JPH01191201A - Automatic control system - Google Patents

Automatic control system

Info

Publication number
JPH01191201A
JPH01191201A JP1560788A JP1560788A JPH01191201A JP H01191201 A JPH01191201 A JP H01191201A JP 1560788 A JP1560788 A JP 1560788A JP 1560788 A JP1560788 A JP 1560788A JP H01191201 A JPH01191201 A JP H01191201A
Authority
JP
Japan
Prior art keywords
control system
automatic control
gain
transfer function
controllers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1560788A
Other languages
Japanese (ja)
Other versions
JP2683543B2 (en
Inventor
Michio Nakano
中野 道雄
Takashi Koga
古賀 高志
Hideki Hayashi
林 秀喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP1560788A priority Critical patent/JP2683543B2/en
Publication of JPH01191201A publication Critical patent/JPH01191201A/en
Application granted granted Critical
Publication of JP2683543B2 publication Critical patent/JP2683543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To constitute the control system in which a relation of a desired value R(S) and a controlled variable C(S) is scarcely influenced by a parameter fluctuation of an object to be controlled and a disturbance by adding two pieces of gain elements, two pieces of controllers and one piece of subtracter. CONSTITUTION:Gain elements 8, 8' consist of 1/k and 1-k, when (k) is a constant of 0<=k<=1. Also, controllers 10, 10' are controllers having a transfer characteristic of [1/G'(S)] and H'(S), respectively, when G'(S) and H'(S) are forward transfer functions G(S), and a feedback transfer function H(S) is a simulated transfer characteristic. That is, they are constituted so as to become [1/G'(S)]=[1/G(S)] and H'(S)=H(S) as much as possible. With regard to the gain element 8 and an automatic control system 9, when a direction of its signal is inverted, and also, (k) is set to zero, the gain of a gain element 12 becomes zero, and the system is detached in this part. Therefore, a desired value R(S) and a controlled variable C(S) are related well-definedly only by a range of the controllers 10, 10', an adder 7 and the gain element 8', and come to have no relation to an automatic control system 9' and a disturbance D(S).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 自動制御方式、制御対象のパラメータ変動や外乱による
影響を受けないことが望まれる自動制御装置に効用され
、特に産業用ロボ、ト、工作機械。
[Detailed description of the invention] [Industrial field of application] It is useful for automatic control systems and automatic control devices that are desired to be unaffected by parameter fluctuations and disturbances of the controlled object, and is particularly useful for industrial robots, machines, and machine tools. .

コンピュータ周辺機器に広く用いられているサーボ機構
に利用可能な自動制御方式に関するものである。
This invention relates to an automatic control method that can be used for servomechanisms widely used in computer peripherals.

〔従来の技術〕[Conventional technology]

一般に自動制御方式を効用したものとして第4図に示す
ものが知られている。
Generally, the system shown in FIG. 4 is known as one that utilizes an automatic control system.

第4図は従来から使用されている閉ループ自動制御系の
構成を示すものである。
FIG. 4 shows the configuration of a conventionally used closed loop automatic control system.

すなわち、3のG(8)は前向き伝達関数であり、具体
的には制御装置や制御対象を表わしたものである。5の
H(S)はフィードバック伝達関数であり、制御量(0
(S)〕の検出装置や閉ループ安定化のための制御装置
を表わしている。4のy(s)は外乱D(8)の伝達関
数であり、1は減算器、2は加算器、R(8)は目標値
である。
That is, G(8) in 3 is a forward transfer function, and specifically represents a control device or a controlled object. H(S) in 5 is a feedback transfer function, and the control amount (0
(S)] detection device and control device for closed loop stabilization. y(s) of 4 is a transfer function of the disturbance D(8), 1 is a subtracter, 2 is an adder, and R(8) is a target value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第4図においては、目標値R(8)と制御量0(S)と
の関係はつぎの基本方程式で表わすことができる。
In FIG. 4, the relationship between target value R(8) and control amount 0(S) can be expressed by the following basic equation.

式(1)で明らかなように目標値R(8)が一定であっ
ても、制御対象のパラメータ変動によりG(S ) 3
が変化したり、外乱D(S)が加わったりすると、制御
to(S)はこれらの影響を受けて変動してしまい、真
室な制御特性が得られて この対策として、G(S)→ωとすると、C(S)は となって、 G(S)3の変動や外乱D(S )の影響
を小さくすることができるが、G(8)3のゲインを高
くするほど閉ループの安定化が困難となって実用性こと
乏しかった。
As is clear from equation (1), even if the target value R(8) is constant, G(S)3 due to parameter fluctuations of the controlled object.
When G(S) changes or disturbance D(S) is added, the control to(S) fluctuates due to these influences, and a true control characteristic is obtained. As a countermeasure to this, G(S)→ If ω, then C(S) becomes, which can reduce the influence of fluctuations in G(S)3 and disturbance D(S), but the higher the gain of G(8)3, the more stable the closed loop becomes. This made it difficult to implement and had little practicality.

〔問題点の解決手段、作用、実施例〕[Means for solving problems, effects, examples]

本発明は上述したような点に鑑み、制御対象のパラメー
タ変動や外乱の影響を受けにくい自動制御系を実現し得
る自動制御方式を提供するものである。
In view of the above-mentioned points, the present invention provides an automatic control system that can realize an automatic control system that is less susceptible to parameter fluctuations and disturbances of a controlled object.

以下、本発明を図面に基づいて詳細説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は本発明が適用された要部構成例を示すもので、
6は減算器、7は加算器、 8 、8’はゲイン要素、
旦は自動制御系、10 、10’は制御装置である。
FIG. 1 shows an example of the main part configuration to which the present invention is applied.
6 is a subtracter, 7 is an adder, 8 and 8' are gain elements,
1 is an automatic control system, and 10 and 10' are control devices.

ここに、自動制御系旦は第4図に示した従来型の自動制
御系であり、減算器91.加算器92.前向き伝達関数
[:G(S)]93.外乱D(S)の伝達関数(Y(8
)194およびフィードバック伝達関数(H(S):1
95で構成される。
Here, the automatic control system 91 is the conventional automatic control system shown in FIG. Adder 92. Forward transfer function [:G(S)]93. Transfer function of disturbance D(S) (Y(8
)194 and feedback transfer function (H(S):1
Consists of 95.

第1図においては、ゲイン要素8,8′はkを(0≦に
≦1)なる定数とすると、(1/k)および(1−k)
からなる。また制御装置10 、10’はG’(S)。
In FIG. 1, the gain elements 8, 8' are (1/k) and (1-k), where k is a constant (0≦≦1).
Consisting of Further, the control devices 10 and 10' are G'(S).

H’(S)を前向き伝達関数G(S)、フィードバック
伝達関数H(S)を模擬した伝達特性とすると、それぞ
れ〔1/G′(S)〕 、 H’(S)なる伝達特性を
有する制御装置である。
If H'(S) is a transfer characteristic simulating a forward transfer function G(S) and a feedback transfer function H(S), they have transfer characteristics of [1/G'(S)] and H'(S), respectively. It is a control device.

すなわち、可能なかぎり〔1/G′(8)〕=(1/G
(S)〕 。
That is, as far as possible, [1/G'(8)] = (1/G
(S)].

H’(S)=H(S)となるよう構成するものとする。It is assumed that the configuration is such that H'(S)=H(S).

つぎに第1図に示した自動制御系が前述した如< G(
S)のパラメータ変動や外乱D(S)の影響を受けにく
いことを詳述する。
Next, the automatic control system shown in FIG.
The fact that it is not easily affected by parameter fluctuations of S) and disturbance D(S) will be explained in detail.

第2図は制御ブロック図の信号の向きを反転させる方法
について示したものであり、(a)は減算態様を加算態
様に書き替え可能なことを示し、(b)はFなる伝達関
数は(1/F)こと置き換え可能なことを示す。なお、
とのFの変換については、電気学会論文誌、 87−3
(1967年)、高井著「プロ、り線図の描き方とその
アナログシミ、レージ、ンに対スる応用」を参照されれ
ば、理解し得る。
FIG. 2 shows a method for reversing the direction of the signal in the control block diagram. (a) shows that the subtraction mode can be rewritten into the addition mode, and (b) shows that the transfer function F is ( 1/F) indicates that they can be replaced. In addition,
Regarding the conversion of F with , see Transactions of the Institute of Electrical Engineers of Japan, 87-3
(1967) by Takai, ``How to draw professional line diagrams and its application to analog stains, rays, and n'' will help you understand this.

さら1ζ、かような方式を用いて第1図に示したゲイン
要素8および自動制御系旦につき、その信号の向きを反
転させ、かつkを零とすると、第3図となる。つまり、
制御特性上第1図と第3図は全く等価である。
Furthermore, if the signal direction of the gain element 8 and the automatic control system shown in FIG. 1 are reversed using such a method and k is set to zero, then FIG. 3 is obtained. In other words,
In terms of control characteristics, FIGS. 1 and 3 are completely equivalent.

ただし第3図に詔いて、11は加算器、12はゲイン要
素1yは自動制御系であり、自動制御系yにおいては9
6は加算器、97は減算器、98は前向き伝達関数をそ
れぞれ示している。
However, as shown in Figure 3, 11 is an adder, 12 is a gain element 1y is an automatic control system, and in the automatic control system y, 9
6 indicates an adder, 97 a subtractor, and 98 a forward transfer function.

ここで、(k=o)とするとゲイン要素12のゲインが
零となり、系はこの部分において切り離される。よって
、目標値R(8)と制御量0(S)は制御装置10 、
10’と加算器7とゲイン要素8′の範囲によりてのみ
一義的ζこ関係づけられるものとなり、自動制御系yや
外乱D(8)とは無関係となる。
Here, if (k=o), the gain of the gain element 12 becomes zero, and the system is separated at this portion. Therefore, the target value R(8) and the control amount 0(S) are the control device 10,
10', the adder 7, and the range of the gain element 8'.

すなわち、つぎの式のようになる。In other words, it becomes as follows.

このことは、α(S)、H’(8)はG(S) 、 H
(S)とほぼ等しくなるよう構成するゆえ、式(2′)
の関係は外乱D(S)のない式(1)とほぼ等しくなり
、また〔1/G′(8) ) 、 H’(S)は制御装
置であり、制御対象のパラメータ変動によりG(S)が
変動しても、式(2′)の関係は変らずこの影響を全く
受けないことになる。
This means that α(S), H'(8) is G(S), H
(S), so Equation (2')
The relationship is almost the same as Equation (1) without disturbance D(S), and [1/G'(8)), H'(S) is a control device, and due to parameter fluctuations of the controlled object, G(S) ) changes, the relationship in equation (2') remains unchanged and is not affected by this at all.

なお、(k=o)とするのは理想的な状態であるが、零
でなくても変動や外乱の影響をk(k<1)だけ低下さ
せることができ、それなりに有効なものとなる。(k=
0)とすることは、現実には第1図に示されるゲイン要
素8のゲインを無限大とすることに相当するため、厳密
には困難ではあるが、リレー要素や積分器により近似的
に実現することができる。
Note that (k = o) is an ideal state, but even if it is not zero, the influence of fluctuations and disturbances can be reduced by k (k < 1), and it is quite effective. . (k=
0) is actually equivalent to making the gain of gain element 8 shown in Figure 1 infinite, so although it is difficult strictly speaking, it can be achieved approximately using relay elements and integrators. can do.

〔効 果〕〔effect〕

以上説明したように本発明によれば、第4図に示した如
き広く用いられている従来製自動制御系lこ対して、第
1図に例示したように2個のゲイン要素、2個の制御装
置および1個の減算器を付加することにより、目標値R
(8)と制御量0(S)との関保が制御対象のパラメー
タ変動や外乱の影響を受けにくい制御系を構成し得る自
動制御方式を提供できる。特に、サーボ機構に3いては
負荷の機械的特性が変化しても、一定の応答特性を得る
ことが可能となる実用効果は極めて大きい0
As explained above, according to the present invention, in contrast to the widely used conventional automatic control system shown in FIG. 4, two gain elements and two gain elements are used as shown in FIG. By adding a control device and one subtractor, the target value R
(8) and a control amount of 0 (S), it is possible to provide an automatic control system that can configure a control system that is less susceptible to parameter fluctuations and disturbances of the controlled object. In particular, in the case of servomechanisms, it is possible to obtain constant response characteristics even if the mechanical characteristics of the load change, which has an extremely large practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用された要部構成例を示す系統図、
第2図(a) 、 (b)は第1図の信号の向きを反転
させる方法を説明するため示した図、第3図は第1図の
説明のため示した等価図、第4図は従来トリの閉ループ
自動制御系の構成を示す系統図である。 几(S)・・・・・・目標値、0(S)・・・・・・制
御量、D(S)・・・・・・外乱、3・・・・・・前向
き伝達関数、4・・・・・・伝達関数、5・・・・・・
フィードバック伝達関数、8.8’、12・・・・・・
ゲイン要素、兄、y・・・・・・自動制御系、 10 
、10’・・・・・・制御装置。
FIG. 1 is a system diagram showing an example of the main part configuration to which the present invention is applied;
Figures 2 (a) and (b) are diagrams shown to explain the method of reversing the direction of the signal in Figure 1, Figure 3 is an equivalent diagram shown to explain Figure 1, and Figure 4 is FIG. 2 is a system diagram showing the configuration of a conventional closed-loop automatic control system for birds.几(S)...Target value, 0(S)...Controlled amount, D(S)...Disturbance, 3...Forward transfer function, 4・・・・・・Transfer function, 5・・・・・・
Feedback transfer function, 8.8', 12...
Gain element, older brother, y... Automatic control system, 10
, 10'...control device.

Claims (1)

【特許請求の範囲】 前向き伝達関数〔G(S)〕とフィードバック伝達関数
〔H(S)〕とから構成される閉ループ自動制御系をな
す自動制御方式において、前向きに定数〔k(0≦k≦
1)〕とする(1/k)なるゲイン要素を挿入するとと
もに、新たなるフィードバックループとを設け、該フィ
ードバックループを、前記伝達関数の模擬要素〔G′(
S)、H′(S)〕とする〔1/G′(S)〕と〔H′
(S)〕の並列要素と、これらに直列接続した(1−k
)なるゲイン要素にて構成し、定数(k)を充分小さく
することを特徴とした自動制御方式。
[Claims] In an automatic control system that forms a closed-loop automatic control system consisting of a forward transfer function [G(S)] and a feedback transfer function [H(S)], a constant [k (0≦k ≦
1)], a gain element of (1/k) is inserted, a new feedback loop is provided, and the feedback loop is connected to a simulating element of the transfer function [G'(
S), H'(S)] and [1/G'(S)] and [H'
(S)] and (1-k
), and is characterized by making the constant (k) sufficiently small.
JP1560788A 1988-01-26 1988-01-26 Automatic control method Expired - Fee Related JP2683543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1560788A JP2683543B2 (en) 1988-01-26 1988-01-26 Automatic control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1560788A JP2683543B2 (en) 1988-01-26 1988-01-26 Automatic control method

Publications (2)

Publication Number Publication Date
JPH01191201A true JPH01191201A (en) 1989-08-01
JP2683543B2 JP2683543B2 (en) 1997-12-03

Family

ID=11893401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1560788A Expired - Fee Related JP2683543B2 (en) 1988-01-26 1988-01-26 Automatic control method

Country Status (1)

Country Link
JP (1) JP2683543B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370004A (en) * 1989-08-09 1991-03-26 Toyo Electric Mfg Co Ltd Automatic control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370004A (en) * 1989-08-09 1991-03-26 Toyo Electric Mfg Co Ltd Automatic control system

Also Published As

Publication number Publication date
JP2683543B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
JPS61226804A (en) Control device of multidegree-of-freedom nonlinear machine system
GB1013848A (en) Method for automatic generation of moving curve-point coordinates, and arrangement for application of said method in controlling, for instance, movement mechanisms
GB1320272A (en) Process cont&#39;ol system
AU613401B2 (en) Advanced pid controller
JPS59142603A (en) Control system of high gain feedback
JPH01191201A (en) Automatic control system
JPH0454242B2 (en)
KR20050042871A (en) Practical adaptive neural network controller
US3366856A (en) Method and system for optimum control of servomechanisms having load inertia variation
JPS62217304A (en) Automatic controller
JPH0363704A (en) Model norm type adaptive controller
RU2027212C1 (en) Adaptive non-linear control system
JPS5913660B2 (en) Temperature and humidity control device
JPS60176104A (en) Process controller
JPS6355602A (en) Feedback controller
JPS5714938A (en) Light pen input device
SU1234808A1 (en) Servo system
JPS581205A (en) Pid controller
DUDEK Minimization of multivariable weakly-defined multiargument logic functions with multivariable constraints
JPH06175728A (en) Nc device
JPH07311601A (en) Two-degree-of-freedom pid adjusting device
JPH04312101A (en) Two-frredom degree type adjustment device
JPH02129702A (en) Process controller
SU1411704A1 (en) Servo system
JPH05252000A (en) Signal processing unit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees