸エステルとしては各種の
脂肪族、脂環族、芳香族カルボン酸エステルが用
いられ、好ましくは炭素数7〜12の芳香族カルボ
ン酸エステルが用いられる。具体的な例としては
安息香酸、アニス酸、トルイル酸のメチル、エチ
ルなどのアルキルエステルを挙げることができ
る。 上記した固体触媒成分と組み合わせるべき有機
アルミニウム化合物の具体的な例としては一般式
R3Al、R2AlX、RAlX2、R2AlOR、RAl(OR)
XおよびR3Al2X3の有機アルミニウム化合物(こ
こでRは炭素数1〜20のアルキル基、アリール基
またはアラルキル基、Xはハロゲン原子を示し、
Rは同一でもまた異なつていてもよい)で示され
る化合物が好ましく、トリエチルアルミニウム、
トリイソブチルアルミニウム、トリヘキシルアル
ミニウム、トリオクチルアルミニウム、ジエチル
アルミニウムクロリド、ジエチルアルミニウムエ
トキシド、エチルアルミニウムセスキクロリド、
およびこれらの混合物等が挙げられる。 有機アルミニウム化合物の使用量はとくに制限
されないが通常チタン化合物に対して0.1〜1000
モル倍使用することができる。 また、前記の触媒系をα−オレフインと接触さ
せたのち重合反応に用いることによつて、その重
合活性を大巾に向上させ、未処理の場合よりも一
層安定に運転することもできる。このとき使用す
るα−オレフインとしては種々のものが使用可能
であるが、好ましくは炭素数3〜12のα−オレフ
インであり、さらに好ましくは炭素数3〜8のα
−オレフインが望ましい。これらのα−オレフイ
ンの例としてはたとえばプロピレン、ブテン−
1、ペンテン−1、4−メチルペンテン−1、ヘ
キセン−1、オクテン−1、デセン−1、ドデセ
ン−1等およびこれらの混合物などを挙げること
ができる。触媒系とα−オレフインとの接触時の
温度、時間は広い範囲で選ぶことができ、たとえ
ば0〜200℃、好ましくは0〜110℃で1分〜24時
間で接触処理させることができる。接触させるα
−オレフインの量も広い範囲で選べるが、通常、
前記固体触媒成分1g当り1g〜50000g、好ま
しくは5g〜30000g程度のα−オレフインで処
理し、前記固体触媒成分1g当り1g〜500gの
α−オレフインを反応させることが望ましい。こ
のとき、接触時の圧力は任意に選ぶことができる
が通常、−1〜100Kg/cm2・Gの圧力下に接触させ
るのが望ましい。 α−オレフイン処理の際、使用する有機アルミ
ニウム化合物を全量、前記固体接触成分と組み合
わせたのちα−オレフインと接触させてもよい
し、また、使用する有機アルミニウム化合物のう
ち一部を前記固体触媒成分と組み合わせたのちα
−オレフインと接触させ、残りの有機アルミニウ
ム化合物を重合の際に別途添加して重合反応を行
つてもよい。また、触媒系とα−オレフインとの
接触時に、水素ガスが共存しても支障なく、ま
た、窒素、アルゴン、ヘリウムなどその他の不活
性ガスが共存しても何ら支障ない。 重合反応は通常のチグラー型触媒によるオレフ
インの重合反応と同様にして行われる。すなわち
反応はすべて実質的に酸素、水などを絶つた状態
で、気相、または不活性溶媒の存在下、またはモ
ノマー自体を溶媒として行われる。オレフインの
重合条件は温度20〜300℃、好ましくは40〜200℃
であり、圧力は常圧ないし70Kg/cm2・G、好まし
くは2Kg/cm2・Gないし60Kg/cm2・Gである。分
子量の調節は重合温度、触媒のモル比などの重合
条件を変えることによつてもある程度調節できる
が、重合系中に水素を添加することにより効果的
に行われる。もちろん、水素濃度、重合温度など
の重合条件の異なつた2段階ないしそれ以上の多
段階の重合反応も何ら支障なく実施できる。 本発明のエチレン・α−オレフイン共重合体
と、固体触媒成分としてバナジウムを含有するも
のを使用して得られるエチレン・α−オレフイン
共重合体とは明確に区別される。 両者は共重合体を構成するモノマーが同一の場
合であつて、かつ密度が同一であつても、DSC
によるTmは本発明の共重合体の方が高く、沸騰
n−ヘキサン不溶分は本発明の共重合体が10重量
%以上であるのに対し後者は不溶分が存在しない
か、または極めて少量である。このような共重合
体自体の相違に起因して、マツドガードに使用し
たときには、本発明の共重合体は後者に比較し
て、強度、柔軟性、温度特性等諸性能のバランス
が優れている。 本発明においては、前記した特定のエチレン・
α−オレフイン共重合体に、他の方法で得られた
ポリオレフインを適宜配合することは、前記エチ
レン・α−オレフイン共重合体の特性を損なわな
い限り行うことができる。これら他のポリオレフ
インの例としては、高圧法ポリエチレン、エチレ
ン−酢酸ビニル共重合体、リニア低密度ポリエチ
レン、プロピレン−ブテン−1共重合体、スチレ
ン−ブタジエンブロツク共重合体やオレフイン系
などの熱可塑性エラストマー等が挙げられる。こ
れらの配合割合は、前記エチレン・α−オレフイ
ン共重合体100重量部に対して、100重量部以下が
好ましい。 また、前記エチレン・α−オレフイン共重合体
に、必要に応じて安定剤、酸化防止剤、紫外線吸
収剤、発泡剤、帯電防止剤、難燃剤、染料、顔
料、タルク、炭酸カルシウム、カーボンブラツ
ク、シリカ、各種繊維等の充填剤等を適宜配合す
ることができる。特に本発明のエチレン・α−オ
レフイン共重合体は従来のポリオレフインと比較
して充填剤を多量に配合し得る。 本発明のマツドガードは、単独もしくは基材と
積層して用いられる。基材としては、織布、不織
布等を挙げることができる。基材との積層により
マツドガードの強度が向上する。 マツドガードを製造する方法としては、射出成
形法や押出成形法など各種の方法が採用できる。
なお、エチレン・α−オレフイン共重合体を主成
分とし他の配合物を配合するときは、混練工程を
付加する。基材と積層する場合は、このようにし
て得られたマツドガードと基材を重ね加熱圧着す
るか、あるいはカレンダーロール等によりエチレ
ン・α−オレフイン共重合体又はこれを主成分と
する配合物の溶融物を基材に直接積層することが
できる。 マツドガードの厚さは適宜であるが、好ましく
は0.5〜10mmの範囲が好ましい。マツドガードの
表面に適宜エンボス加工や印刷を施すこともでき
る。 <実施例> 以下、本発明を実施例により具体的に説明する
が、本発明はこれらによつて限定されるものでは
ない。なお、実施例および比較例における物性測
定は下記の方法によつた。 〔試験用シートの作成〕 樹脂組成物を、厚さ2mm、縦×横が150mm×150
mmのモールドに入れ、210℃で5分予熱後、同温
度で150Kg/cm2、5分間加圧成形し、ついで30℃、
150Kg/cm2の加圧下で10分間冷却した。それを50
℃、20時間アニーリング後、室温で24時間放置
し、物性の測定を行つた。 〔引張強度〕 JIS K 6301に準じて、3号ダンベルを用いて
試験片を作り、50mm/分の引張速度を測定した。 〔硬度〕 JIS K 6301に準じて試験片を作成し、C形試
験機を用いて測定した。 〔屈曲試験〕 JIS K 6301に準じて試験片を作成し、デマチ
ヤ式試験機を用いて測定を行つた。 〔耐油性〕 JIS K 6301に準じて試験片を作成し、JIS3号
油を用して23℃、22時間の体積変化率を求めた。 実施例 1 実質的に無水の塩化マグネシウム、1,2−ジ
クロルエタンおよび四塩化チタンから得られた固
体触媒成分とトリエチルアルミニウムからなる触
媒を用いてエチレンとブテン−1とを共重合させ
てエチレン・ブテン−1共重合体を得た。 このエチレン・ブテン−1共重合体のエチレン
含量は87.9モル%、メルトインデツクスは1.0
g/10min、密度は0.895g/cm3、DSCの最大ピ
ーク温度は119℃、沸騰n−ヘキサン不溶分は72
重量%であつた。各種物性の評価結果を表1に示
した。 実施例 2 実施例1と同一の触媒を用いて、エチレン・ブ
テン−1共重合体を得た。 このエチレン・ブテン−1共重合体のエチレン
含量は91.0モル%、メルトインデツクス(MI)
は5.1g/10min、密度は0.903g/cm3、DSCの最
大ピーク温度は121℃、沸騰n−ヘキサン不溶分
は78重量%であつた。各種物性の評価結果を表1
に示した。 実施例 3 実質的に無水の塩化マグネシウム、アントラセ
ンおよび四塩化チタンから得られた固体触媒成分
とトリエチルアルミニウムからなる触媒を用いて
エチレンとプロピレンとを共重合させてエチレ
ン・プロピレン共重合体を得た。このエチレン・
プロピレン共重合体のエチレン含量は88.0モル
%、MIは1.0g/10min、密度は0.901g/cm3
DSCの最大ピーク温度は121℃、沸騰n−ヘキサ
ン不溶分は79重量%であつた。その評価結果を表
1に示した。 比較例 1 市販のエチレン・プロピレン共重合体ゴム
(EP02P:日本合成ゴム社品)を用いて、物性を
測定した。この共重合体のゴムのMIは1.9g/
10min、密度は0.864g/cm3、DSCの最大ピーク
温度は32℃、沸騰n−ヘキサン不溶分は0重量%
であつた。その評価結果を表1に示した。表1よ
り、比較例1の結果では引張強度や伸びが劣り、
かつ耐油性が劣ることから、マツドガードのよう
な苛酷な用途には望ましいものではないことが明
らかとなつた。 比較例 2 市販の直鎖状低密度ポリエチレン(日石リニレ
ツクスAF2320、日本石油化学(株)製品)を用いて
物性を測定した。このポリエチレンのMIは1.0
g/10min、密度は0.922g/cm3、DSCの最大ピ
ーク温度は123℃、沸騰n−ヘキサン不溶分は97
重量%であつた。その評価結果を表1に示した。
このような直鎖状低密度ポリエチレンは、引張強
度や伸びは優れているものの、硬すぎて柔軟性に
欠け、かつ屈曲性に劣ることから、マツドガード
のような用途には必ずしも望ましいものでない。
<Industrial Field of Application> The present invention provides a material that exhibits excellent performance as a flap, ie, a mudguard, that prevents mud, water, etc. from being scattered by the wheels of automobiles, bicycles, etc. <Conventional technology> As high-speed vehicles have become popular in recent years, Matsudo Guard has shown a tendency to become more susceptible to damage and deterioration due to impacts such as pebbles and water splashes.Also, with the rapid increase in usage in remote areas, Matsudo Guard has become more susceptible to damage due to poor road conditions. Therefore, it is recognized that the wear and tear is relatively quick, especially in large transport vehicles. The performance required for Matsudo Guard is considered to be extremely diverse depending on the usage situation, but for example, in addition to tensile properties, bending resistance, abrasion resistance, etc., there are also flexibility, low temperature properties, heat resistance, oil resistance, etc. Excellence is required. Rubber-like sheets are usually used for conventional mudguards for automobiles and bicycles, and although various studies have been conducted on the shape and structure, there has been very little research on the material, and the results are not necessarily satisfactory in terms of durability. Nakatsuta. <Problems to be Solved by the Invention> The present invention provides a vehicle muzzle guard that improves the above-mentioned drawbacks and exhibits excellent performance in various types of durability. <Means for solving the problem> As a result of study, the present inventors found that a specific ethylene α
- It has been discovered that a mudguard having excellent performance can be obtained by using an olefin copolymer, and the present invention has been achieved. That is, the present invention provides the following (i) obtained by copolymerizing ethylene and an α-olefin having 3 to 12 carbon atoms in the presence of a catalyst consisting of a solid substance containing at least magnesium and titanium and an organoaluminum compound. Ethylene α with the properties of ~(iv)
-Regarding a vehicle muzzle guard using an olefin copolymer. (i) Melt index is 0.01 to 100g/10min,
Preferably 0.1 to 50 g/10 min, more preferably 0.5 to 20 g/10 min, (ii) Density of 0.860 to 0.910 g/cm 3 , preferably 0.880
~0.910g/ cm3 , more preferably 0.890~0.905
g/cm 3 , (iii) The maximum peak temperature in differential scanning calorimetry (DSC) is 100°C or higher, preferably 110°C.
°C to 125 °C, (iv) boiling n-hexane insoluble content of 10% by weight or more, preferably 30 to 97% by weight. The ethylene/α-olefin copolymer used in the present invention must satisfy all of the conditions (i) to (iv) above. [Condition (i)] First, the melt index (JIS K
6760) less than 0.01 g/10 min, the fluidity will be poor and the moldability will be poor, making it impossible to obtain a mudguard with a uniform thickness. On the other hand, if it exceeds 100 g/10 min, the tensile strength will be poor. [Condition (ii)] If the density (JIS K 6760) of (ii) is less than 0.860 g/cm 3 , the mat guard will be too soft, resulting in insufficient strength and a sticky surface; If it exceeds it, it becomes hard and lacks flexibility, which is undesirable. [Condition (iii)] The maximum peak temperature (Tm) determined by DSC in (iii) is a value that correlates with the crystal morphology, and if Tm is less than 100℃, the heat resistance and tensile strength of Matsudo Guard will be insufficient.
The surface becomes sticky, which is undesirable. [Condition (iv)] Next, the boiling n-hexane insoluble content is a guideline for the proportion of amorphous parts and the content of low molecular weight components, and when the insoluble content is less than 10% by weight, it is considered amorphous. This increases the amount of carbonaceous and low molecular weight components, leading to problems such as poor performance due to decreased strength, a sticky surface, and easy attachment of dust, and it becomes difficult to maintain the shape of the mud guard. In addition, the method of measuring DSC and boiling n-hexane insoluble content in the present invention is as follows. [Measurement method using DSC] Precisely weigh approximately 5 mg of a sample from a 100 μm thick hot press-molded film, set it in the DSC device, raise the temperature to 170°C, hold it at that temperature for 15 minutes, and then reduce the temperature to 2.5. Cool down to 0°C at a rate of °C/min.
Next, from this state, increase the temperature to 170°C at a rate of 10°C/min.
Measurement is performed by raising the temperature to . The maximum peak temperature (Tm) is the temperature at the top of the maximum peak that appears during the temperature increase from 0°C to 170°C. [Measurement method for boiling n-hexane insoluble matter] A sheet with a thickness of 200 μm is formed using a heat press, three sheets of 20 mm x 30 mm are cut out, and boiling n-hexane is extracted using a double-tube Soxhlet extractor. Extraction is carried out with hexane for 5 hours. Remove n-hexane insoluble matter and vacuum dry (7 hours, under vacuum, 50°C)
After that, the boiling n-hexane insoluble content is calculated using the following formula. Boiling n-hexane insoluble content (wt%) = extracted sheet weight / unextracted sheet weight x 100 (
Weight %) The ethylene/α-olefin copolymer of the present invention can exhibit desired performance by satisfying all of the above-mentioned properties. The α-olefin copolymerized with ethylene has 3 to 12 carbon atoms. Specifically, propylene,
Butene-1, 4-methylpentene-1, hexene-1, octane-1, decene-1, dodecene-1
etc. can be mentioned. Particularly preferred among these are propylene, 1-butene, 1-4-methylpentene, and 1-hexene. The α-olefin content in the ethylene/α-olefin copolymer is preferably 5 to 40 mol%. Below, ethylene used in the present invention and α-
A method for producing an olefin copolymer will be explained. First, the catalyst system used is one in which an organic aluminum compound is combined with a solid catalyst component containing at least magnesium and titanium, and examples of the solid catalyst component include magnesium metal, magnesium hydroxide, magnesium carbonate, magnesium oxide, and Magnesium, etc., and double salts, double oxides, carbonates, chlorides, or hydroxides containing magnesium atoms and metals selected from silicon, aluminum, and calcium, as well as these inorganic solid compounds as oxygen-containing compounds, Examples include those in which a titanium compound is supported by a known method on an inorganic solid compound containing magnesium, such as one treated or reacted with a sulfur-containing compound, an aromatic hydrocarbon, or a halogen-containing substance. Examples of the above oxygen-containing compounds include organic oxygen-containing compounds such as water, alcohol, phenol, ketone, aldehyde, carboxylic acid, ester, polysiloxane, and acid amide, and inorganic oxygen-containing compounds such as metal alkoxides and metal oxychlorides. can be exemplified. Examples of sulfur-containing compounds include thiol,
Examples include organic sulfur-containing compounds such as thioethers, and inorganic sulfur compounds such as sulfur dioxide, sulfur trioxide, and sulfuric acid. As aromatic hydrocarbons,
benzene, toluene, xylene, anthracene,
Examples include various monocyclic and polycyclic aromatic hydrocarbon compounds such as phenanthrene. Examples of the halogen-containing substance include compounds such as chlorine, hydrogen chloride, metal chlorides, and organic halides. Examples of the titanium compound include titanium halides, alkoxy halides, alkoxides, and halogenated oxides. Preferred titanium compounds are tetravalent titanium compounds and trivalent titanium compounds, and specific examples of tetravalent titanium compounds include the general formula Ti(OR) o X 4-o (where R is 1 carbon number) ~20 alkyl, aryl, or aralkyl groups, and X represents a halogen atom.n
is 0≦n≦4. ) are preferred, and titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, monomethoxytrichlorotitanium, dimethoxydichlorotitanium, trimethoxymonochlorotitanium, tetramethoxytitanium, monoethoxytrichlorotitanium, diethoxydichlorotitanium, Triethoxymonochlorotitanium, tetraethoxytitanium, monoisopropoxytrichlorotitanium, diisopropoxydichlorotitanium, triisopropoxymonochlorotitanium, tetraisopropoxytitanium, monobutoxytrichlorotitanium, dibutoxydichlorotitanium, monopentoxytrichlorotitanium, monophenol Examples include citrichlorotitanium, diphenoxydichlorotitanium, triphenoxymonochlorotitanium, and tetraphenoxytitanium. Examples of trivalent titanium compounds include titanium trihalides obtained by reducing titanium tetrahalides such as titanium tetrachloride and titanium tetrabromide with hydrogen, aluminum, titanium, or organometallic compounds of metals in groups ~~ of the periodic table. can be mentioned. Also, the general formula Ti(OR ) n A trivalent titanium compound obtained by reducing a tetravalent alkoxy titanium halide represented by . Among these titanium compounds, tetravalent titanium compounds are particularly preferred. Specific examples of these catalysts include, for example, MgO-RX-TiCl 4 system (Japanese Patent Publication No. 51-3514), Mg-SiCl 4 -ROH-TiCl 4 system (Japanese Patent Publication No. 51-3514),
23864), MgCl 2 −Al(OR) 3 −TiCl 4 system (Japanese Patent Publication No. 51-152, Japanese Patent Publication No. 52-15111),
MgCl 2 −SiCl 4 −ROH−TiCl 4 system (Japanese Patent Application Laid-open No. 1983
106581), Mg(OOCR) 2 −Al(OR) 3 −TiCl 4
system (Japanese Patent Publication No. 52-11710), Mg−POCl 3
TiCl 4 system (Special Publication No. 153/1983), MgCl 2
AlOCl-Ticl 4 series (Special Publication No. 54-15316),
MgCl 2 −Al(OR) o X 3-o −Si(OR′) n X 4-n −TiCl 4
(In the above formula, R, R' are organic residues,
represents a halogen atom) in combination with an organoaluminum compound is an example of a preferable catalyst system. Examples of other catalyst systems include solid catalyst components such as
An example is a catalyst system in which a reaction product of an organomagnesium compound such as a so-called Grignard compound and a titanium compound is used in combination with an organoaluminum compound. Examples of organomagnesium compounds include general formula RMgX,
Organomagnesium compounds such as R 2 Mg, RMg (OR) (where R is an organic residue having 1 to 20 carbon atoms,
represents a halogen) and their ether complexes, or these organomagnesium compounds may be further combined with other organometallic compounds such as organosodium, organolithium, organopotassium, organoboron,
Those modified by adding various compounds such as organic calcium and organic zinc can be used. Specific examples of these catalyst systems include, for example:
RMgX-TiCl 4 system (Special Publication No. 50-39470),
RMgX-phenol-TiCl 4 system (Special Publication 1984-
12953), RMgX-halogenated phenol-TiCl 4 system (Japanese Patent Publication No. 12954-1983), RMgX-
Examples include those in which an organoaluminum compound is combined with a solid catalyst component such as a CO 2 -TiCl 4 system (Japanese Unexamined Patent Publication No. 57-73009). In another catalyst system, a solid material obtained by contacting an inorganic oxide such as SiO 2 or Al 2 O 3 with a solid catalyst component containing at least magnesium and titanium is used as a solid catalyst component. An example is a combination of organic aluminum compounds. As an inorganic oxide
In addition to SiO 2 and Al 2 O 3 , CaO, B 2 O 3 , SnO 2 and the like can be used, and double oxides of these oxides can also be used without any problem. Any known method can be used to bring these various inorganic oxides into contact with the solid catalyst component containing magnesium and titanium. That is, a method of reacting in the presence or absence of an inert solvent at a temperature of 20 to 400°C, preferably 50 to 300°C for usually 5 minutes to 20 hours, a method of co-pulverization, or a combination of these methods as appropriate. The reaction may be carried out by Specific examples of these catalyst systems include, for example, the SiO 2 -ROH-MgCl 2 -TiCl 4 system (Japanese Patent Application Laid-Open No.
47407), SiO2 -R-O-R'-MgO- AlCl3
−TiCl 4 system (JP-A-57-187305), SiO 2
MgCl 2 −Al(OR) 3 −TiCl 4 −Si(OR′) 4 series (JP-A-Sho
58-21405) (in the above formula, R and R' represent hydrocarbon residues), in combination with an organic aluminum compound. In these catalyst systems, a titanium compound can be used as an adduct with an organic carboxylic acid ester, or the above-described magnesium-containing inorganic solid compound can be used after being brought into contact with an organic carboxylic acid ester. Moreover, there is no problem in using an organoaluminum compound as an adduct with an organic carboxylic acid ester. Furthermore, in all cases it is also possible to use catalyst systems prepared in the presence of organic carboxylic acid esters without any problems. Here, various aliphatic, alicyclic, and aromatic carboxylic esters are used as the organic carboxylic ester, and aromatic carboxylic esters having 7 to 12 carbon atoms are preferably used. Specific examples include alkyl esters of benzoic acid, anisic acid, toluic acid, such as methyl and ethyl. A specific example of an organoaluminum compound to be combined with the above-mentioned solid catalyst component is the general formula
R 3 Al, R 2 AlX, RAlX 2 , R 2 AlOR, RAl(OR)
An organoaluminum compound of X and R 3 Al 2 X 3 (where R is an alkyl group, aryl group or aralkyl group having 1 to 20 carbon atoms,
R may be the same or different), and triethylaluminum, triethylaluminum,
triisobutylaluminum, trihexylaluminum, trioctylaluminum, diethylaluminium chloride, diethylaluminum ethoxide, ethylaluminum sesquichloride,
and mixtures thereof. The amount of organoaluminum compound used is not particularly limited, but is usually 0.1 to 1000% of the titanium compound.
Molar times can be used. Furthermore, by bringing the catalyst system into contact with an α-olefin and then using it in the polymerization reaction, the polymerization activity can be greatly improved and the system can be operated more stably than in the case of no treatment. Various α-olefins can be used as the α-olefin used at this time, but α-olefins having 3 to 12 carbon atoms are preferable, and α-olefins having 3 to 8 carbon atoms are more preferable.
-Olefins are preferred. Examples of these α-olefins include propylene, butene-
Examples include 1, pentene-1, 4-methylpentene-1, hexene-1, octene-1, decene-1, dodecene-1, and mixtures thereof. The temperature and time during contact between the catalyst system and the α-olefin can be selected within a wide range, for example, the contact treatment can be carried out at 0 to 200°C, preferably 0 to 110°C, for 1 minute to 24 hours. α to contact
-The amount of olefin can be selected from a wide range, but usually
It is desirable to treat 1 g of the solid catalyst component with 1 g to 50,000 g, preferably 5 g to 30,000 g of α-olefin, and react with 1 g to 500 g of α-olefin per 1 g of the solid catalyst component. At this time, the pressure at the time of contact can be arbitrarily selected, but it is usually desirable to contact under a pressure of -1 to 100 kg/cm 2 ·G. In the α-olefin treatment, the entire amount of the organoaluminum compound used may be combined with the solid catalyst component and then brought into contact with the α-olefin, or a part of the organoaluminum compound used may be combined with the solid catalyst component. After combining with α
- The polymerization reaction may be carried out by contacting with olefin and adding the remaining organoaluminum compound separately during polymerization. Further, when the catalyst system and the α-olefin are brought into contact, there is no problem even if hydrogen gas coexists, and there is no problem even if other inert gases such as nitrogen, argon, helium, etc. coexist. The polymerization reaction is carried out in the same manner as the polymerization reaction of olefins using ordinary Ziegler type catalysts. That is, all reactions are carried out in a gas phase, in the presence of an inert solvent, or using the monomer itself as a solvent in a state substantially free of oxygen, water, etc. Olefin polymerization conditions are temperature 20-300℃, preferably 40-200℃
The pressure is normal pressure to 70 kg/cm 2 ·G, preferably 2 kg/cm 2 ·G to 60 kg/cm 2 ·G. Although the molecular weight can be controlled to some extent by changing polymerization conditions such as polymerization temperature and catalyst molar ratio, it is effectively carried out by adding hydrogen to the polymerization system. Of course, a two-stage or more multi-stage polymerization reaction with different polymerization conditions such as hydrogen concentration and polymerization temperature can be carried out without any problem. The ethylene/α-olefin copolymer of the present invention is clearly distinguished from the ethylene/α-olefin copolymer obtained by using one containing vanadium as a solid catalyst component. Even if the monomers constituting the copolymer are the same and the density is the same, DSC
The copolymer of the present invention has a higher Tm than that of the copolymer of the present invention, and the insoluble matter in boiling n-hexane is 10% by weight or more in the copolymer of the present invention, whereas the latter has no insoluble matter or only a very small amount. be. Due to these differences in the copolymers themselves, when used in mudguards, the copolymers of the present invention have a better balance of performance, such as strength, flexibility, and temperature characteristics, than the latter. In the present invention, the above-mentioned specific ethylene
Polyolefins obtained by other methods may be appropriately blended into the α-olefin copolymer as long as the properties of the ethylene/α-olefin copolymer are not impaired. Examples of these other polyolefins include high-pressure polyethylene, ethylene-vinyl acetate copolymer, linear low-density polyethylene, propylene-butene-1 copolymer, styrene-butadiene block copolymer, and thermoplastic elastomers such as olefins. etc. The blending ratio of these is preferably 100 parts by weight or less with respect to 100 parts by weight of the ethylene/α-olefin copolymer. In addition, to the ethylene/α-olefin copolymer, stabilizers, antioxidants, ultraviolet absorbers, blowing agents, antistatic agents, flame retardants, dyes, pigments, talc, calcium carbonate, carbon black, Fillers such as silica and various fibers can be appropriately blended. In particular, the ethylene/α-olefin copolymer of the present invention can contain a larger amount of filler than conventional polyolefins. The mud guard of the present invention can be used alone or in a layered manner with a base material. Examples of the base material include woven fabrics and nonwoven fabrics. The strength of the mud guard is improved by laminating it with the base material. Various methods such as injection molding and extrusion molding can be used to manufacture the mud guard.
Note that when the ethylene/α-olefin copolymer is the main component and other compounds are blended, a kneading step is added. In the case of laminating with a base material, the Mudguard obtained in this way and the base material are stacked together and heat-pressed, or the ethylene/α-olefin copolymer or a compound containing this as a main component is melted using a calendar roll or the like. Objects can be laminated directly to the substrate. The thickness of the mound guard is determined as appropriate, but is preferably in the range of 0.5 to 10 mm. The surface of the mat guard can also be embossed or printed as appropriate. <Examples> Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. The physical properties in the Examples and Comparative Examples were measured by the following method. [Creation of test sheet] The resin composition was 2 mm thick and 150 mm long x 150 mm wide.
mm mold, preheated at 210℃ for 5 minutes, pressure molded at the same temperature for 5 minutes at 150Kg/cm 2 , then 30℃,
It was cooled for 10 minutes under a pressure of 150 Kg/cm 2 . 50 it
After annealing at ℃ for 20 hours, it was left at room temperature for 24 hours and its physical properties were measured. [Tensile strength] A test piece was prepared using a No. 3 dumbbell according to JIS K 6301, and a tensile speed of 50 mm/min was measured. [Hardness] A test piece was prepared according to JIS K 6301 and measured using a C-type tester. [Bending test] A test piece was prepared according to JIS K 6301, and measurement was performed using a Dematschier tester. [Oil resistance] A test piece was prepared according to JIS K 6301, and the volume change rate was determined using JIS No. 3 oil at 23°C for 22 hours. Example 1 Ethylene and butene-1 were copolymerized using a solid catalyst component obtained from substantially anhydrous magnesium chloride, 1,2-dichloroethane, and titanium tetrachloride, and a catalyst consisting of triethylaluminum to produce ethylene-butene. -1 copolymer was obtained. The ethylene content of this ethylene-butene-1 copolymer is 87.9 mol%, and the melt index is 1.0.
g/10min, density is 0.895g/cm 3 , DSC maximum peak temperature is 119℃, boiling n-hexane insoluble content is 72
It was in weight%. Table 1 shows the evaluation results of various physical properties. Example 2 Using the same catalyst as in Example 1, an ethylene-butene-1 copolymer was obtained. The ethylene content of this ethylene-butene-1 copolymer is 91.0 mol%, melt index (MI)
was 5.1 g/10 min, density was 0.903 g/cm 3 , maximum peak temperature on DSC was 121° C., and content insoluble in boiling n-hexane was 78% by weight. Table 1 shows the evaluation results of various physical properties.
It was shown to. Example 3 An ethylene-propylene copolymer was obtained by copolymerizing ethylene and propylene using a solid catalyst component obtained from substantially anhydrous magnesium chloride, anthracene, and titanium tetrachloride and a catalyst consisting of triethylaluminum. . This ethylene
The ethylene content of the propylene copolymer is 88.0 mol%, the MI is 1.0 g/10 min, the density is 0.901 g/cm 3 ,
The maximum peak temperature by DSC was 121°C, and the content insoluble in boiling n-hexane was 79% by weight. The evaluation results are shown in Table 1. Comparative Example 1 Physical properties were measured using a commercially available ethylene-propylene copolymer rubber (EP02P: manufactured by Nihon Gosei Rubber Co., Ltd.). The rubber MI of this copolymer is 1.9g/
10min, density is 0.864g/cm 3 , DSC maximum peak temperature is 32℃, boiling n-hexane insoluble content is 0% by weight
It was hot. The evaluation results are shown in Table 1. From Table 1, the results of Comparative Example 1 are inferior in tensile strength and elongation;
In addition, it has become clear that it is not desirable for severe applications such as mudguards because of its poor oil resistance. Comparative Example 2 Physical properties were measured using commercially available linear low-density polyethylene (Nisseki Linirex AF2320, manufactured by Nippon Petrochemicals Co., Ltd.). The MI of this polyethylene is 1.0
g/10min, density is 0.922g/cm 3 , maximum peak temperature of DSC is 123℃, boiling n-hexane insoluble content is 97
It was in weight%. The evaluation results are shown in Table 1.
Although such linear low-density polyethylene has excellent tensile strength and elongation, it is too hard, lacks flexibility, and has poor flexibility, so it is not necessarily desirable for uses such as mudguards.

【表】 実施例 4 実施例1のエチレン・ブテン−1共重合体100
重量部に5重量部のカーボンブラツクをブレンド
し、Tダイ付押出機を用いて厚さ1.5mm、巾60cm、
長さ90cmのシートを作つた。このシートを大型ト
ラツクの後部車輪のマツドガードとして取り付
け、約5万Km走行後に各部の点検を行つた。その
結果何ら変化が認められず、良好な結果が得られ
た。 <発明の効果> 以上述べたように、本発明のマツドガードは特
定のエチレン・α−オレフイン共重合体を用いて
いるため、柔軟性が良好であるとともに、強度、
低温特性、耐摩耗性、耐油性、耐屈曲性等のバラ
ンスが非常に優れており、従来のゴム等に比べて
優れた耐久性が期待される。
[Table] Example 4 Ethylene-butene-1 copolymer 100 of Example 1
Blend 5 parts by weight of carbon black into 5 parts by weight, and use an extruder with a T-die to make a product with a thickness of 1.5 mm and a width of 60 cm.
I made a sheet with a length of 90cm. This seat was installed as a mound guard for the rear wheels of a large truck, and each part was inspected after driving approximately 50,000 km. As a result, no change was observed, and good results were obtained. <Effects of the Invention> As described above, since the mud guard of the present invention uses a specific ethylene/α-olefin copolymer, it has good flexibility, strength, and
It has an excellent balance of low-temperature properties, abrasion resistance, oil resistance, bending resistance, etc., and is expected to have superior durability compared to conventional rubber.

Claims (1)

【特許請求の範囲】 1 少くともマグネシウムおよびチタンを含有す
る固体物質と、有機アルミニウム化合物とからな
る触媒の存在下で、エチレンと炭素数3〜12のα
−オレフインとを共重合させて得られる下記(i)〜
(iv)の性状を有するエチレン・α−オレフイン共重
合体を使用した車両用マツドガード: (i) メルトインデツクス 0.01〜100g/10min (ii) 密度 0.860〜0.910g/cm3 (iii) 示差走査熱量測定法(DSC)による最大ピ
ーク温度 100℃以上 (iv) 沸騰n−ヘキサン不溶分 10重量%以上。 2 前記エチレン・α−オレフイン共重合体中の
α−オレフインが炭素数3〜6のα−オレフイン
である特許請求の範囲第1項記載の車両用マツド
ガード。
[Claims] 1. In the presence of a catalyst consisting of a solid substance containing at least magnesium and titanium and an organoaluminum compound, ethylene and α having 3 to 12 carbon atoms
- The following (i) obtained by copolymerizing with olefin
Vehicle muzzle guard using ethylene/α-olefin copolymer having properties (iv): (i) Melt index 0.01-100g/10min (ii) Density 0.860-0.910g/cm 3 (iii) Differential scanning calorimetry Maximum peak temperature by measurement method (DSC): 100℃ or higher (iv) Boiling n-hexane insoluble content: 10% by weight or higher. 2. The vehicle muzzle guard according to claim 1, wherein the α-olefin in the ethylene/α-olefin copolymer is an α-olefin having 3 to 6 carbon atoms.
JP18097885A 1985-07-29 1985-08-20 Mud guard for car Granted JPS6255276A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18097885A JPS6255276A (en) 1985-08-20 1985-08-20 Mud guard for car
GB8618471A GB2180549B (en) 1985-07-29 1986-07-29 Water-based ink composition for ball-point pen
GB08620037A GB2180548B (en) 1985-08-20 1986-08-18 Mudguards for vehicles
DE19863628044 DE3628044A1 (en) 1985-08-20 1986-08-19 Dirt catcher for vehicles - mfd. from copolymer of ethylene] and alpha-olefin] having specified physical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18097885A JPS6255276A (en) 1985-08-20 1985-08-20 Mud guard for car

Publications (2)

Publication Number Publication Date
JPS6255276A JPS6255276A (en) 1987-03-10
JPH0370666B2 true JPH0370666B2 (en) 1991-11-08

Family

ID=16092603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18097885A Granted JPS6255276A (en) 1985-07-29 1985-08-20 Mud guard for car

Country Status (2)

Country Link
JP (1) JPS6255276A (en)
DE (1) DE3628044A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714971B2 (en) * 1987-08-20 1995-02-22 日本石油株式会社 Method for producing fluorinated polyolefin
KR900701870A (en) * 1988-05-06 1990-12-04 리챠드 지·워터맨 Super low density linear low density polyethylene
JPH02222434A (en) * 1989-02-23 1990-09-05 Idemitsu Petrochem Co Ltd Vehicular mud guard
IT1252183B (en) * 1991-12-10 1995-06-05 Enichem Elastomers ELASTOMERIC COPOLYMERS OF ETHYLENE WITH HIGH RAW TENACITY
JP5016833B2 (en) * 2005-03-31 2012-09-05 豊田合成株式会社 Exterior material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042806B2 (en) * 1979-12-26 1985-09-25 日石三菱株式会社 Copolymer manufacturing method
US4391870A (en) * 1982-04-05 1983-07-05 Monsanto Company Spray-suppression device

Also Published As

Publication number Publication date
DE3628044A1 (en) 1987-02-26
JPS6255276A (en) 1987-03-10

Similar Documents

Publication Publication Date Title
KR950003772B1 (en) Polyolefin composition and the same used for vehicle exterior members
US5473016A (en) Matte film or sheet and method for preparing same
EP0256724B1 (en) Thermoplastic elastomer compositions
EP0508415B1 (en) A mat film or sheet and method for preparing the same
JPS58157839A (en) Impact-resistant polyolefin resin composition
JPH0257770B2 (en)
EP0191990A2 (en) Crosslinked resin compositions
JPH064733B2 (en) Highly rigid and impact resistant polyolefin resin composition
JPH0218697B2 (en)
JPH0370666B2 (en)
JPH0367525B2 (en)
JP3318343B2 (en) Matte film or sheet and method for producing the same
JPS6092342A (en) Floor- and wall-covering composition
JPH02296846A (en) Polypropylene film
JPS6383147A (en) Thermoplastic elastomer
JP3318342B2 (en) Matte film or sheet and method for producing the same
JP4759235B2 (en) Polypropylene-based laminated film
JP3146449B2 (en) Matte film and method for producing the same
JP2687503B2 (en) Polypropylene composition
JPH0450415B2 (en)
JPH0367085B2 (en)
JPH0417962B2 (en)
GB2180548A (en) Mudguards for vehicles
JP2794783B2 (en) Polypropylene resin composition
JPH056574B2 (en)