JPH0370124A - Manufacture of iii-v compound semiconductor device having method structure - Google Patents

Manufacture of iii-v compound semiconductor device having method structure

Info

Publication number
JPH0370124A
JPH0370124A JP20478489A JP20478489A JPH0370124A JP H0370124 A JPH0370124 A JP H0370124A JP 20478489 A JP20478489 A JP 20478489A JP 20478489 A JP20478489 A JP 20478489A JP H0370124 A JPH0370124 A JP H0370124A
Authority
JP
Japan
Prior art keywords
group
semiconductor
semiconductor layer
supply
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20478489A
Other languages
Japanese (ja)
Inventor
Takuya Fujii
卓也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20478489A priority Critical patent/JPH0370124A/en
Publication of JPH0370124A publication Critical patent/JPH0370124A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture quantum well structure having a spiked hetero interface by forming the outermost side of one semiconductor layer by group V element of the semiconductor, by starting thereafter supply of group III element raw gas of the other semiconductor, and by starting supply of group V element raw gas of the other semiconductor after a time which is shorter than that of formation fo one atomic layer of the element on the outermost side. CONSTITUTION:Supply of group III element of a first semiconductor layer is stopped to interrupt growth of the first semiconductor layer. Group III element is purged during a time t1 to stop supply of group V element. Then, supply of group III element of a second semiconductor layer is started. After a time t2 which is shorter than that of formation of one atomic layer of group III element of the second semiconductor layer on the surface of the first semiconductor layer, supply of group V element raw material of the second semiconductor layer is started to form the second semiconductor layer. When shift from the second semiconductor layer to the first semiconductor layer is made, similar operation is carried out. Group V atom on the outermost side of first and second semiconductor layers is not substituted for group V element of second and first semiconductor layers, and metal droplet of group III element is not produced.

Description

【発明の詳細な説明】 〔概 要〕 本発明は、ヘテロ構造を有する■−V族化合物半導体装
置の製造方法に関し、 有機金属気相成長法による量子井戸作製方法を改良し、
より理想的に急峻なヘテロ界面を有する量子井戸構造を
作製できる■−■族化合物半導体装置の製造方法を提供
することを目的とし、有機金属気相成長法を用いて、2
種類の■−■族化合物半導体の層を積層してヘテロ構造
を形成する工程を含む化合物半導体装置の製造方法にお
いて、一方の半導体の層上に他方の半導体の層を形成す
る際に、上記一方の半導体の■族元素原料ガスの供給を
停止した後に上記一方の半導体のV族元素原料ガスの供
給を停止することによって上記一方の半導体層の最表面
をその半導体のV族元素で形成し、次に上記他方の半導
体の■族元素原料ガスの供給を開始してから、この■族
元素の1原子層が上記最表面上に形成されるのに要する
よりも短い時間の経過後に、上記他方の半導体装置族元
素原料ガスの供給を開始するように構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for manufacturing a ■-V group compound semiconductor device having a heterostructure, and includes the following steps:
The purpose of this is to provide a method for manufacturing a ■-■ group compound semiconductor device that can create a quantum well structure with a more ideally steep heterointerface.
In a method for manufacturing a compound semiconductor device including a step of stacking layers of group ■-■ compound semiconductors to form a heterostructure, when forming a layer of one semiconductor on a layer of the other semiconductor, one of the above forming the outermost surface of the one semiconductor layer with the group V element of the semiconductor by stopping the supply of the group V element raw material gas of the one semiconductor after stopping the supply of the group V element raw material gas of the semiconductor; Next, after starting the supply of the group Ⅰ element raw material gas for the other semiconductor, and after a period of time shorter than that required for one atomic layer of the group Ⅰ element to be formed on the outermost surface, The system is configured to start supplying the semiconductor device group element raw material gas.

〔産業上の利用分野〕[Industrial application field]

本発明は、ヘテロ構造を有するI−V族化合物半導体装
置の製造方法に関する。
The present invention relates to a method for manufacturing a group IV compound semiconductor device having a heterostructure.

〔従来の技術〕[Conventional technology]

ヘテロ構造を有する■−■族化合物半導体装置の代表的
なものは、InP基板上に第1の半導体層1nGaAs
あるいはInGaAspを量子井戸層として形成し、第
1の半導体層よりも大きなエネルギーギャップを有する
第2の半導体層InPあるいはInGaAsPを障壁層
として形成した量子井戸構造を有する。このような構造
は有機金属気相成長(MOVPB)法を用いて形成され
ており、量子井戸を用いる素子の性能を向上させるため
に、より急峻なヘテロ界面を有する構造を作製すること
が要求されている。
A typical type of a ■-■ group compound semiconductor device having a heterostructure is a first semiconductor layer of 1nGaAs on an InP substrate.
Alternatively, it has a quantum well structure in which InGaAsp is formed as a quantum well layer and a second semiconductor layer InP or InGaAsP having a larger energy gap than the first semiconductor layer is formed as a barrier layer. Such structures are formed using metal organic vapor phase epitaxy (MOVPB), and in order to improve the performance of devices using quantum wells, it is required to create structures with steeper heterointerfaces. ing.

従来、MOVPB法を用いて量子井戸構造を作製する際
には第2図に示すようなタイムテーブルに従って結晶成
長を行なってきた。
Conventionally, when producing a quantum well structure using the MOVPB method, crystal growth has been performed according to a timetable as shown in FIG.

すなわち、第1の半導体層の■族元素原料の供給を停止
し、この層の成長を中断し、■族元素原料の反応室から
のパージを終了しかつこの層の最表面をこの半導体の■
族元素で形成した後に、■族元素原料ガスの供給を停止
し、次に第2の半導体層のV族元素原料の供給を開始し
、反応室から第1の半導体層の■族元素原料をパージし
終ったのち、■族元素原料の供給を開始し、第2の半導
体層の成長を行なう。また第2の半導体層から第1の半
導体層へのへテロ界面作製時にも同様の操作を行なう。
That is, the supply of the group (III) element raw material for the first semiconductor layer is stopped, the growth of this layer is interrupted, the purge of the group (III) element raw material from the reaction chamber is completed, and the outermost surface of this layer is
After the formation with the group element, the supply of the group Ⅰ element raw material gas is stopped, then the supply of the group V element raw material for the second semiconductor layer is started, and the group Ⅰ element raw material for the first semiconductor layer is supplied from the reaction chamber. After purging is completed, the supply of the group (Ⅰ) element raw material is started, and the second semiconductor layer is grown. A similar operation is also performed when forming a heterointerface from the second semiconductor layer to the first semiconductor layer.

ところがこの従来の成長法の場合、第1の半導体層と第
2の半導体層のそれぞれのV族元素組成が異なるとき、
第1の半導体層の表面を第2の■族供給元素がたたき、
第1の半導体層の表面の■族原子の1部が第2のV族供
給元素と置換してしまう。また、第2の半導体層の表面
を第1のV族供給元素がたたき、第2の半導体層の表面
のV族原子の1部が第1のV族供給元素と置換してしま
う。その結果、理想的に急峻な組成プロファイルをもつ
ヘテロ界面は作製できず、理論的に予想される量子効果
を十分に素子特性に生かすことができなかった。このV
族元素の置換過程の模式図を第3図に示した。同図はI
nP上に成長するInGaAs/InPヘテロ界面の場
合を示している。
However, in the case of this conventional growth method, when the first semiconductor layer and the second semiconductor layer have different group V element compositions,
The surface of the first semiconductor layer is hit by a second group-supplying element,
A part of the group (II) atoms on the surface of the first semiconductor layer are replaced with the second group V supply element. Furthermore, the first group V supply element hits the surface of the second semiconductor layer, and a portion of the group V atoms on the surface of the second semiconductor layer are replaced with the first group V supply element. As a result, it was not possible to create a heterointerface with an ideally steep composition profile, and it was not possible to fully utilize theoretically predicted quantum effects in device characteristics. This V
A schematic diagram of the group element substitution process is shown in FIG. The figure is I
The case of an InGaAs/InP heterointerface grown on nP is shown.

このように、ヘテロ界面の組成プロフィルが理想的に急
峻でないため、レーザ素子や光変調器等の量子井戸構造
を用いた素子において、量子効果に起因する素子特性を
十分に実現することができないという問題があった。
In this way, it is said that because the composition profile of the hetero interface is not ideally steep, devices using quantum well structures such as laser devices and optical modulators cannot fully realize the device characteristics caused by quantum effects. There was a problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、MOVPIE法による量子井戸作製方法を改
良し、より理想的に急峻なヘテロ界面を有する量子井戸
構造を作製できる■−■族化合物半導体装置の製造方法
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to improve the quantum well fabrication method using the MOVPIE method and provide a method for fabricating a ■-■ group compound semiconductor device that can fabricate a quantum well structure having a more ideally steep heterointerface.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、本発明によれば、有機金属気相成長法を
用いて、2種類の■−■族化合物半導体の層を積層して
ヘテロ構造を形成する工程を含む化合物半導体装置の製
造方法において、一方の半導体の層上に他方の半導体の
層を形成する際に、上記一方の半導体の■族元素原料ガ
スの供給を停止した後に上記一方の半導体のV族元素原
料ガスの供給を停止することによって上記一方の半導体
層の最表面をその半導体のV族元素で形成し、次に上記
他方の半導体の■族元素原料ガスの供給を開始してから
、この■族元素のl原子層が上記最表面上に形成される
のに要するよりも短い時間の経過後に、上記他方の半導
体のV族元素原料ガスの供給を開始することを特徴とす
るヘテロ構造を有する■−V族化合物半導体装置の製造
方法によって達成される。
The above object, according to the present invention, is a method for manufacturing a compound semiconductor device, which includes a step of stacking two types of ■-■ group compound semiconductor layers to form a heterostructure using an organometallic vapor phase epitaxy method. When forming a layer of one semiconductor on a layer of the other semiconductor, after stopping the supply of the Group I element raw material gas of the one semiconductor, stopping the supply of the Group V element raw material gas of the one semiconductor. By doing so, the outermost surface of the one semiconductor layer is formed with a Group V element of that semiconductor, and then after starting the supply of the Group Ⅰ element raw material gas of the other semiconductor, the L atomic layer of the Group Ⅰ element is formed. ■-V group compound semiconductor having a heterostructure, characterized in that supply of the group V element raw material gas for the other semiconductor is started after a time shorter than that required for formation on the outermost surface. This is achieved by a method of manufacturing the device.

本発明のMOVPB法は、2種の異なるV族元素組成を
有する半導体層からなる量子井戸構造の作製において、
第1図に示したタイムテーブルに従った原料供給を行な
う。
In the MOVPB method of the present invention, in the production of a quantum well structure consisting of semiconductor layers having two different group V element compositions,
Raw materials are supplied according to the timetable shown in FIG.

まず第1の半導体層の■族元素原料の供給を止め、第1
の半導体層の成長中断を行なう。時間tlの間■族元素
原料の反応室からのパージを行ない、■族元素原料の供
給を停止する。次に第2の半導体層の■族元素原料の供
給を開始する。■族元素原料の供給前に数秒の全ての原
料供給が停止する時間があってもよい。第1の半導体層
の表面に第2の半導体層の■族元素が1原子層成長する
時間より短かい時間t2のあと、第2の半導体層の■族
元素原料の供給を開始し、第2の半導体層の成長を行な
う。第2の半導体層から第1の半導体層へと移るときに
も、同様の操作を行なう。
First, the supply of group Ⅰ element raw material for the first semiconductor layer is stopped, and
The growth of the semiconductor layer is interrupted. During the time tl, the group (2) element raw material is purged from the reaction chamber, and the supply of the group (2) element raw material is stopped. Next, supply of the group (Ⅰ) element raw material for the second semiconductor layer is started. There may be a period of several seconds during which the supply of all raw materials is stopped before supplying the Group (2) element raw materials. After a time t2, which is shorter than the time required for one atomic layer of the group III element of the second semiconductor layer to grow on the surface of the first semiconductor layer, supply of the group III element raw material for the second semiconductor layer is started, and A semiconductor layer is grown. A similar operation is performed when moving from the second semiconductor layer to the first semiconductor layer.

〔作 用〕[For production]

本発明の成長法を用いれば、第1の半導体層の最表面の
■鉄原子は第2の半導体層のV族元素と置換されること
が全くない。また第2の半導体層の最表面のV鉄原子は
第1の半導体層のV族元素と置換されることが全くない
If the growth method of the present invention is used, the iron atoms on the outermost surface of the first semiconductor layer will never be replaced with group V elements in the second semiconductor layer. Further, the V iron atoms on the outermost surface of the second semiconductor layer are never replaced with group V elements of the first semiconductor layer.

また第1の半導体層上に供給する第2の半導体層の■族
元素と第2の半導体層上に供給する第1の半導体層の■
族元素の、それのみを供給する時間をそれぞれ、1原子
成長時間より短かく区切ったため、■族元素の金属ドロ
ブレットが生じることがない。
Furthermore, the group Ⅰ element of the second semiconductor layer supplied on the first semiconductor layer and the group ① element of the first semiconductor layer supplied on the second semiconductor layer are
Since the time for supplying only the group elements is divided into periods shorter than the one-atom growth time, metal droplets of the group (Ⅰ) elements do not occur.

その結果、非常に急峻なヘテロ界面を有する量子井戸構
造の作製が可能となる。
As a result, it becomes possible to fabricate a quantum well structure with a very steep heterointerface.

〔実施例〕〔Example〕

本発明にしたがってInGaAs/InP多重量子井戸
構造を作製する例を説明する。
An example of fabricating an InGaAs/InP multiple quantum well structure according to the present invention will be described.

V族元素組成が100%Pから100%Asに切り換わ
るこの材料の組み合わせは、急峻なヘテロ界面の作製が
最も困難なInP系量子井戸構造の典型例であり、V族
元素原料の気相中の分圧や成長温度の最適化を要する。
This combination of materials in which the group V element composition switches from 100% P to 100% As is a typical example of an InP-based quantum well structure in which it is most difficult to create a steep hetero interface, and it It is necessary to optimize the partial pressure and growth temperature.

この材料の組み合せの場合、InP成長における供給原
料としてはトリメチルインヂウム(TMIn) 、フォ
スフイン(PH3>を用いる。成長速度は0.6 ja
/hour程度、PH3)気相中の供給分圧はQ、 3
 torr程度がよい。またInGaAs成長における
供給原料としては、TMIn、  ) !Jメチルガリ
ウム(TEGa) 、アルシン(AsH3)を用いる。
In the case of this combination of materials, trimethylindium (TMIn) and phosphine (PH3>) are used as feed materials for InP growth.The growth rate is 0.6 ja
/hour, PH3) The supply partial pressure in the gas phase is Q, 3
Torr level is good. In addition, the feedstock for InGaAs growth is TMIn, )! J methyl gallium (TEGa) and arsine (AsH3) are used.

成長速度は0.6μ/ h o u r程度、AsH,
の気相中の供給分圧はQ、 l torr程度がよい。
The growth rate is about 0.6μ/hour, AsH,
The supply partial pressure in the gas phase is preferably about Q, l torr.

成長圧力は0.1気圧程度、成長温度は550〜580
℃程度がよい。
Growth pressure is about 0.1 atm, growth temperature is 550-580℃.
The temperature should be around ℃.

それぞれのInP (I nGaAs )半導体層にI
nGaAs (I nP )半導体層を形成する際に、
まずTMIn(TMIn +TEGa)の供給を止め、
InP (I nGaAs )の成長を中断する。
I in each InP (InGaAs) semiconductor layer
When forming the nGaAs (I nP) semiconductor layer,
First, stop the supply of TMIn (TMIn +TEGa),
The growth of InP (InGaAs) is interrupted.

3〜5SeCのPH3(AsH3)雰囲気での成長中断
後、PH3(AsH3)の供給を停止し、TMIn +
T8Ga (TMIn)の供給を開始する。この間にH
2あるいは他の不活性ガスによる数秒以下のパージをは
さんでもよい。
After suspending growth in a PH3 (AsH3) atmosphere of 3 to 5 SeC, the supply of PH3 (AsH3) was stopped and TMIn +
Start supplying T8Ga (TMIn). During this time H
2 or other inert gas for several seconds or less.

■族元素原料の供給開始後0.3〜0.7 secでA
sH。
■A in 0.3 to 0.7 sec after the start of supply of group element raw materials
sH.

(PH3)の供給を開始し、InGaAs (I nP
 )層の成長を開始する。
(PH3) was started, and InGaAs (I nP
) starts layer growth.

上記成長性によって極めて理想的に急峻なヘテロ界面を
有するInGaAs/InP量子井戸構造が作製できる
The growth properties described above make it possible to fabricate an InGaAs/InP quantum well structure having an extremely ideal steep hetero interface.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によって極めて急峻なヘテ
ロ界面を有する量子井戸構造を作製できるようになり、
量子井戸構造を利用するI−V族化合物半導体素子の特
性向上に寄与するところが大きい。
As explained above, the present invention makes it possible to fabricate a quantum well structure with an extremely steep hetero interface.
This greatly contributes to improving the characteristics of IV group compound semiconductor devices that utilize quantum well structures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にしたがってヘテロ構造を形成する過
程を示すグラフ、 第2図は、従来のへテロ構造形成過程を示すグラフ、お
よび 第3図は、V鉄原子の置換を示す模式図である。
FIG. 1 is a graph showing the process of forming a heterostructure according to the present invention, FIG. 2 is a graph showing the conventional process of forming a heterostructure, and FIG. 3 is a schematic diagram showing the substitution of V iron atoms. It is.

Claims (1)

【特許請求の範囲】[Claims] 1、有機金属気相成長法を用いて、2種類のIII−V族
化合物半導体の層を積層してヘテロ構造を形成する工程
を含む化合物半導体装置の製造方法において、一方の半
導体の層上に他方の半導体の層を形成する際に、上記一
方の半導体のIII族元素原料ガスの供給を停止した後に
上記一方の半導体のV族元素原料ガスの供給を停止する
ことによって上記一方の半導体層の最表面をその半導体
のV族元素で形成し、次に上記他方の半導体のIII族元
素原料ガスの供給を開始してから、このIII族元素の1
原子層が上記最表面上に形成されるのに要するよりも短
い時間の経過後に、上記他方の半導体のV族元素原料ガ
スの供給を開始することを特徴とするヘテロ構造を有す
るIII−V族化合物半導体装置の製造方法。
1. In a method for manufacturing a compound semiconductor device that includes a step of stacking layers of two types of III-V compound semiconductors to form a heterostructure using organometallic vapor phase epitaxy, When forming the layer of the other semiconductor, the supply of the group III element source gas for the one semiconductor is stopped, and then the supply of the group V element source gas for the one semiconductor is stopped, thereby forming the layer of the one semiconductor layer. After forming the outermost surface with a group V element of the semiconductor, and then starting supply of the group III element raw material gas of the other semiconductor, one of the group III elements is formed.
III-V group having a heterostructure, characterized in that supply of the group V element raw material gas for the other semiconductor is started after a period of time shorter than that required for an atomic layer to be formed on the outermost surface. A method for manufacturing a compound semiconductor device.
JP20478489A 1989-08-09 1989-08-09 Manufacture of iii-v compound semiconductor device having method structure Pending JPH0370124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20478489A JPH0370124A (en) 1989-08-09 1989-08-09 Manufacture of iii-v compound semiconductor device having method structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20478489A JPH0370124A (en) 1989-08-09 1989-08-09 Manufacture of iii-v compound semiconductor device having method structure

Publications (1)

Publication Number Publication Date
JPH0370124A true JPH0370124A (en) 1991-03-26

Family

ID=16496291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20478489A Pending JPH0370124A (en) 1989-08-09 1989-08-09 Manufacture of iii-v compound semiconductor device having method structure

Country Status (1)

Country Link
JP (1) JPH0370124A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833161B2 (en) * 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US6833161B2 (en) * 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode

Similar Documents

Publication Publication Date Title
JP4963816B2 (en) Nitride semiconductor device manufacturing method and light emitting device
US6352884B1 (en) Method for growing crystals having impurities and crystals prepared thereby
JPH0370124A (en) Manufacture of iii-v compound semiconductor device having method structure
JP3137767B2 (en) Method for manufacturing semiconductor device
JPH11112102A (en) Fabrication of optical semiconductor device
JPH0431396A (en) Growth of semiconductor crystal
JP2743443B2 (en) Compound semiconductor vapor growth method and apparatus
JP3013992B2 (en) Method for growing compound semiconductor crystal
JPH07335988A (en) Compd. semiconductor device and production process thereof
JPH05335241A (en) Compound semiconductor and manufacture thereof
JP2991074B2 (en) Metalorganic vapor phase epitaxy
JP4002323B2 (en) Method for producing compound semiconductor
JPS63102222A (en) Epitaxial growth method
JP3109149B2 (en) Compound semiconductor crystal growth method
JP3098371B2 (en) Semiconductor crystal growth method
JP3464161B2 (en) Method of manufacturing InP-based distributed feedback semiconductor laser
JPH1074704A (en) Manufacture of epitaxial wafer
JP2722489B2 (en) Semiconductor crystal growth method
JPH0817739A (en) Crystal growth method
US20070281383A1 (en) Method of manufacturing semiconductor multilayer structure
JPH0334536A (en) Manufacture of iii-v compound semiconductor element
JPH02156522A (en) Manufacture of semiconductor device
JPH06140345A (en) Manufacture of compound semiconductor device
JPH07297134A (en) Selective growth method for compound semiconductor
KR20030016034A (en) Two-step growth interruption process for control of semiconductor quantum dot