JPH0370004A - Automatic control system - Google Patents

Automatic control system

Info

Publication number
JPH0370004A
JPH0370004A JP20635989A JP20635989A JPH0370004A JP H0370004 A JPH0370004 A JP H0370004A JP 20635989 A JP20635989 A JP 20635989A JP 20635989 A JP20635989 A JP 20635989A JP H0370004 A JPH0370004 A JP H0370004A
Authority
JP
Japan
Prior art keywords
control system
automatic control
transfer function
disturbance
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20635989A
Other languages
Japanese (ja)
Inventor
Michio Nakano
中野 道雄
Takashi Koga
古賀 高志
Hideki Hayashi
林 秀喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP20635989A priority Critical patent/JPH0370004A/en
Publication of JPH0370004A publication Critical patent/JPH0370004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To make a system hard to be influenced by the fluctuation of the parameter of a controlled system or that of disturbance in a specific frequency band area by attaching two transfer elements and two controllers. CONSTITUTION:In a closed loop automatic control system 9 consisting of a forward transfer function [G(S)] 93 and a feedback transfer function [H(S)] 95, an element 8 of [1/F(S)] is inserted in a forward direction, and also, a feedback loop is provided. And the feedback loop is comprised of parallel connectors 10, 10' of [1/G'(S)] and [H'(S)] set as the simulation element [G'(S), H'(S)] of the transfer functions [G(S)] and [H(S)], and the element 8' of [1-F(S)] connected in series with them. In such a way, the system can be prevented from being influenced by the fluctuation of the parameter of the controlled system or that of the disturbance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、制御対象のパラメータ変動や外乱による影響
を受けないことが望まれる自動制御装置に効用され、特
に産業用ロボット、工作機械、コンピュータ周辺機器に
広く用いられているサーボ機構に利用可能な自動制御方
式に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is useful for automatic control devices that are desired to be unaffected by parameter fluctuations and disturbances of controlled objects, and are particularly applicable to industrial robots, machine tools, and computers. This invention relates to an automatic control method that can be used for servomechanisms widely used in peripheral equipment.

〔従来の技術〕[Conventional technology]

一般に自動制御方式を効用したものとして第5図に示す
ものが知られている。
Generally, the system shown in FIG. 5 is known as one that utilizes an automatic control system.

第5図は従来から使用されている閉ループ自動制御系の
構成を示すものである。
FIG. 5 shows the configuration of a conventionally used closed loop automatic control system.

すなわち、3のG(8)は前向き伝達@数であり、具体
的にはPID方式などの制御装置や制御対象をまとめて
表わしたものである。5のH(8)はフィードバック伝
達関数であり、制御量(0(S)〕の検出装置や閉ルー
プ安定化のための補償要素などをまとめて表わしている
。4のy (s)は外乱D(8)の伝達関数であり、1
は減算器、2は加算器、R(8)は目標値である。
That is, G(8) in 3 is a forward transmission @ number, and specifically represents a control device such as a PID system and a controlled object collectively. H(8) in 5 is a feedback transfer function, which collectively represents the detection device for the controlled variable (0(S)), the compensation element for closed loop stabilization, etc. y (s) in 4 is the disturbance D (8), which is the transfer function of 1
is a subtracter, 2 is an adder, and R(8) is a target value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第5図においては、目標値R(8)と制御量0(S)と
の関係はつぎの基本方程式で表わすことができる。
In FIG. 5, the relationship between the target value R(8) and the controlled variable 0(S) can be expressed by the following basic equation.

式(1)で明らかなように目標値R(S)が一定であっ
ても、制御対象のパラメータ変動によりG(S)3が変
化したり、外乱D (8)が加わったりすると、制御量
0(S)はこれらの影響を受けて変動してしまい、良質
な制御特性が得られない。
As is clear from equation (1), even if the target value R(S) is constant, if G(S)3 changes due to parameter fluctuations of the controlled object or disturbance D (8) is added, the controlled variable will change. 0(S) fluctuates under these influences, making it impossible to obtain good quality control characteristics.

この対策として、G(8)−のとすると、0(S)は ! a(S)吟□・n、(s)   ・・・・・・・・・・
・・・・・(2)H(S) となって、G(8)3の変動や外乱D(8)の影響を小
さくすることができるが、 G(S)3のゲインを高く
するほど閉ループの安定化が困難となって実用性に乏し
かった。
As a countermeasure for this, if G(8)-, then 0(S) is! a(S) gin□・n, (s) ・・・・・・・・・
...(2) H(S), which can reduce the fluctuation of G(8)3 and the influence of disturbance D(8), but the higher the gain of G(S)3, the more It was difficult to stabilize the closed loop, making it impractical.

〔課題の解決手段、作用、実施例〕[Means for solving problems, effects, examples]

本発明は上述したような点に鑑み、制御対象のパラメー
タ変動や外乱の影響を受けにくい自動制御系を実現し得
る自動制御方式を提供するものである。
In view of the above-mentioned points, the present invention provides an automatic control system that can realize an automatic control system that is less susceptible to parameter fluctuations and disturbances of a controlled object.

以下、本発明を図面に基づいて説明する。Hereinafter, the present invention will be explained based on the drawings.

第1図〜第4図は本発明の理解を容易にするため示した
ものである。
1 to 4 are shown to facilitate understanding of the present invention.

まず、第1図は本発明が適用された要部構成例を示すも
ので、6は減算器、7は加算器、8,8′は伝達要素、
9は自動制御系、10 、10’は制御装置である。
First, FIG. 1 shows an example of the main part configuration to which the present invention is applied, in which 6 is a subtracter, 7 is an adder, 8 and 8' are transmission elements,
9 is an automatic control system, and 10 and 10' are control devices.

ここで、自動制御系9は第5図に示した従来型の自動制
御系であり、減算器91 、加算器92.前向き伝達関
数〔G(S)〕93 、外乱D(8)の伝達関数(Y(
S)〕94およびフィードバック伝達関数〔H(S)〕
95で構成される。
Here, the automatic control system 9 is a conventional automatic control system shown in FIG. 5, including a subtracter 91, an adder 92. Forward transfer function [G(S)]93, transfer function of disturbance D(8) (Y(
S)]94 and feedback transfer function [H(S)]
Consists of 95.

また、制御装置10 、10’はG’(S) 、 H’
(S)を前向き伝達関数G(8)、フィードバック伝達
関数H(S)を模擬した伝達特性とすると、それぞれ〔
1/σ(19)〕 、 〔H’(S)]なる伝伝達性を
有する。
In addition, the control devices 10 and 10' have G'(S) and H'
If (S) is a transfer characteristic simulating the forward transfer function G(8) and the feedback transfer function H(S), then respectively [
1/σ(19)] and [H'(S)].

すなわち、可能な限り[1/G’(8) ) = (1
/G(S)〕 。
In other words, [1/G'(8)) = (1
/G(S)].

〔H′(S)〕=〔H(S)〕となるよう構成されてい
る。
It is configured so that [H'(S)]=[H(S)].

以下、第1図に示した自動制御系が前述した如(G(8
)3のパラメータ変動や外乱D(S)の影響を受けにく
いものであることを詳述する。
Hereinafter, the automatic control system shown in Fig. 1 will be explained as follows (G(8)
) It will be explained in detail that it is less susceptible to parameter fluctuations and disturbances D(S).

すなわち、第1図に示した伝達要素および自動制御系に
つき、その信号の向きを反転させると第2図のようにな
り、制御特性上、第1図と第2図は全く等価である。
That is, for the transmission element and automatic control system shown in FIG. 1, if the direction of the signal is reversed, it becomes as shown in FIG. 2, and in terms of control characteristics, FIG. 1 and FIG. 2 are completely equivalent.

ただし第2図において、8′はF(S)なる伝達要素、
旦′は自動制御系、11は加算器である。ここに、自動
制御系ぎにおいて、96は加算器、9Bは(1/G(S
)〕なる前向き伝達関数をそれぞれ示している。
However, in Fig. 2, 8' is a transmission element F(S),
dan' is an automatic control system, and 11 is an adder. Here, in the automatic control system, 96 is an adder, and 9B is (1/G(S)
)] respectively.

さて本出願人は、本発明に係る自動制御方式と同様の基
本技術思想に基づき、昭和63年1月届日の特許出願「
自動制御方式」を提案している。これを第6図および第
7図を参照して説明する。
Now, based on the same basic technical idea as the automatic control system according to the present invention, the present applicant has applied for a patent application filed in January 1988 entitled "
We are proposing an automatic control system. This will be explained with reference to FIGS. 6 and 7.

すなわち、M6図および第7図において12.12’。That is, 12.12' in Figures M6 and 7.

12“はゲイン−g1素を示し、かかる提案においては
第1図および第2図に示した伝達特性F(S)がゲイン
Kに特定されるものである。
12'' indicates the gain -g1 element, and in this proposal, the transfer characteristic F(S) shown in FIGS. 1 and 2 is specified to the gain K.

しかして、いまそのKを零とすると、目標値R(S)と
制御1kC(8)畑係が1式(3) 、 (3’)に示
す如くに制御装置10 、10’と加算器7,11とゲ
イン要素12’は〔1〕のみによって関係づけられ、前
向き伝達関aG(S)や外乱D(S)と無関係となるこ
とである。
Now, if K is set to zero, the target value R(S) and the control 1kC(8), the field staff are 1, as shown in equations (3) and (3'), the controllers 10, 10' and the adder 7. , 11 and the gain element 12' are related only by [1] and are unrelated to the forward transfer relation aG(S) and the disturbance D(S).

つぎに、第2図においては伝達要素8’ 、 8’を、
先の提案による単なるゲインに、(1−K)に限定せず
、所定の周波数特性をもつF(S) 、 1−F(8)
としてなるものである。
Next, in FIG. 2, the transmission elements 8' and 8' are
The simple gain proposed above is not limited to (1-K), but also F(S), 1-F(8) with predetermined frequency characteristics.
It will be as follows.

さらに、第3図は(F(8)=8T/(1+8T)〕と
した場合の本発明の効用例を示すもので、Tはある一次
遅れ時定数である。ここに、自動制御系9″はFP(8
)に、制御装置10.10’と加算器7はFPB(8)
と略記のうえ制御装置10′として示している。
Furthermore, FIG. 3 shows an example of the effectiveness of the present invention in the case of (F(8)=8T/(1+8T)), where T is a certain first-order lag time constant.Here, the automatic control system 9'' is FP (8
), the control device 10.10' and the adder 7 are FPB (8)
This is abbreviated as a control device 10'.

ここで、伝達l!素13が(8T/(1−8T ) )
の伝達特性をもつゆえ、伝達要素14の特性は(1−(
8T)/(1+8T)=1/(1+8T) )となる。
Here, the transmission l! Element 13 is (8T/(1-8T))
Therefore, the characteristic of the transfer element 14 is (1-(
8T)/(1+8T)=1/(1+8T)).

その伝達要素13はバイパス特性をもち高い周波数帯域
でゲインが高く、伝達要素14はローパス特性をもち逆
に低い周波数帯域でゲインが高くなる。
The transfer element 13 has a bypass characteristic and has a high gain in a high frequency band, and the transfer element 14 has a low pass characteristic and has a high gain in a low frequency band.

よって、低い周波数帯域で伝達要素14すなわち制御装
置10″が支配的となり、制御対象のパラメータ変動や
外乱の影響を受けにくい系となる。一方高い周波数帯域
では伝達要素13.自動制御系9″が支配的となり、本
発明適用前の制御系本来の特性を奏すること明らかであ
る。
Therefore, in the low frequency band, the transfer element 14, that is, the control device 10'' becomes dominant, and the system becomes less susceptible to parameter fluctuations and disturbances of the controlled object.On the other hand, in the high frequency band, the transfer element 13 and the automatic control system 9'' become dominant. It is clear that the control system becomes dominant and exhibits the original characteristics of the control system before application of the present invention.

また、自動制御系9″が電動機駆動系においてステ、プ
応答の場合を考察するに、ステップの立ち上がり時は高
い周波数が支配的であって制御系は本来の特性、例えば
最大トルク(最大IE流)で加速する。ステップの定状
領域では低い周波数が支配的となり、制御対象の変動や
外乱に封して非常に安定な系となり好ましい制御性を示
す。
Furthermore, when considering the case where the automatic control system 9'' is a step response in the motor drive system, high frequencies are dominant at the rise of the step, and the control system is affected by the original characteristics such as maximum torque (maximum IE current). ).In the steady state region of the step, low frequencies are dominant, and the system is very stable against fluctuations and disturbances in the controlled object and exhibits favorable controllability.

さらにまた、(F(S)=1/(t+s’r) )とし
た場合を考察するに、逆に低い周波数帯域で自動制御系
9″が高い周波数帯域で、よって制御装置10″が支配
的となる。これより、油圧制御系では高い周波数帯域で
共振現象を起こして問題となる場合があるが、このよう
なとき[F(8)=1/(1+8T ) ]とした適用
によれば、共振問題を解消することができる。
Furthermore, considering the case of (F(S)=1/(t+s'r)), conversely, the automatic control system 9'' is in the low frequency band and the automatic control system 9'' is in the high frequency band, so the control device 10'' is dominant. becomes. From this, it can be seen that in hydraulic control systems, resonance phenomena may occur in high frequency bands and cause problems, but in such cases, by applying [F(8)=1/(1+8T)], the resonance problem can be solved. It can be resolved.

つぎにまた、第4図は本発明の別な効用例を示すもので
、i3’、14’は伝達要素である。
Next, FIG. 4 shows another example of the utility of the present invention, in which i3' and 14' are transmission elements.

すなわち(F(8)=(8”+b)/(S2+aS+b
)〕ただしくa、bは定数)とした場合であり、この場
合、伝達要素13′は角周波数(ω=4)に対して伝達
特性が零となって制御対象や外乱と切り離される。
That is, (F(8)=(8”+b)/(S2+aS+b
)] where a and b are constants), and in this case, the transfer element 13' has a transfer characteristic of zero with respect to the angular frequency (ω=4) and is separated from the controlled object and the disturbance.

よって、特定周波数のパラメータや外乱に対して無反応
となる制御系を構成することができる。
Therefore, it is possible to configure a control system that does not react to specific frequency parameters or disturbances.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発8AIこよれば、広く用いられ
ている従来型自動制御系lこ対して、第1図に例示した
如き2個の伝達要素、2個の制御装置等を付加した構成
をなし、!¥i定周波数帯において制御対象のパラメー
タ変動や外乱の影響を受けにくい実用効果の顕著な装置
を実現し得る格別な方式を提供できる。
As explained above, the present 8AI has a configuration in which two transmission elements, two control devices, etc., as illustrated in FIG. 1, are added to the widely used conventional automatic control system. No,! It is possible to provide an exceptional method that can realize a device with remarkable practical effects that is less susceptible to parameter fluctuations and disturbances of the controlled object in a constant frequency band.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明が適用された要部構成例を
示す系統図およびその等価系統図、第3図および第4図
は本発明の効用例および別な効用例を示す系統図、第5
図は従来例の閉ループ自動制御系の構成を示す系統図、
第6図および第7図は本出願人による先の提案を説明す
るため示した系統図である。 R(8)・・・・・・目標値、C(S)・・・・・・制
御量、D(8)・・・・・・外乱、3・・・・−・前向
き伝達関数、4 、8 、8’ 。 8” 、 13 、13’ 、 14 、14’・・・
・・・伝達関数、5・・・・・・フィードバック伝達関
数、12 、12’ 、 12″・・・・・・ゲイン要
素、9 、9F 、 911・・・・・・自動制御系、
10 、10’。 10″・・・・・・制御装置。
Figures 1 and 2 are system diagrams and equivalent system diagrams showing an example of the main part configuration to which the present invention is applied, and Figures 3 and 4 are system diagrams showing an example of the effectiveness of the present invention and another example of its effectiveness. , 5th
The figure is a system diagram showing the configuration of a conventional closed-loop automatic control system.
FIGS. 6 and 7 are system diagrams shown to explain the earlier proposal by the present applicant. R(8)...Target value, C(S)...Controlled amount, D(8)...Disturbance, 3...Forward transfer function, 4 , 8 , 8'. 8", 13, 13', 14, 14'...
...Transfer function, 5...Feedback transfer function, 12, 12', 12''...Gain element, 9, 9F, 911...Automatic control system,
10, 10'. 10″...Control device.

Claims (1)

【特許請求の範囲】 1 前向き伝達関数〔G(S)〕とフィードバック伝達
関数〔H(S)〕とから構成される閉ループ自動制御系
において、前向きに〔1/F(S)〕なる要素を挿入す
るとともに、新たなるフィードバックループを設け、該
フィードバックループを、前記伝達関数〔G(S)〕お
よび〔H(S)〕の模擬要素〔G′(S)、H′(S)
〕とする〔1/G′(S)〕と〔H′(S)〕の並列接
続体と、これに直列接続した〔1−F(S)〕なる要素
により構成したことを特徴とする自動制御方式。
[Claims] 1. In a closed-loop automatic control system consisting of a forward transfer function [G(S)] and a feedback transfer function [H(S)], an element that is forward [1/F(S)] is At the same time, a new feedback loop is provided, and the feedback loop is connected to the simulated elements [G'(S), H'(S)] of the transfer functions [G(S)] and [H(S)].
], and an element connected in parallel with [1/G'(S)] and [H'(S)], and an element [1-F(S)] connected in series. control method.
JP20635989A 1989-08-09 1989-08-09 Automatic control system Pending JPH0370004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20635989A JPH0370004A (en) 1989-08-09 1989-08-09 Automatic control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20635989A JPH0370004A (en) 1989-08-09 1989-08-09 Automatic control system

Publications (1)

Publication Number Publication Date
JPH0370004A true JPH0370004A (en) 1991-03-26

Family

ID=16522016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20635989A Pending JPH0370004A (en) 1989-08-09 1989-08-09 Automatic control system

Country Status (1)

Country Link
JP (1) JPH0370004A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987506A (en) * 1982-11-12 1984-05-21 Hitachi Ltd Noise eliminating device
JPH01191201A (en) * 1988-01-26 1989-08-01 Toyo Electric Mfg Co Ltd Automatic control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987506A (en) * 1982-11-12 1984-05-21 Hitachi Ltd Noise eliminating device
JPH01191201A (en) * 1988-01-26 1989-08-01 Toyo Electric Mfg Co Ltd Automatic control system

Similar Documents

Publication Publication Date Title
US3241077A (en) Self-adaptive control system eliminating variable unwanted component
US4148452A (en) Filtering technique based on high-frequency plant modeling for high-gain control
EP0592245B1 (en) Process control apparatus
Medanic On stabilization and optimization by output feedback
JPH0370004A (en) Automatic control system
DE10341865B4 (en) Improved switch with smooth transition
Teixeira Direct expressions for Ogata's lead-lag design method using root locus
Engell Compensator design by frequency-weighted approximation
Missaghie et al. Sensitivity reducing observers for optimal feedback control
US6870345B1 (en) Servo loop PID compensator with embedded rate limit
JP2683543B2 (en) Automatic control method
Umeno et al. Generalized robust servosystem design based on the parametrization of two degrees of freedom controllers
JPH0363704A (en) Model norm type adaptive controller
US6014613A (en) Compensation method with control systems, namely with high delay, and corresponding compensation control system
CN110609568A (en) Strong self-coupling PI cooperative control method for large unmanned aerial vehicle UAV
US5783923A (en) Method and apparatus for multiple-input, multiple output feedback control of variable load systems
JPH04302302A (en) Two degree of free controller
Khaloozadeh et al. Adaptive tracking and asymptotic rejection of unknown but bounded disturbances in nonlinear MIMO systems
JPH0556522B2 (en)
Thompson et al. H/sup infinity/robust control synthesis for a fighter performing a coordinated bank turn
Lim et al. Improvement of adaptive controller designs for robot manipulator systems yielding reduced Cartesian error
Reddy et al. Design of model reference adaptive control for unstable aircraft
Sasa et al. Improvement of the transient response in the finite settling time control
SU1200241A1 (en) Control system for object with time lag
Rao et al. Computer-aided compensator design